Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Cardiovasc Diabetol ; 23(1): 239, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978010

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) is a frequent comorbidity encountered in patients with severe aortic stenosis (AS), leading to an adverse left ventricular (LV) remodeling and dysfunction. Metabolic alterations have been suggested as contributors of the deleterious effect of T2D on LV remodeling and function in patients with severe AS, but so far, the underlying mechanisms remain unclear. Mitochondria play a central role in the regulation of cardiac energy metabolism. OBJECTIVES: We aimed to explore the mitochondrial alterations associated with the deleterious effect of T2D on LV remodeling and function in patients with AS, preserved ejection fraction, and no additional heart disease. METHODS: We combined an in-depth clinical, biological and echocardiography phenotype of patients with severe AS, with (n = 34) or without (n = 50) T2D, referred for a valve replacement, with transcriptomic and histological analyses of an intra-operative myocardial LV biopsy. RESULTS: T2D patients had similar AS severity but displayed worse cardiac remodeling, systolic and diastolic function than non-diabetics. RNAseq analysis identified 1029 significantly differentially expressed genes. Functional enrichment analysis revealed several T2D-specific upregulated pathways despite comorbidity adjustment, gathering regulation of inflammation, extracellular matrix organization, endothelial function/angiogenesis, and adaptation to cardiac hypertrophy. Downregulated gene sets independently associated with T2D were related to mitochondrial respiratory chain organization/function and mitochondrial organization. Generation of causal networks suggested a reduced Ca2+ signaling up to the mitochondria, with the measured gene remodeling of the mitochondrial Ca2+ uniporter in favor of enhanced uptake. Histological analyses supported a greater cardiomyocyte hypertrophy and a decreased proximity between the mitochondrial VDAC porin and the reticular IP3-receptor in T2D. CONCLUSIONS: Our data support a crucial role for mitochondrial Ca2+ signaling in T2D-induced cardiac dysfunction in severe AS patients, from a structural reticulum-mitochondria Ca2+ uncoupling to a mitochondrial gene remodeling. Thus, our findings open a new therapeutic avenue to be tested in animal models and further human cardiac biopsies in order to propose new treatments for T2D patients suffering from AS. TRIAL REGISTRATION: URL: https://www. CLINICALTRIALS: gov ; Unique Identifier: NCT01862237.


Subject(s)
Aortic Valve Stenosis , Calcium Signaling , Diabetes Mellitus, Type 2 , Gene Expression Profiling , Mitochondria, Heart , Severity of Illness Index , Transcriptome , Ventricular Function, Left , Ventricular Remodeling , Humans , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/physiopathology , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/pathology , Male , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Female , Aged , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Middle Aged , Aged, 80 and over , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/diagnostic imaging
2.
Poult Sci ; 103(8): 103891, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878746

ABSTRACT

Mercuric chloride (HgCl2) is a nephrotoxic contaminant that is widely present in the environment. Selenium (Se) can effectively antagonize the biological toxicity caused by heavy metals. Here, in vivo and in vitro models of Se antagonism to HgCl2-induced nephrotoxicity in chickens were established, with the aim of exploring the specific mechanism. Morphological observation and kidney function analysis showed that Se alleviated HgCl2-induced kidney tissue injury and cytotoxicity. The results showed that ferroptosis was the primary mechanism for the toxicity of HgCl2, as indicated by iron overload and lipid peroxidation. On the one hand, Se significantly prevented HgCl2-induced iron overload. On the other hand, Se alleviated the intracellular reactive oxygen species (ROS) levels caused by HgCl2. Subsequently, we focused on the sources of ROS during HgCl2-induced ferroptosis. Mechanically, Se reduced ROS overproduction induced by HgCl2 through mitochondrial calcium uniporter (MCU)/mitochondrial calcium uptake 1 (MICU1)-mediated mitochondrial calcium ion (Ca2+) overload. Furthermore, a dual luciferase reporter assay demonstrated that MICU1 was the direct target of miR-202-5p. Overall, Se represses miR-202-5p/MICU1 axis to attenuate HgCl2-induced kidney ferroptosis.


