Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
1.
Acta Pharm Sin B ; 14(8): 3476-3492, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39234615

ABSTRACT

Owing to their limited accuracy and narrow applicability, current antimicrobial peptide (AMP) prediction models face obstacles in industrial application. To address these limitations, we developed and improved an AMP prediction model using Comparing and Optimizing Multiple DEep Learning (COMDEL) algorithms, coupled with high-throughput AMP screening method, finally reaching an accuracy of 94.8% in test and 88% in experiment verification, surpassing other state-of-the-art models. In conjunction with COMDEL, we employed the phage-assisted evolution method to screen Sortase in vivo and developed a cell-free AMP synthesis system in vitro, ultimately increasing AMPs yields to a range of 0.5-2.1 g/L within hours. Moreover, by multi-omics analysis using COMDEL, we identified Lactobacillus plantarum as the most promising candidate for AMP generation among 35 edible probiotics. Following this, we developed a microdroplet sorting approach and successfully screened three L. plantarum mutants, each showing a twofold increase in antimicrobial ability, underscoring their substantial industrial application values.

2.
Nutrients ; 16(17)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39275335

ABSTRACT

As the relationship between the gut microbiome and allergies becomes better understood, targeted strategies to prevent and treat allergies through gut microbiome modulation are being increasingly developed. In the study presented herein, we screened various probiotics for their ability to inhibit mast cell degranulation and identified Lactiplatibacillus plantarum HD02 and MD159 as effective candidates. The two strains significantly attenuated vascular permeability induced by mast cell degranulation in a passive cutaneous anaphylaxis (PCA) model and, in the MC903-induced murine atopic dermatitis (AD) model, demonstrated comparable preventive effects against allergies, reducing blood levels of MCPT-1 (mast cell protease-1) and total IgE. In the house dust mite (HDM)-induced murine AD model, both L. plantarum HD02 and MD159 showed therapeutic effects, with L. plantarum HD02 demonstrating superior efficacy. Nevertheless, L. plantarum MD159 better suppressed transepidermal water loss (TEWL). Furthermore, L. plantarum HD02 and MD159 significantly increased the number of splenic Foxp3+ regulatory T cells, with L. plantarum MD159 having a more pronounced effect. However, only L. plantarum HD02 achieved a reduction in immune cells in the draining lymph nodes. Our findings highlight L. plantarum HD02 and MD159 as promising candidates for the prevention and treatment of allergies, demonstrating significant efficacy in suppressing mast cell degranulation, reducing the number of allergy biomarkers, and modulating immune responses in experimental models of AD. Their distinct mechanisms of action suggest potential complementary roles in addressing allergic diseases, underscoring their therapeutic promise in clinical applications.


Subject(s)
Cell Degranulation , Dermatitis, Atopic , Disease Models, Animal , Mast Cells , Probiotics , Animals , Dermatitis, Atopic/therapy , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/immunology , Mast Cells/drug effects , Probiotics/pharmacology , Mice , Cell Degranulation/drug effects , Immunoglobulin E/blood , Mice, Inbred BALB C , Lactobacillus plantarum , Pyroglyphidae/immunology , Passive Cutaneous Anaphylaxis/drug effects , Female , Gastrointestinal Microbiome/drug effects , Capillary Permeability/drug effects , T-Lymphocytes, Regulatory/immunology , Chymases
3.
BMC Vet Res ; 20(1): 399, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39244529

ABSTRACT

BACKGROUND: Klebsiella pneumoniae (KP), responsible for acute lung injury (ALI) and inflammation of the gastrointestinal tract, is a zoonotic pathogen that poses a threat to livestock farming worldwide. Nevertheless, there is currently no validated vaccine to prevent KP infection. The development of mucosal vaccines against KP using Lactobacillus plantarum (L. plantarum) is an effective strategy. RESULTS: Firstly, the L. plantarum strains NC8-pSIP409-aCD11c' and NC8-pLc23-aCD11c were constructed via homologous recombination to express the aCD11c protein either inducibly or constitutively. Both NC8-pSIP409-aCD11c' and NC8-pLc23-aCD11c strains could enhance the adhesion and invasion of L. plantarum on bone marrow-derived dendritic cells (BMDCs), and stimulate the activation of BMDCs compared to the control strain NC8-pSIP409 in vitro. Following oral immunization of mice with NC8-pSIP409-aCD11c' and NC8-pLc23-aCD11c, the cellular, humoral, and mucosal immunity were significantly improved, as evidenced by the increased expression of CD4+ IL-4+ T cells in the spleen, IgG in serum, and secretory IgA (sIgA) in the intestinal lavage fluid (ILF). Furthermore, the protective effects of L. plantarum against inflammatory damage caused by KP infection were confirmed by assessing the bacterial loads in various tissues, lung wet/dry ratio (W/D), levels of inflammatory cytokines, and histological evaluation, which influenced T helper 17 (Th17) and regulatory T (Treg) cells in peripheral blood and lung. CONCLUSIONS: Both the inducible and constitutive L. plantarum strains NC8-pSIP409-aCD11c' and NC8-pLc23-aCD11c have been found to stimulate cellular and humoral immunity levels and alleviate the inflammatory response caused by KP infection. These findings have provided a basis for the development of a novel vaccine against KP.