Subject(s)
Chickens , Ferroptosis , Mercuric Chloride , MicroRNAs , Poultry Diseases , Selenium , Animals , Mercuric Chloride/toxicity , Ferroptosis/drug effects , Selenium/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Poultry Diseases/chemically induced , Poultry Diseases/prevention & control , Avian Proteins/metabolism , Avian Proteins/genetics , Kidney Diseases/chemically induced , Kidney Diseases/veterinary , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Reactive Oxygen Species/metabolism , Kidney/drug effects , Kidney/pathology , Male
3.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119714, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555977

ABSTRACT

The discovery of MICU1 as gatekeeper of mitochondrial calcium (mCa2+) entry has transformed our understanding of mCa2+ flux. Recent studies revealed an additional role of MICU1 as a Ca2+ sensor at MICOS (mitochondrial contact site and cristae organizing system). MICU1's presence at MICOS suggests its involvement in coordinating Ca2+ signaling and mitochondrial ultrastructure. Besides its role in Ca2+ regulation, MICU1 influences cellular signaling pathways including transcription, epigenetic regulation, metabolism, and cell death, thereby affecting human health. Here, we summarize recent findings on MICU1's canonical and noncanonical functions, and its relevance to human health and diseases.


Subject(s)
Calcium Signaling , Calcium-Binding Proteins , Calcium , Mitochondria , Mitochondrial Membrane Transport Proteins , Humans , Mitochondria/metabolism , Calcium/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Animals , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/chemistry
4.
Cureus ; 16(1): e52672, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38380193

ABSTRACT

Pathogenic variants in mitochondrial calcium uptake 1 (MICU1) manifest phenotypically heterogeneously but most frequently in the brain and skeletal muscle. Dolichocephaly, arachnodactyly, diplopia, and distal myopathy have not been reported in carriers of a pathogenic MICU1 variant. The patient is a 23-year-old female with consanguineous parents (first cousins) who was a carrier of the homozygous MICU1 variant c.553C>T, phenotypically presenting with developmental delay, intellectual disability, ataxia, dysmorphia (dolichocephaly, arachnodactyly, clinodactyly, hypertelorism, wide nasal bridge), myopathy (ptosis, double vision, strabismus, distal limb weakness, diffuse wasting, hypotonia), hyperextensible joints and hyperkyphosis. Features not previously described were dolichocephaly, arachnodactyly, broad nasal bridge, double vision, and distal myopathy. She was treated with physical therapy, speech therapy, and occupational therapy and received escitalopram and mirtazapine for concomitant depression, anxiety disorder, and insomnia. The presented case shows that the phenotypic heterogeneity of pathogenic MICU1 variants is even greater than previously assumed. Treatment of MICU1-related phenotypes is symptomatic, but these patients benefit from physical therapy, behavioral therapy, speech therapy, and antidepressant treatment.

5.
Cardiovasc Diabetol ; 22(1): 216, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37592255

ABSTRACT

BACKGROUND: Myocardial microvascular injury is the key event in early diabetic heart disease. The injury of myocardial microvascular endothelial cells (CMECs) is the main cause and trigger of myocardial microvascular disease. Mitochondrial calcium homeostasis plays an important role in maintaining the normal function, survival and death of endothelial cells. Considering that mitochondrial calcium uptake 1 (MICU1) is a key molecule in mitochondrial calcium regulation, this study aimed to investigate the role of MICU1 in CMECs and explore its underlying mechanisms. METHODS: To examine the role of endothelial MICU1 in diabetic cardiomyopathy (DCM), we used endothelial-specific MICU1ecKO mice to establish a diabetic mouse model and evaluate the cardiac function. In addition, MICU1 overexpression was conducted by injecting adeno-associated virus 9 carrying MICU1 (AAV9-MICU1). Transcriptome sequencing technology was used to explore underlying molecular mechanisms. RESULTS: Here, we found that MICU1 expression is decreased in CMECs of diabetic mice. Moreover, we demonstrated that endothelial cell MICU1 knockout exacerbated the levels of cardiac hypertrophy and interstitial myocardial fibrosis and led to a further reduction in left ventricular function in diabetic mice. Notably, we found that AAV9-MICU1 specifically upregulated the expression of MICU1 in CMECs of diabetic mice, which inhibited nitrification stress, inflammatory reaction, and apoptosis of the CMECs, ameliorated myocardial hypertrophy and fibrosis, and promoted cardiac function. Further mechanistic analysis suggested that MICU1 deficiency result in excessive mitochondrial calcium uptake and homeostasis imbalance which caused nitrification stress-induced endothelial damage and inflammation that disrupted myocardial microvascular endothelial barrier function and ultimately promoted DCM progression. CONCLUSIONS: Our findings demonstrate that MICU1 expression was downregulated in the CMECs of diabetic mice. Overexpression of endothelial MICU1 reduced nitrification stress induced apoptosis and inflammation by inhibiting mitochondrial calcium uptake, which improved myocardial microvascular function and inhibited DCM progression. Our findings suggest that endothelial MICU1 is a molecular intervention target for the potential treatment of DCM.