Subject(s)
Immunity, Cellular , Klebsiella Infections , Klebsiella pneumoniae , Lactobacillus plantarum , Animals , Klebsiella Infections/prevention & control , Klebsiella Infections/veterinary , Klebsiella Infections/immunology , Klebsiella pneumoniae/immunology , Mice , Administration, Oral , Female , Mice, Inbred BALB C , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Dendritic Cells/immunology , Inflammation
4.
J Virol ; : e0095024, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258911

ABSTRACT

Influenza is an important zoonotic disease that persistently threatens global public health. While it is widely acknowledged that probiotics can modulate the host response to protect the host against infectious disease, the prophylactic efficacy on respiratory viral infection and the detailed mechanism remains elusive. Lactobacillus, the most commonly used probiotic widely applied in food production, has garnered significant attention. In our study utilizing both C57BL/6 and BALB/c mouse models, we explored the protective effect against two strains of influenza virus, A/Mink/China/01/2014(H9N2) and A/California/04/2009(H1N1), through the administration of Lactiplantibacillus plantarum strain 16 (L. plantarum 16) and Lacticaseibacillus rhamnosus strain P118 (L. rhamnosus P118), aiming to identify robust probiotic strains with antiviral properties. Our findings indicate that administering L. plantarum 16 or L. rhamnosus P118 alone does not provide sufficient protection against influenza. However, the co-administration of L. plantarum 16 and L. rhamnosus P118 dramatically reduces viral titers in the respiratory tract and lung, thereby markedly alleviating the clinical symptoms, improving prognosis, and reducing mortality. The mechanisms underlying this effect involve the modulation of host gut microbiota and metabolism through the co-administration of L. plantarum 16 and L. rhamnosus P118, resulting in enrichment of Firmicutes and enhancement of phenylalanine-related metabolism, ultimately leading to an augmentation of the antiviral immune response. Notably, we identified that the circulating metabolic molecule 2-Hydroxycinnamic acid plays a significant role in combating influenza. Our data suggest the potential utility of L. plantarum 16 and L. rhamnosus P118 two-bacterium or 2-Hydroxycinnamic acid in preventing influenza.IMPORTANCEVaccination represents the most optimal strategy to control influenza. Nevertheless, influenza viruses constantly evolve due to antigenic drift and shift, leading to the need for regular updates on influenza vaccines. Additionally, vaccination failure poses significant challenges to influenza prevention. Therefore, it is essential and beneficial to identify novel or universal antiviral measures to protect against influenza. While cumulative data suggest that probiotics offer protection against infectious diseases, the specific mechanisms, such as the effective metabolites or components, remain largely unknown. Our research discovered the capacity of combinational two-bacterium Lactiplantibacillus plantarum 16 and Lacticaseibacillus rhamnosus P118 to fight against influenza infection in a mouse model. The protection may occur through modulating the host's gut microbiota and metabolism, further influencing the host's antiviral immune response. Notably, we have identified a novel metabolic molecule, 2-Hydroxycinnamic acid, capable of enhancing antiviral response and restricting viral replication in vivo.

5.
Food Chem X ; 23: 101674, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39139494

ABSTRACT

The effect of Silybum marianum seed extract (SMSE), added freely or in co-encapsulated with L. plantarum (MT, ZH593), on cell survivability, physicochemical and textural parameters in synbiotic cheeses for 60 days at 4 °C were studied. Incorporated cheeses with free, single encapsulated, and co-encapsulated probiotic + SMSE experimented a reduction of 3.19, 1.23, and 0.76 log CFU/mL for the cell survivability and their antioxidant activity reached 15.19, 16.26, and 31.73%, respectively, at the end of the storage. Decrease in hardness, cohesiveness, and springiness of the cheese containing free probiotic + SMSE upon compression during storage revealed proteolysis pattern and pH development being the most effective agents while whey percentage and moisture loss were the most effective agents in the rest of the cheeses. Overall, microcapsules containing L. plantarum and SMSE propose an easy and efficient delivery vehicle for the transition of bio-compounds into cheese as a novel synbiotic food.

6.
Article in English | MEDLINE | ID: mdl-38896223

ABSTRACT

The disparity between increased lifespan and healthy aging, marked by prevalent "inflammaging", highlights the global challenge in care of older persons. This study explored the anti-inflammatory effects of Lactiplantibacillus plantarum HEAL9 (LpHEAL9), alone or combined with berries, on older volunteers with chronic low-grade inflammation (LGI). It was a randomized, double-blind, placebo-controlled trial, with a total of 66 volunteers (> 70 years old), randomly assigned, and equally distributed, to placebo, LpHEAL9 or LpHEAL9 + Berries group. After a 2-week run-in period, participants underwent a 4-week dietary intervention. Intake of LpHEAL9 showed a trend towards reduction in serum CRP but without reaching statistical significance. However, LpHEAL9 significantly decreased fecal calprotectin levels compared to placebo. LpHEAL9+Berries did not show any effect on inflammation. Both probiotic groups showed a trend in improving cognitive function albeit not reaching statistical significance. Our findings suggest that the probiotic strain L. plantarum HEAL9 has a modest impact on LGI in a healthy older population (ClinicalTrials.gov ID: NCT02342496).

7.
Int J Mol Sci ; 25(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892352

ABSTRACT

Blackberries (Rubus fruticosus), which are known to include a variety of bioactive substances, have been extensively studied for their antioxidant properties. Blackberries possess multiple health beneficial effects, including anti-inflammation, anti-atherosclerosis, anti-tumor and immunomodulatory activity. However, the potential biological effects and precise molecular mechanisms of the fermented extracts remain largely unexplored. In this research, we demonstrate the effect of blackberries fermented with Lactobacillus for addressing obesity. We investigated the effect of blackberries fermented by Lactobacillus on mice fed a high-fat (60% kcal) diet for 12 weeks. Fermented blackberry administration reduced the body weight and epididymal fat caused by a high-fat diet compared to the obese group. The triglyceride and total cholesterol, which are blood lipid indicators, and the levels of leptin, which is an insulin resistance indicator, were significantly increased in the obese group but were significantly decreased in the fermented blackberries-treated group. Additionally, the expression of adipogenesis marker proteins, such as CEBPα, PPAR-γ and SREBP-1, was significantly increased in the obese group, whereas it was decreased in the fermented blackberries-treated group. These results suggest that fermented blackberries have a protective effect against high-fat-diet-induced obesity by inhibiting adipogenesis and are a potential candidate for the treatment of obesity.


Subject(s)
Adipogenesis , Anti-Obesity Agents , Diet, High-Fat , Fermentation , Lactobacillus plantarum , Obesity , PPAR gamma , Rubus , Signal Transduction , Animals , Adipogenesis/drug effects , Rubus/chemistry , Mice , Obesity/metabolism , Anti-Obesity Agents/pharmacology , Male , Diet, High-Fat/adverse effects , PPAR gamma/metabolism , Signal Transduction/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Mice, Inbred C57BL , Leptin/metabolism , Leptin/blood , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Triglycerides/blood , Triglycerides/metabolism , Body Weight/drug effects
8.
Molecules ; 29(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38792153

ABSTRACT

Breast cancer is associated with high mortality and morbidity rates. As about 20-30% of patients exhibiting ER-positive phenotype are resistant to hormonal treatment with the standard drug tamoxifen, finding new therapies is a necessity. Postbiotics, metabolites, and macromolecules isolated from probiotic bacteria cultures have been proven to have sufficient bioactivity to exert prohealth and anticancer effects, making them viable adjunctive agents for the treatment of various neoplasms, including breast cancer. In the current study, postbiotics derived from L. plantarum and L. rhamnosus cultures were assessed on an in vitro breast cancer model as potential adjunctive agents to therapy utilizing tamoxifen and a candidate aziridine-hydrazide hydrazone derivative drug. Cell viability and cell death processes, including apoptosis, were analyzed for neoplastic MCF-7 cells treated with postbiotics and synthetic compounds. Cell cycle progression and proliferation were analyzed by PI-based flow cytometry and Ki-67 immunostaining. Postbiotics decreased viability and triggered apoptosis in MCF-7, modestly affecting the cell cycle and showing a lack of negative impact on normal cell viability. Moreover, they enhanced the cytotoxic effect of tamoxifen and the new candidate drug toward MCF-7, accelerating apoptosis and the inhibition of proliferation. This illustrates postbiotics' potential as natural adjunctive agents supporting anticancer therapy based on synthetic drugs.