Subject(s)
Calcium-Binding Proteins , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Mitochondrial Membrane Transport Proteins , Animals , Mice , Calcium , Dependovirus , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/prevention & control , Endothelial Cells , Inflammation
6.
Cell Calcium ; 113: 102765, 2023 07.
Article in English | MEDLINE | ID: mdl-37290367

ABSTRACT

The mitochondrial inner boundary membrane harbors a protein called MICU1, which is sensitive to Ca2+ and binds to the MICOS components Mic60 and CHCHD2. Changes in the mitochondrial cristae junction structure and organization in MICU1-/- cells lead to increased cytochrome c release, membrane potential rearrangement, and changes in mitochondrial Ca2+ uptake dynamics. These findings shed new light on the multifaceted role of MICU1, highlighting its involvement not only as an interaction partner and regulator of the MCU complex but also as a crucial determinant of mitochondrial ultrastructure and, thus, an essential player in processes initiating apoptosis.


Subject(s)
Cytochromes c , Mitochondrial Membrane Transport Proteins , Cytochromes c/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Calcium-Binding Proteins/metabolism
7.
BMC Complement Med Ther ; 23(1): 202, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37337224

ABSTRACT

BACKGROUND: Tianhuang formula (THF) is a Chinese medicine prescription that is patented and clinically approved, and has been shown to improve energy metabolism, but the underlying mechanism remains poorly understood. The purpose of this study is to clarify the potential mechanisms of THF in the treatment of type 2 diabetes mellitus (T2DM). METHODS: A murine model of T2DM was induced by high-fat diet (HFD) feeding combined with low-dose streptozocin (STZ) injections, and the diabetic mice were treated with THF by gavaging for consecutive 10 weeks. Fasting blood glucose (FBG), serum insulin, blood lipid, mitochondrial Ca2+ (mCa2+) levels and mitochondrial membrane potential (MMP), as well as ATP production were analyzed. The target genes and proteins expression of visceral adipose tissue (Vat) was tested by RT-PCR and western blot, respectively. The underlying mechanism of the regulating energy metabolism effect of THF was further explored in the insulin resistance model of 3T3-L1 adipocytes cultured with dexamethasone (DXM). RESULTS: THF restored impaired glucose tolerance and insulin resistance in diabetic mice. Serum levels of lipids were significantly decreased, as well as fasting blood glucose and insulin in THF-treated mice. THF regulated mCa2+ uptake, increased MMP and ATP content in VAT. THF increased the mRNA and protein expression of AMPK, phosphorylated AMPK (p-AMPK), MICU1, sirtuin1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). THF could increase the mCa2+ level of 3T3-L1 adipocytes and regulate mitochondrial function. The protein expression of AMPK, p-AMPK, mCa2+ uniporter (MCU) and MICU1 decreased upon adding AMPK inhibitor compound C to 3T3-L1 adipocytes and the protein expression of MCU and MICU1 decreased upon adding the MCU inhibitor ruthenium red. CONCLUSIONS: These results demonstrated that THF ameliorated glucose and lipid metabolism disorders in T2DM mice through the improvement of AMPK/MICU1 pathway-dependent mitochondrial function in adipose tissue.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Mice , Adenosine Triphosphate/metabolism , Adipocytes , AMP-Activated Protein Kinases/metabolism , Blood Glucose , Calcium-Binding Proteins/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diet, High-Fat , Insulin/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism
8.
Cell Chem Biol ; 30(6): 606-617.e4, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37244260