Subject(s)
Apoptosis , Aziridines , Breast Neoplasms , Cell Proliferation , Tamoxifen , Humans , Tamoxifen/pharmacology , Tamoxifen/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , MCF-7 Cells , Female , Aziridines/pharmacology , Aziridines/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Hydrazones/pharmacology , Hydrazones/chemistry , Probiotics/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Cycle/drug effects
9.
Bioinform Biol Insights ; 18: 11779322241252513, 2024.
Article in English | MEDLINE | ID: mdl-38765021

ABSTRACT

Aims: The emergence of antibiotic resistance is one of the most significant issues today. Modifying antimicrobial peptides (AMPs) can improve their effects. In this study, the active region of Listeriolysin S (LLS) as a peptidic toxin has been recognized, and its antibacterial properties have been evaluated by modifying that region. Methods: After extracting the sequence, the structure of LLS was predicted by PEP-FOLD3. AntiBP and AMPA servers identified its antimicrobial active site. It was modified by adding arginine residue to its 3- and N-terminal regions. Its antimicrobial properties on Staphylococcus aureus, Escherichia coli, and Lactobacillus Plantarum were estimated. Findings: The results of AntiBP and AntiBP servers demonstrated that a region of 15 amino acids has the most antimicrobial properties (score = 1.696). After adding arginine to the chosen region, the physicochemical evaluation and antimicrobial properties revealed that the designed peptide is a stable AMP with a positive charge of 4, which is not toxic to human erythrocyte cells and has antigenic properties. The results of in vitro and colony counting indicated that at different hours, it caused a significant reduction in the count of S aureus, E coli, and L Plantarum compared with the control sample. Conclusions: Upcoming research implies that identifying and enhancing the active sites of natural peptides can help combat bacteria.

10.
Int J Biol Macromol ; 269(Pt 2): 132068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719001

ABSTRACT

Pullulan was used as the wall material for microencapsulation of L. plantarum CRD7 by spray drying, while isomalto-oligosaccharides (IMO) was used as prebiotic. Also, the effect of different thermal protectants on survival rate during microencapsulation was evaluated. Taguchi orthogonal array design showed that pullulan at 14 % concentration, IMO at 30 % concentration and whey protein isolate at 20 % rate were the optimized wall material, prebiotic and thermal protectant, respectively for microencapsulation of L. plantarum. FESEM images revealed that the spray-dried encapsulates were fibrous similar to those produce by electrospinning, while fluorescence microscopy ascertained that most of the probiotic cells were alive and intact after microencapsulation. The adsorption-desorption isotherm was of Type II and the encapsulate had specific surface area of 1.92 m2/g and mean pore diameter of 15.12 nm. The typical amide II and III bands of the bacterial proteins were absent in the FTIR spectra, suggestive of adequate encapsulation. DSC thermogram showed shifting of melting peaks to wider temperature range due to interactions between the probiotic and wall materials. IMO at 30 % (w/w) along with WPI at 20 % concentration provided the highest storage stability and the lowest rate of cell death of L. plantarum after microencapsulation. Acid and bile salt tolerance results confirmed that microencapsulated L. plantarum could sustain the harsh GI conditions with >7.5 log CFU/g viability. After microencapsulation, L. plantarum also possessed the ability to ferment milk into curd with pH of 4.62.


Subject(s)
Glucans , Lactobacillus plantarum , Prebiotics , Glucans/chemistry , Glucans/pharmacology , Lactobacillus plantarum/chemistry , Spray Drying , Probiotics/chemistry , Microbial Viability/drug effects , Drug Compounding , Whey Proteins/chemistry , Oligosaccharides/chemistry , Oligosaccharides/pharmacology
11.
Int J Biol Macromol ; 272(Pt 1): 132709, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38815943