ABSTRACT

Mitochondrial Ca2+ homeostasis loses its control in many diseases and might provide therapeutic targets. Mitochondrial Ca2+ uptake is mediated by the uniporter channel (mtCU), formed by MCU and is regulated by the Ca2+-sensing gatekeeper, MICU1, which shows tissue-specific stoichiometry. An important gap in knowledge is the molecular mechanism of the mtCU activators and inhibitors. We report that all pharmacological activators of the mtCU (spermine, kaempferol, SB202190) act in a MICU1-dependent manner, likely by binding to MICU1 and preventing MICU1's gatekeeping activity. These agents also sensitized the mtCU to inhibition by Ru265 and enhanced the Mn2+-induced cytotoxicity as previously seen with MICU1 deletion. Thus, MCU gating by MICU1 is the target of mtCU agonists and is a barrier for inhibitors like RuRed/Ru360/Ru265. The varying MICU1:MCU ratios result in different outcomes for both mtCU agonists and antagonists in different tissues, which is relevant for both pre-clinical research and therapeutic efforts.


Subject(s)
Calcium Channels , Mitochondrial Membrane Transport Proteins , Mitochondrial Membrane Transport Proteins/metabolism , Calcium Channels/metabolism , Mitochondria/metabolism , Biological Transport , Calcium/metabolism
9.
Proc Natl Acad Sci U S A ; 120(19): e2218999120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126688

ABSTRACT

Mitochondrial Ca2+ uptake is mediated by the mitochondrial uniporter complex (mtCU) that includes a tetramer of the pore-forming subunit, MCU, a scaffold protein, EMRE, and the EF-hand regulatory subunit, MICU1 either homodimerized or heterodimerized with MICU2/3. MICU1 has been proposed to regulate Ca2+ uptake via the mtCU by physically occluding the pore and preventing Ca2+ flux at resting cytoplasmic [Ca2+] (free calcium concentration) and to increase Ca2+ flux at high [Ca2+] due to cooperative activation of MICUs EF-hands. However, mtCU and MICU1 functioning when its EF-hands are unoccupied by Ca2+ is poorly studied due to technical limitations. To overcome this barrier, we have studied the mtCU in divalent-free conditions by assessing the Ru265-sensitive Na+ influx using fluorescence-based measurement of mitochondrial matrix [Na+] (free sodium concentration) rise and the ensuing depolarization and swelling. We show an increase in all these measures of Na+ uptake in MICU1KO cells as compared to wild-type (WT) and rescued MICU1KO HEK cells. However, mitochondria in WT cells and MICU1 stable-rescued cells still allowed some Ru265-sensitive Na+ influx that was prevented by MICU1 in excess upon acute overexpression. Thus, MICU1 restricts the cation flux across the mtCU in the absence of Ca2+, but even in cells with high endogenous MICU1 expression such as HEK, some mtCU seem to lack MICU1-dependent gating. We also show rearrangement of the mtCU and altered number of functional channels in MICU1KO and different rescues, and loss of MICU1 during mitoplast preparation, that together might have obscured the pore-blocking function of MICU1 in divalent-free conditions in previous studies.


Subject(s)
Calcium Channels , Mitochondrial Membrane Transport Proteins , Mitochondrial Membrane Transport Proteins/metabolism , Calcium Channels/metabolism , Mitochondria/metabolism , Biological Transport , Calcium/metabolism , Calcium-Binding Proteins/metabolism
10.
Int J Biol Macromol ; 235: 123755, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36812974

ABSTRACT

Mitochondria are centers of energy metabolism. The mitochondrial network is shaped by mitochondrial dynamics, including the processes of mitochondrial fission and fusion and cristae remodeling. The cristae folded by the inner mitochondrial membrane are sites of the mitochondrial oxidative phosphorylation (OXPHOS) system. However, the factors and their coordinated interplay in cristae remodeling and linked human diseases have not been fully demonstrated. In this review, we focus on key regulators of cristae structure, including the mitochondrial contact site and cristae organizing system, optic atrophy-1, mitochondrial calcium uniporter, and ATP synthase, which function in the dynamic remodeling of cristae. We summarized their contribution to sustaining functional cristae structure and abnormal cristae morphology, including a decreased number of cristae, enlarged cristae junctions, and cristae as concentric ring structures. These abnormalities directly impact cellular respiration and are caused by dysfunction or deletion of these regulators in diseases such as Parkinson's disease, Leigh syndrome, and dominant optic atrophy. Identifying the important regulators of cristae morphology and understanding their role in sustaining mitochondrial morphology could be applied to explore the pathologies of diseases and to develop relevant therapeutic tools.


Subject(s)
Mitochondria , Mitochondrial Membranes , Humans , Mitochondrial Membranes/metabolism , Mitochondria/metabolism , Oxidative Phosphorylation , Energy Metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
11.
Front Neurol ; 13: 1008937, 2022.
Article in English | MEDLINE | ID: mdl-36425804

ABSTRACT

We present a patient with unusual episodes of muscular weakness due to homozygous deletion of exon 2 in the MICU1 gene. Forty-three patients from 33 families were previously described with homozygous and compound heterozygous, predominantly loss of function (LoF) variants in the MICU1 gene that lead to autosomal recessive myopathy with extrapyramidal signs. Most described patients developed muscle weakness and elevated CK levels, and half of the patients had progressive extrapyramidal signs and learning disabilities. Our patient had a few severe acute episodes of muscle weakness with minimal myopathy features between episodes and a strongly elevated Creatinine Kinase (CK). Whole exome sequencing (WES) was performed and the homozygous deletion of exon 2 was suspected. To validate the diagnosis, we performed an RNA analysis of all family members. To investigate the possible impact of this deletion on the phenotype, we predicted a new Kozak sequence in exon 4 that could lead to the formation of a truncated MICU1 protein that could partly interact with MCU protein in a mitochondrial Ca2+ complex. We suspect that this unusual phenotype of the proband with MICU1-related myopathy could be explained by the presence of the truncated but partly functional protein. This work helps to define the clinical polymorphism of MICU1 deficiency better.

13.
Int J Mol Sci ; 23(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35955764

ABSTRACT

BACKGROUND: Oocyte vitrification has been widely used in the treatment of infertility and fertility preservation. However, vitrification-induced mitochondrial damage adversely affects oocyte development. Several studies have reported that mitochondrial calcium uptake protein 1 (MICU1) regulates the uptake of mitochondrial calcium by the mitochondrial calcium uniporter (MCU) and subsequently controls aerobic metabolism and oxidative stress in mitochondria, but research considering oocytes remains unreported. We evaluated whether the addition of MICU1 modulators enhances mitochondrial activity, pyruvate metabolism, and developmental competence after warming of MII oocytes. METHODS: Retrieved MII oocytes of mice were classified as vitrified or control groups. After thawing, oocytes of vitrified group were cultured with or without DS16570511 (MICU1 inhibitor) and MCU-i4 (MICU1 activator) for 2 h. RESULTS: Mitochondrial Ca2+ concentration, pyruvate dephosphorylation level, and MICU1 expression of MII oocytes were significantly increased after vitrification. These phenomena were further exacerbated by the addition of MCU-i4 and reversed by the addition of DS16570511 after warming. However, the mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) in vitrified-warmed MII oocytes drop significantly after vitrification, which was improved after MCU-i4 treatment and decreased significantly after DS16570511 treatment. The vitrification process was able to elicit a development competence reduction. After parthenogenetic activation, incubation of the thawed oocytes with MCU-i4 did not alter the cleavage and blastocyst rates. Moreover, incubation of the thawed oocytes with DS16570511 reduced the cleavage and blastocyst rates. CONCLUSIONS: MICU1-mediated increasing mitochondrial calcium uptake after vitrification of the MII oocytes promoted the pyruvate oxidation, and this process may maintain oocyte development competence by compensating for the consumption of ATP under stress state.