ABSTRACT

Bacterial Metabolite through a fermentation process is a growing trend and a promising alternative for use as functional components. Non-hydrothermal water-soluble (WSPs) and hydrothermally treated water-insoluble (WIPs) Maitake polysaccharides were fermented with Lactobacillus acidophilus (LA) and Lactobacillus plantarum (LP). Chemical composition analysis indicated that Maitake polysaccharides contained 58.22 ± 1.35 % total sugar and 31.46 % ß-glucan, essential for metabolites production. 6-glucanase was used to degrade the WIPs, and hydrothermally treated WIP fibers exhibited smooth microstructure. Hence, the LA and LP bacteria investigated the potential fermented metabolic activities and differences between WSPs(Sp1)and WIP(Sp3) Maitake polysaccharides using LC-MS, and 887 metabolites were identified. Using Venn, Partial least squares discriminant analysis (PLS-DA), VIP Metabolites, and other multivariate statistical analysis methods, metabolites were expressed differently in all samples. Due to hydrothermal processing, WIP induced the highest growth of LA and LP, with an abundance of isocitrate metabolites. Furthermore, 50 metabolite correlations were identified, leading to the classification of 6 distinct metabolic groups. Thus, the study offers the initial comprehensive analysis of metabolites in Lactobacillus-fermented Maitake polysaccharides, aiding in understanding its metabolic interactions and facilitating progress in food engineering research.


Subject(s)
Fermentation , Lactobacillus acidophilus , Lactobacillus plantarum , Polysaccharides , Solubility , Water , Lactobacillus plantarum/metabolism , Lactobacillus acidophilus/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Water/chemistry , Metabolomics/methods , Metabolome , Shiitake Mushrooms/metabolism , Shiitake Mushrooms/chemistry
12.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38565315

ABSTRACT

Lactic acid bacteria, found in heterogenous niches, are known for their health-endorsing properties and are in demand as prospective probiotics. Hence, the scientific community around the globe is in continuous search for novel and new potential strains with extensive applicability and minimum risk. In this context, the present study evaluated the efficiency of Lactiplantibacillus plantarum (P2F2) of human origin, a highly autoaggregating and coaggregating (with pathogens) strain, for its colonization, growth promotion, and immunomodulation. Results indicated moderate hydrophobicity on adhesion to xylene and n-hexadecane and weak electron-donating properties with chloroform. The biofilm of P2F2 formed on polystyrene was strong and highly correlated to exopolysaccharide production. The autoaggregation was moderately correlated with hydrophobicity and biofilm production. It was noted that the P2F2 strain modulated the gut microbiota and increased intestinal villi length in Wistar rats. The lipid and glucose profiles remained intact. P2F2 treatment increased the activity of reactive oxygen species-generating cells in the peritoneal cavity, besides augmenting the mitogen-induced splenocyte proliferation and maintained the immunoglobulins at the normal level. Results from this study conclusively suggest that the strain P2F2 adheres to the intestine and modulates the gut ecosystem besides enhancing cell-mediated immunity without altering the serological parameters tested.


Subject(s)
Lactobacillus plantarum , Probiotics , Animals , Humans , Infant , Rats , Bacterial Adhesion , Feces/microbiology , Immunomodulation , Probiotics/pharmacology , Prospective Studies , Rats, Wistar
13.
J Trace Elem Med Biol ; 84: 127448, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38626650

ABSTRACT

INTRODUCTION: S. mutans has been identified as the primary pathogenic bacterium in biofilm-mediated dental caries. The biogenic selenium nanoparticles (SeNPs) produced by L. plantarum KNF-5 were used in this study against S. mutans ATCC 25175. OBJECTIVES: The aims of this study were: (1) the biosynthesis of SeNPs by L. plantarum KNF-5, (2) the characterization of SeNPs, (3) the investigation of the inhibitory effect of biogenic SeNPs against S. mutans ATCC 25175, and (4) the determination of the anti-biofilm potential of SeNPS against S. mutans ATCC 25175. METHODOLOGY: 3 mL of the culture was added to 100 mL of MRS medium and incubated. After 4 h, Na2SeO3 solution (concentration 100 µg/mL) was added and incubated at 37 °C for 36 h. The color of the culture solution changed from brownish-yellow to reddish, indicating the formation of SeNPs. The characterization of SeNPs was confirmed by UV-Vis spectrophotometry, FTIR, SEM-EDS and a particle size analyzer. The antibacterial activity was determined by the disk diffusion method, the MIC by the micro-double dilution method, and the biofilm inhibitory potential by the crystal violet method and the MTT assay. The effect of SeNPs on S. mutans ATCC 25175 was determined using SEM and CLSM spectrometry techniques. The sulfate-anthrone method was used to analyze the effect of SeNPs on insoluble extracellular polysaccharides. The expression of genes in S. mutans ATCC 25175 was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). PREPARATION OF NANOPARTICLES: SeNPs produced by probiotic bacteria are considered a safe method. In this study, L. plantarum KNF-5 (probiotic strain) was used for the production of SeNPs. RESULTS: The biogenic SeNPs were spherical and coated with proteins and polysaccharides and had a diameter of about 270 nm. The MIC of the SeNPs against S. mutans ATCC 25175 was 3.125 mg/mL. Biofilm growth was also significantly suppressed at this concentration. The expression of genes responsible for biofilm formation (GtfB, GtfC, BrpA and GbpB,) was reduced when S. mutans ATCC 25175 was treated with SeNPs. CONCLUSION: It was concluded that the biogenic SeNPs produced by L. plantarum KNF-5 was highly effective to inhibit the growth of S. mutans ATCC 25175. NOVELTY STATEMENT: The application of biogenic SeNPs, a natural anti-biofilm agent against S. mutans ATCC 25175. In the future, this study will provide a new option for the prevention and treatment of dental caries.