Subject(s)
Calcium , Cryopreservation , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Calcium-Binding Proteins/metabolism , Membrane Potential, Mitochondrial , Metaphase , Mice , Mitochondrial Membrane Transport Proteins/metabolism , Oocytes/metabolism , Pyruvates/metabolism
14.
Cell Calcium ; 105: 102618, 2022 07.
Article in English | MEDLINE | ID: mdl-35779476

ABSTRACT

Heart failure (HF) is a leading cause of hospitalization and mortality worldwide. Yet, there is still limited knowledge on the underlying molecular mechanisms, because human tissue for research is scarce, and data obtained in animal models is not directly applicable to humans. Thus, studies of human heart specimen are of particular relevance. Mitochondrial Ca2+ handling is an emerging topic in HF progression because its regulation is central to the energy supply of the heart contractions as well as to avoiding mitochondrial Ca2+ overload and the ensuing cell death induction. Notably, animal studies have already linked impaired mitochondrial Ca2+ transport to the initiation/progression of HF. Mitochondrial Ca2+ uptake is mediated by the Ca2+uniporter (mtCU) that consists of the MCU pore under tight control by the Ca2+-sensing MICU1 and MICU2. The MICU1/MCU protein ratio has been validated as a predictor of the mitochondrial Ca2+ uptake phenotype. We here determined for the first time the protein composition of the mtCU in the human heart. The two regulators MICU1 and MICU2, were elevated in the failing human heart versus non-failing controls, while the MCU density was unchanged. Furthermore, the MICU1/MCU ratio was significantly elevated in the failing human hearts, suggesting altered gating of the MCU by MICU1 and MICU2. Based on a small cohort of patients, the decrease in the cardiac contractile function (ejection fraction) seems to correlate with the increase in MICU1/MCU ratio. Our findings therefore indicate a possible role for adaptive/maladaptive changes in the mtCU composition in the initiation/progression of human HF in humans and point to a potential therapeutic target at the level of the MICU1-dependent regulation of the mtCU.


Subject(s)
Cation Transport Proteins , Mitochondrial Membrane Transport Proteins , Animals , Calcium/metabolism , Calcium-Binding Proteins/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Humans , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism
15.
Cells ; 11(13)2022 06 22.
Article in English | MEDLINE | ID: mdl-35805078

ABSTRACT

The Mitochondrial Calcium Uniporter Complex (MCU Complex) is essential for ß-cell function due to its role in sustaining insulin secretion. The MCU complex regulates mitochondrial Ca2+ influx, which is necessary for increased ATP production following cellular glucose uptake, keeps the cell membrane K+ channels closed following initial insulin release, and ultimately results in sustained insulin granule exocytosis. Dysfunction in Ca2+ regulation results in an inability to sustain insulin secretion. This review defines the functions, structure, and mutations associated with the MCU complex members mitochondrial calcium uniporter protein (MCU), essential MCU regulator (EMRE), mitochondrial calcium uptake 1 (MICU1), mitochondrial calcium uptake 2 (MICU2), and mitochondrial calcium uptake 3 (MICU3) in the pancreatic ß-cell. This review provides a framework for further evaluation of the MCU complex in ß-cell function and insulin secretion.


Subject(s)
Cation Transport Proteins , Insulin-Secreting Cells , Calcium/metabolism , Calcium Channels , Calcium-Binding Proteins/metabolism , Cation Transport Proteins/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Mitochondrial Membrane Transport Proteins/metabolism
16.
Mol Metab ; 61: 101503, 2022 07.
Article in English | MEDLINE | ID: mdl-35452878

ABSTRACT

OBJECTIVE: Mitochondrial "retrograde" signaling may stimulate organelle biogenesis as a compensatory adaptation to aberrant activity of the oxidative phosphorylation (OXPHOS) system. To maintain energy-consuming processes in OXPHOS deficient cells, alternative metabolic pathways are functionally coupled to the degradation, recycling and redistribution of biomolecules across distinct intracellular compartments. While transcriptional regulation of mitochondrial network expansion has been the focus of many studies, the molecular mechanisms promoting mitochondrial maintenance in energy-deprived cells remain poorly investigated. METHODS: We performed transcriptomics, quantitative proteomics and lifespan assays to identify pathways that are mechanistically linked to mitochondrial network expansion and homeostasis in Caenorhabditis elegans lacking the mitochondrial calcium uptake protein 1 (MICU-1/MICU1). To support our findings, we carried out biochemical and image analyses in mammalian cells and mouse-derived tissues. RESULTS: We report that micu-1(null) mutations impair the OXPHOS system and promote C. elegans longevity through a transcriptional program that is independent of the mitochondrial calcium uniporter MCU-1/MCU and the essential MCU regulator EMRE-1/EMRE. We identify sphingosine phosphate lyase SPL-1/SGPL1 and the ATFS-1-target HOPS complex subunit VPS-39/VPS39 as critical lifespan modulators of micu-1(null) mutant animals. Cross-species investigation indicates that SGPL1 upregulation stimulates VPS39 recruitment to the mitochondria, thereby enhancing mitochondria-lysosome contacts. Consistently, VPS39 downregulation compromises mitochondrial network maintenance and basal autophagic flux in MICU1 deficient cells. In mouse-derived muscles, we show that VPS39 recruitment to the mitochondria may represent a common signature associated with altered OXPHOS system. CONCLUSIONS: Our findings reveal a previously unrecognized SGPL1/VPS39 axis that stimulates intracellular organelle interactions and sustains autophagy and mitochondrial homeostasis in OXPHOS deficient cells.