Subject(s)
Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Nanoparticles , Selenium , Streptococcus mutans , Streptococcus mutans/drug effects , Streptococcus mutans/physiology , Biofilms/drug effects , Selenium/pharmacology , Selenium/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Lactobacillus plantarum/chemistry , Lactobacillus plantarum/metabolism , Particle Size
14.
Front Biosci (Landmark Ed) ; 29(4): 147, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38682181

ABSTRACT

BACKGROUND: Lactiplantibacillus plantarum 12-3 holds great promise as a probiotic bacterial strain, yet its full potential remains untapped. This study aimed to better understand this potential therapeutic strain by exploring its genomic landscape, genetic diversity, CRISPR-Cas mechanism, genotype, and mechanistic perspectives for probiotic functionality and safety applications. METHODS: L. plantarum 12-3 was isolated from Tibetan kefir grains and, subsequently, Illumina and Single Molecule Real-Time (SMRT) technologies were used to extract and sequence genomic DNA from this organism. After performing pan-genomic and phylogenetic analysis, Average Nucleotide Identity (ANI) was used to confirm the taxonomic identity of the strain. Antibiotic resistance gene analysis was conducted using the Comprehensive Antibiotic Resistance Database (CARD). Antimicrobial susceptibility testing, and virulence gene identification were also included in our genomic analysis to evaluate food safety. Prophage, genomic islands, insertion sequences, and CRISPR-Cas sequence analyses were also carried out to gain insight into genetic components and defensive mechanisms within the bacterial genome. RESULTS: The 3.4 Mb genome of L. plantarum 12-3, was assembled with 99.1% completeness and low contamination. A total of 3234 genes with normal length and intergenic spacing were found using gene prediction tools. Pan-genomic studies demonstrated gene diversity and provided functional annotation, whereas phylogenetic analysis verified taxonomic identity. Our food safety study revealed a profile of antibiotic resistance that is favorable for use as a probiotic. Analysis of insertional sequences, genomic islands, and prophage within the genome provided information regarding genetic components and their possible effects on evolution. CONCLUSIONS: Pivotal genetic elements uncovered in this study play a crucial role in bacterial defense mechanisms and offer intriguing prospects for future genome engineering efforts. Moreover, our findings suggest further in vitro and in vivo studies are warranted to validate the functional attributes and probiotic potential of L. plantarum 12-3. Expanding the scope of the research to encompass a broader range of L. plantarum 12-3 strains and comparative analyses with other probiotic species would enhance our understanding of this organism's genetic diversity and functional properties.


Subject(s)
Genome, Bacterial , Kefir , Phylogeny , Probiotics , Tibet , Kefir/microbiology , Drug Resistance, Bacterial/genetics , Lactobacillus plantarum/genetics , Anti-Bacterial Agents/pharmacology , Whole Genome Sequencing , CRISPR-Cas Systems
15.
Microbiol Spectr ; 12(6): e0051724, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687019