Subject(s)
Aldehyde-Lyases , Autophagy-Related Proteins , Calcium-Binding Proteins , Mitochondria , Mitochondrial Membrane Transport Proteins , Vesicular Transport Proteins , Aldehyde-Lyases/metabolism , Animals , Autophagy-Related Proteins/metabolism , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Mice , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Oxidative Phosphorylation , Vesicular Transport Proteins/metabolism
17.
Mol Cell Pediatr ; 8(1): 6, 2021 May 09.
Article in English | MEDLINE | ID: mdl-33969448

ABSTRACT

BACKGROUND: Ca2+ as a universal second messenger regulates basic biological functions including cell cycle, cell proliferation, cell differentiation, and cell death. Lack of the protein mitochondrial calcium uptake1 (MICU1), which has been regarded as a gatekeeper of Ca ions, leads to the abnormal mitochondrial Ca2+ handling, excessive production of reactive oxygen species (ROS), and increased cell death. Mutations in MICU1 gene causes a very rare neuromuscular disease, myopathy with extrapyramidal signs (MPXPS), due to primary alterations in mitochondrial calcium signaling which demonstrates the key role of mitochondrial Ca2+ uptake. To date, 13 variants have been reported in MICU1 gene in 44 patients presented with the vast spectrum of symptoms. CASE PRESENTATION: Here, we report a 44-year-old Iranian patient presented with learning disability, muscle weakness, easy fatigability, reduced tendon reflexes, ataxia, gait disturbance, elevated hepatic transaminases, elevated serum creatine kinase (CK), and elevated lactate dehydrogenase (LDH). We identified a novel nonsense variant c.385C>T; p.(R129*) in MICU1 gene by whole exome sequencing (WES) and segregation analysis. CONCLUSIONS: Our finding along with previous studies provides more evidence on the clinical presentation of the disease caused by pathogenic mutations in MICU1. Finding more variants and expanding the spectrum of the disease increases the diagnostic rate of molecular testing in screening of this kind of diseases and in turn improves the quality of counseling for at risk couples and helps them to minimize the risks of having affected children.

18.
EMBO Rep ; 22(5): e51532, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33822458

ABSTRACT

Ferroptosis has recently attracted much interest because of its relevance to human diseases such as cancer and ischemia-reperfusion injury. We have reported that prolonged severe cold stress induces lipid peroxidation-dependent ferroptosis, but the upstream mechanism remains unknown. Here, using genome-wide CRISPR screening, we found that a mitochondrial Ca2+ uptake regulator, mitochondrial calcium uptake 1 (MICU1), is required for generating lipid peroxide and subsequent ferroptosis under cold stress. Furthermore, the gatekeeping activity of MICU1 through mitochondrial calcium uniporter (MCU) is suggested to be indispensable for cold stress-induced ferroptosis. MICU1 is required for mitochondrial Ca2+ increase, hyperpolarization of the mitochondrial membrane potential (MMP), and subsequent lipid peroxidation under cold stress. Collectively, these findings suggest that the MICU1-dependent mitochondrial Ca2+ homeostasis-MMP hyperpolarization axis is involved in cold stress-induced lipid peroxidation and ferroptosis.