ABSTRACT

There is a growing interest in the use of probiotic bacteria as biosensors for the detection of disease. However, there is a lack of bacterial receptors developed for specific disease biomarkers. Here, we have investigated the use of the peptide-regulated transcription factor ComR from Streptococcus spp. for specific peptide biomarker detection. ComR exhibits a number of attractive features that are potentially exploitable to create a biomolecular switch for engineered biosensor circuitry within the probiotic organism Lactiplantibacillus plantarum WCFS1. Through iterative design-build-test cycles, we developed a genomically integrated, ComR-based biosensor circuit that allowed WCFS1 to detect low nanomolar concentrations of ComR's cognate peptide XIP. By screening a library of ComR proteins with mutant residues substituted at the K100 position, we identified mutations that increased the specificity of ComR toward an amidated version of its cognate peptide, demonstrating the potential for ComR to detect this important class of biomarker.IMPORTANCEUsing bacteria to detect disease is an exciting possibility under active study. Detecting extracellular peptides with specific amino acid sequences would be particularly useful as these are important markers of health and disease (biomarkers). In this work, we show that a probiotic bacteria (Lactiplantibacillus plantarum) can be genetically engineered to detect specific extracellular peptides using the protein ComR from Streptococcus bacteria. In its natural form, ComR allowed the probiotic bacteria to detect a specific peptide, XIP. We then modified XIP to be more like the peptide biomarkers found in humans and engineered ComR so that it activated with this modified XIP and not the original XIP. This newly engineered ComR also worked in the probiotic bacteria, as expected. This suggests that with additional engineering, ComR might be able to activate with human peptide biomarkers and be used by genetically engineered probiotic bacteria to better detect disease.


Subject(s)
Bacterial Proteins , Peptides , Transcription Factors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Peptides/metabolism , Peptides/genetics , Probiotics/metabolism , Mutation , Biosensing Techniques , Lactobacillus plantarum/genetics , Lactobacillus plantarum/metabolism , Gene Expression Regulation, Bacterial , Streptococcus/genetics , Streptococcus/metabolism
16.
Open Vet J ; 14(1): 470-480, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633175

ABSTRACT

Background: Bacillus cereus and Yersinia enterocolitica are implicated in foodborne diseases that have major effects on human health; therefore, it is considered universal public health disorders. Essential oils and essential oils nano emulsions have a sufficient antibacterial performance against a variety of bacteria, especially multi-drug resistant bacteria. Probiotics showed several health benefits via moderating the GIT microbiota and their metabolites. Aim: The study was designed to evaluate the biocontrol ability of cinnamon essential oil (CEO) nano emulsion and probiotics as natural antibacterial additives and reveal their bactericidal mechanism. Methods: 250 random samples (50 raw milk, 50 rice pudding, 50 kariesh cheese, 50 yogurt, and 50 ice cream) were purchased separately from different areas in Mansoura city, Egypt, and exposed to bacteriological analysis. Results: Bacillus cereus was found with the highest mean value of 66 × 107 ± 1.3 × 108 CFU/g in raw milk and the lowest mean value of 28 × 107 ± 2.6 × 107 CFU/g in kariesh cheese while Y. enterocolitica was found in 64% of the total inspected samples with the highest incidence (84%) in yogurt. The toxinogenic potential of the tested pathogens has been evaluated by multiplex PCR pointing nhe A and ces genes for B. cereus isolates while targeting in Y. enterocolitica 16s rRNA, and YST gene. Different concentrations (0.17%, 0.25%, 0.5%, 0.8%, 1%, 1.5%, and 2%) of cinnamon oil nano emulsion were employed in this study. CEO nano emulsion had the highest reduction rate at a concentration of 1.5% in the case of B. cereus and 2% in the case of Y. enterocolitica. Among different types of probiotics, the best one which showed inhibitory potential against B. cereus and Y. enterocolitica was L. plantarum. Conclusion: Lactobacillus plantarum and CEO nano emulsion at a concentration of 2% have the highest reduction rate against Y. enterocolitica, while L. plantarum and CEO nano emulsion at a concentration of 1.5% has the best antibacterial effect against B. cereus. In conclusion, more attention is required for both safety and quality in dairy products through the application of natural additives such as essential oils and probiotics.


Subject(s)
Oils, Volatile , Probiotics , Animals , Humans , Milk , Food Microbiology , RNA, Ribosomal, 16S , Bacillus cereus , Anti-Bacterial Agents
17.
Nutrients ; 16(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612992

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a common chronic hepatic condition whose impact on human health is increasingly significant. The imbalance of the gut microbiome, linked to insulin resistance, heightened intestinal permeability, and pro-inflammatory reactions, may be the linchpin in the development of NAFLD. In our research, the impact of Lactiplantibacillus plantarum ZDY2013 administration for 12 weeks on gut microbiota dysbiosis induced by a high-fat, high-fructose, high-cholesterol (FHHC) diet in male C57BL/6n mice was investigated. Research results presented that the intervention of L. plantarum ZDY2013 in mice fed with the FHHC diet could restore their liver function and regulate oxidative stress. Compared to mice in the model group, the intervention of L. plantarum ZDY2013 significantly regulated the gut microbiota, inhibited the LPS/NF-κB pathway, and led to a lower level of colonic inflammation in the mice administered with L. plantarum ZDY2013. It also improved insulin resistance to regulate the PI3K/Akt pathway and lipid metabolism, thereby resulting in reduced fat accumulation in the liver. The above results suggest that the intervention of L. plantarum ZDY2013 can hinder the progression of diet-induced NAFLD by reducing inflammation to regulate the PI3K/Akt pathway and regulating gut microbiota disturbance.


Subject(s)
Gastrointestinal Microbiome , Hypercholesterolemia , Insulin Resistance , Lactobacillus plantarum , Non-alcoholic Fatty Liver Disease , Humans , Male , Animals , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/prevention & control , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Fructose , Inflammation/drug therapy
18.
Elife ; 132024 Feb 21.
Article in English | MEDLINE | ID: mdl-38380900

ABSTRACT

The microbial community composition in the human gut has a profound effect on human health. This observation has lead to extensive use of microbiome therapies, including over-the-counter 'probiotic' treatments intended to alter the composition of the microbiome. Despite so much promise and commercial interest, the factors that contribute to the success or failure of microbiome-targeted treatments remain unclear. We investigate the biotic interactions that lead to successful engraftment of a novel bacterial strain introduced to the microbiome as in probiotic treatments. We use pairwise genome-scale metabolic modeling with a generalized resource allocation constraint to build a network of interactions between taxa that appear in an experimental engraftment study. We create induced sub-graphs using the taxa present in individual samples and assess the likelihood of invader engraftment based on network structure. To do so, we use a generalized Lotka-Volterra model, which we show has strong ability to predict if a particular invader or probiotic will successfully engraft into an individual's microbiome. Furthermore, we show that the mechanistic nature of the model is useful for revealing which microbe-microbe interactions potentially drive engraftment.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Probiotics , Humans
19.
Microb Cell Fact ; 23(1): 42, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326819

ABSTRACT

BACKGROUND: The Lactobacillaceae family comprises many species of great importance for the food and healthcare industries, with numerous strains identified as beneficial for humans and used as probiotics. Hence, there is a growing interest in engineering these probiotic bacteria as live biotherapeutics for animals and humans. However, the genetic parts needed to regulate gene expression in these bacteria remain limited compared to model bacteria like E. coli or B. subtilis. To address this deficit, in this study, we selected and tested several bacteriophage-derived genetic parts with the potential to regulate transcription in lactobacilli. RESULTS: We screened genetic parts from 6 different lactobacilli-infecting phages and identified one promoter/repressor system with unprecedented functionality in Lactiplantibacillus plantarum WCFS1. The phage-derived promoter was found to achieve expression levels nearly 9-fold higher than the previously reported strongest promoter in this strain and the repressor was able to almost completely repress this expression by reducing it nearly 500-fold. CONCLUSIONS: The new parts and insights gained from their engineering will enhance the genetic programmability of lactobacilli for healthcare and industrial applications.


Subject(s)
Lactobacillus plantarum , Probiotics , Humans , Animals , Lactobacillus/genetics , Lactobacillus/metabolism , Escherichia coli/genetics , Lactobacillus plantarum/metabolism , Promoter Regions, Genetic , Bacteria/genetics , Probiotics/metabolism
20.
Mult Scler Relat Disord ; 83: 105453, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38277978

ABSTRACT

Multiple sclerosis (MS) is an autoimmune neurodegenerative disease in which the immune system attacks myelin basic protein of nerve axons. Recently, there has been growing interest in studying the role of a newly described population of immunity cells - innate lymphoid cells (ILCs) in the pathogenesis of the disease. At the same time, it was found that during pregnancy there is a weakening of Th1-mediated autoimmune pathologies manifestations, including MS. In this work, we studied phenotypic characteristics of ILC in MS patients in comparison with healthy donors after 48 h incubation with pregnancy hormone estriol (E3) and commensal microflora cells. To activate ILC, strains of Ecsherichia coli K12 and Lactobacillus plantarum 8R-A3 were used. ILC phenotype was assessed by flow cytometry using monoclonal antibody staining. It has been established that E3 and bacterial factors are able to regulate the maturation of ILC subtypes and their cytokines in different ways. In general, the studied factors influence the phenotypic changes in ILC cells, leading to the transition from one type to another, both in healthy donors and in MS patients.


Subject(s)
Autoimmune Diseases , Multiple Sclerosis , Neurodegenerative Diseases , Humans , Multiple Sclerosis/complications , Immunity, Innate , Lymphocytes , Estriol
SELECTION OF CITATIONS
SEARCH DETAIL