Subject(s)
Cation Transport Proteins , Ferroptosis , Calcium/metabolism , Calcium-Binding Proteins/metabolism , Cation Transport Proteins/metabolism , Cold-Shock Response , Humans , Membrane Potential, Mitochondrial , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism
19.
J Mol Cell Cardiol ; 151: 135-144, 2021 02.
Article in English | MEDLINE | ID: mdl-33035551

ABSTRACT

Mitochondrial Ca2+ uptake has long been considered crucial for meeting the fluctuating energy demands of cells in the heart and other tissues. Increases in mitochondrial matrix [Ca2+] drive mitochondrial ATP production via stimulation of Ca2+-sensitive dehydrogenases. Mitochondria-targeted sensors have revealed mitochondrial matrix [Ca2+] rises that closely follow the cytoplasmic [Ca2+] signals in many paradigms. Mitochondrial Ca2+ uptake is mediated by the Ca2+ uniporter (mtCU). Pharmacological manipulation of the mtCU is potentially key to understanding its physiological significance, but no specific, cell-permeable inhibitors were identified. In the past decade, as the molecular identity of the mtCU was brought to light, efforts have focused on genetic targeting. However, in the cells/animals that are able to survive impaired mtCU function, robust compensatory changes were found in the mtCU as well as other mechanisms. Thus, the discovery, through chemical library screens on normal and mtCU-deficient cells, of new small-molecule inhibitors with improved cell permeability and specificity might offer a better chance to test the relevance of mitochondrial Ca2+ uptake. Success with the development of small molecule mtCU inhibitors is also expected to have clinical impact, considering the growing evidence for the role of mitochondrial Ca2+ uptake in a variety of diseases, including heart attack, stroke and various neurodegenerative disorders. Here, we review the progress in pharmacological targeting of mtCU and illustrate the challenges in this field using data obtained with MCU-i11, a new small molecule inhibitor.


Subject(s)
Calcium Channels/metabolism , Animals , Calcium/metabolism , Calcium Channels/genetics , Gene Targeting , Humans , Models, Biological , Pharmaceutical Preparations/metabolism
20.
Mitochondrion ; 57: 9-22, 2021 03.
Article in English | MEDLINE | ID: mdl-33316420

ABSTRACT

Mitochondria play vital role in regulating the cellular energetics and metabolism. Further, it is a signaling hub for cell survival and apoptotic pathways. One of the key determinants that calibrate both cellular energetics and survival functions is mitochondrial calcium (Ca2+) dynamics. Mitochondrial Ca2+ regulates three Ca2+-sensitive dehydrogenase enzymes involved in tricarboxylic acid cycle (TCA) cycle thereby directly controlling ATP synthesis. On the other hand, excessive Ca2+ concentration within the mitochondrial matrix elevates mitochondrial reactive oxygen species (mROS) levels and causes mitochondrial membrane depolarization. This leads to opening of the mitochondrial permeability transition pore (mPTP) and release of cytochrome c into cytosol eventually triggering apoptosis. Therefore, it is critical for cell to maintain mitochondrial Ca2+ concentration. Since cells can neither synthesize nor metabolize Ca2+, it is the dynamic interplay of Ca2+ handling proteins involved in mitochondrial Ca2+ influx and efflux that take the center stage. In this review we would discuss the key molecular machinery regulating mitochondrial Ca2+ concentration. We would focus on the channel complex involved in bringing Ca2+ into mitochondrial matrix i.e. Mitochondrial Ca2+ Uniporter (MCU) and its key regulators Mitochondrial Ca2+ Uptake proteins (MICU1, 2 and 3), MCU regulatory subunit b (MCUb), Essential MCU Regulator (EMRE) and Mitochondrial Ca2+ Uniporter Regulator 1 (MCUR1). Further, we would deliberate on major mitochondrial Ca2+ efflux proteins i.e. Mitochondrial Na+/Ca2+/Li+ exchanger (NCLX) and Leucine zipper EF hand-containing transmembrane1 (Letm1). Moreover, we would highlight the physiological functions of these proteins and discuss their relevance in human pathophysiology. Finally, we would highlight key outstanding questions in the field.


Subject(s)
Calcium/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Citric Acid Cycle , Cytochromes c/metabolism , Gene Expression Regulation , Humans , Mitochondrial Permeability Transition Pore/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL