Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24.749
Filter
1.
Acta Biomater ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992411

ABSTRACT

Collagen-based hydrogels are commonly used in mechanobiology to mimic the extracellular matrix. A quantitative analysis of the influence of collagen concentration and properties on the structure and mechanics of the hydrogels is essential for tailored design adjustments for specific in vitro conditions. We combined focused ion beam scanning electron microscopy and rheology to provide a detailed quantitative atlas of the mechanical and nanoscale three-dimensional structural alterations that occur when manipulating different hydrogel's physicochemistry. Moreover, we study the effects of such alterations on the phenotype of breast cancer cells and their mechanical interactions with the extracellular matrix. Regardless of the microenvironment's pore size, porosity or mechanical properties, cancer cells are able to reach a stable mesenchymal-like morphology. Additionally, employing 3D traction force microscopy, a positive correlation between cellular tractions and ECM mechanics is observed up to a critical threshold, beyond which tractions plateau. This suggests that cancer cells in a stable mesenchymal state calibrate their mechanical interactions with the ECM to keep their migration and invasiveness capacities unaltered. STATEMENT OF SIGNIFICANCE: The paper presents a thorough study on the mechanical microenvironment in breast cancer cells during their interaction with collagen based hydrogels of different compositions. The hydrogels' microstructure were obtained using state-of-the-art 3D microscopy, namely focused ion beam-scanning electron microscope (FIB-SEM). FIB-SEM was originally applied in this work to reconstruct complex fibered collagen microstructures within the nanometer range, to obtain key microarchitectural parameters. The mechanical microenvironment of cells was recovered using Traction Force Microscopy (TFM). The obtained results suggest that cells calibrate tractions such that they depend on mechanical, microstructural and physicochemical characteristics of the hydrogels, hence revealing a steric hindrance. We hypothesize that cancer cells studied in this paper tune their mechanical state to keep their migration and invasiveness capacities unaltered.

2.
BMC Vet Res ; 20(1): 310, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992617

ABSTRACT

The present investigation examined the oropharyngeal roof of two turtles having different feeding behaviors: the landform Greek tortoise (Testudo graeca graeca) primarily herbivores and the semi-aquatic red-eared slider turtle (Trachemys scripta elegans) lives in freshwater that opportunistic omnivorous grossly and by scanning and light microscopes. Grossly, the Greek tortoise had a V-shaped roof consisting of the upper rhamphotheca, peri-palatine region, upper alveolar ridge, peripheral palatine ridge, median palatine ridge, vomer, choanae, caudal palatine part, and pharynx. At the same time, the red-eared slider had a semilunar roof consisting of upper rhamphotheca, two peripheral palatine ridges, core of palatine ridges, upper alveolar band, vomer, choanae, caudal palatine part, and pharynx. SEM revealed that the red-eared slider roof appeared more straightforward. The upper rhamphotheca is sharp, with a median premaxillary notch in the red-eared slider that gives a powerful bite for cutting to compensate absence of the teeth. Additionally, the red-eared slider's upper alveolar band is interrupted by a single upper alveolar ridge that appears spiky, pointed, and longer as it needs powerful chewing of prey and there are two types of teeth-like projections at its peri-palatine area for food-crushing and chewing. The Greek tortoise palatine region had numerous ridges and folds to provide roughness for food processing. Greek tortoises had small-sized choanae with two choanal folds to minimize choanal openings when eating dusty grasses. Histologically, Greek tortoise palate was rostrally thicker and more keratinized than caudally, and the caudal palatine region was characterized by a single pair of circumvallate-like papilla with multiple mucous openings and secretions, while red-eared slider palate was slightly keratinized at the peri-choanal region, and the rest of the palate was non-keratinized with few mucous openings. The current investigation found various structural oropharyngeal roof adaptations to feeding behavior in the omnivore red-eared slide compared to the herbivorous Greek turtle.


Subject(s)
Feeding Behavior , Oropharynx , Turtles , Animals , Turtles/anatomy & histology , Oropharynx/anatomy & histology , Microscopy, Electron, Scanning/veterinary
3.
Adv Mater ; : e2405005, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992998

ABSTRACT

To boost the stability of all-small-molecule (ASM) organic photovoltaic (OPV) blends, an insulator polymer called styrene-ethylene-butylene-styrene (SEBS) as morphology stabilizer is applied into the host system of small molecules BM-ClEH:BO-4Cl. Minor addition of SEBS (1 mg/ml in host solution) provides a significantly enhanced T80 value of 15000 hours (extrapolated), surpassing doping-free (0 mg/ml) and heavy doping (10 mg/ml) counterparts (900 hours, 30 hours). The material reproducibility and cost-effectiveness of the active layer will not be affected by this industrially available polymer, where the power conversion efficiency (PCE) can be well maintained at 15.02%, which is still a decent value for non-halogen solvent-treated ASM OPV. Morphological and photophysical characterizations clearly demonstrate SEBS's pivotal effect on suppressing the degradation of donor molecules and blend film's crystallization/aggregation reorganization, which protects the exciton dynamics effectively. This work pays meaningful attention to the ASM system stability, performs a smart strategy to suppress the film morphology degradation, and releases a comprehensive understanding of the mechanism of device performance reduction.

4.
J Med Signals Sens ; 14: 6, 2024.
Article in English | MEDLINE | ID: mdl-38993204

ABSTRACT

Background: Microarray is a sophisticated tool that concurrently analyzes the expression levels of thousands of genes, giving scientists an overview of DNA and RNA study. This procedure is divided into three stages: contact with biological samples, data extraction, and data analysis. Because expression levels are disclosed by the interplay of light with fluorescent markers, the data extraction stage relies on image processing methods. To extract quantitative information from the microarray image (MAI), four steps of preprocessing, gridding, segmentation, and intensity quantification are required. During the generation of MAIs, a large number of error-prone processes occur, leading to structural problems and reduced quality in the resulting data, affecting the identification of expressed genes. Methods: In this article, the first stage has been examined. In the preprocessing stage, the contrast of the images is first enhanced using the genetic algorithm, then the source noises that appear as small artifacts are removed using morphology, and finally, to confirm the effect of the contrast enhancement (CE) on the main stages of microarray data processing, gridding is checked on complementary deoxyribonucleic acid MAIs. Results: The comparison of the obtained results with an adaptive histogram equalization (AHE) and multi-decomposition histogram equalization (M-DHE) methods shows the superiority and efficiency of the proposed method. For example, the image contrast of the Genomic Medicine Research Center Laboratory dataset is 3.24, which is 42.91 with the proposed method and 13.48 and 32.40 with the AHE and M-DHE methods, respectively. Conclusions: The performance of the proposed methods for CE is evaluated on 3 databases and a general conclusion is obtained as to which CE method is more suitable for each dataset.

5.
Article in English | MEDLINE | ID: mdl-38987502

ABSTRACT

INTRODUCTION: This study aimed to compare the impact of different broach surface designs on post-operative clinical outcomes, bone reactions and changes in bone mineral density (BMD) in patients who underwent total hip arthroplasty (THA) using a fully hydroxyapatite coated and double tapered stem with either compaction shape (COM) or hybrid shape (HYB) broaches. MATERIALS AND METHODS: A retrospective analysis was conducted on 76 patients (100 hips) who underwent primary THA using the Avenir complete stem®. Patients were divided into two groups: the COM broach group (50 hips) and HYB broach group (50 hips). We evaluated clinical outcomes using the Japanese Orthopaedic Association hip scores one month before the surgery, and 12 and 24 months after the surgery. Radiographic findings, including stem alignment angles, radiolucent lines, spot welds, and cortical hypertrophy, were assessed. BMD around the stem in Gruen zones 1-7 was evaluated using dual-energy X-ray absorptiometry (DEXA) at 7 days, 12, and 24 months post-operatively. The Dorr classification was used to assess femoral morphology. RESULTS: There were no significant differences in clinical outcomes, radiographic findings, or BMD changes between the COM and HYB broach groups in the overall patient cohort. However, in Dorr type A femurs, the COM broach group demonstrated superior BMD superior preservation in zones 1 and 7 after 12 months and in zones 1, 6 and 7 after 24 months. Additionally, in Dorr type B femurs, significant BMD preservation was observed in zone 3 at 24 months in the COM broach group. CONCLUSIONS: This study suggests that the broach surface design of fully hydroxyapatite coated stems may influence periprosthetic BMD changes, especially in Dorr type A and B femurs. Surgeons should consider broach selection based on patient-specific femoral morphology to optimize BMD preservation in THA procedures using fully hydroxyapatite coated stems.

6.
Article in English | MEDLINE | ID: mdl-38987515

ABSTRACT

This study was conducted to assess particulate matter pollution and the accumulation of airborne toxic metals by studying the foliar deposition pattern in an urban environment. To this end, two commonly growing plants (Senna siamea (Lam.) H.S.Irwin & Barneby and Alstonia scholaris (L.) R.Br.) from the busiest traffic squares of the city (Nehru Chowk) in Bilaspur, India, were selected for detailed study. For this purpose, plant leaf samples of both plant species were collected from pollution-affected areas and a reference site (unpolluted) in the city and examined by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS) to estimate the accumulation of PM-bound toxic metals at the leaf surfaces. The results of this study showed that the leaves of both plants accumulate PM in different size ranges. Although both plant leaves showed accumulation of PM from respirable suspended particulate matter (RSPM) to ultra-fine particles (UFPs: < 0.1: less than 100 nm) range along with toxic metals, S. siamea retained a higher level of PM than A. scholaris due to better micro-morphological properties on both leaf surfaces. The size of some PM was found to be smaller than the stoma openings. The EDS study proved the presence of harmful airborne toxic metals (Pb, Cd, Cu, Zr, Al, Co, etc.) in these PMs of ambient air. This indicates that toxic metals can enter the leaves through stomatal openings. The results of this study recommended that both plants can be used as a tool to minimise PM pollution.

7.
Front Microbiol ; 15: 1368293, 2024.
Article in English | MEDLINE | ID: mdl-38946897

ABSTRACT

Introduction: The drawbacks of using antibiotics as feed additives for blue foxes have gradually become apparent; moreover, thymol has wide-spectrum antimicrobial activity and has the potential to replace antibiotics in various animals. However, there are few reports on the effects of thymol on blue foxes. Methods: This study aimed to investigate the effects of different concentrations of thymol on the growth performance, apparent nutrient digestibility, serum biochemical indicators, intestinal morphology, and gut microbiota of blue foxes. Twenty-four male blue foxes (120 ± 5 d) of similar weight (6.05 ± 0.16 kg) were randomly divided into 4 groups. 0, 100, 200, and 300 mg/kg thymol were added to the basal diets of groups C, L, M, and H, respectively. Results: Compared with those in the C group, the addition of 100 mg/kg thymol to the diet significantly increased organic matter (OM) digestibility, crude protein (CP) digestibility, immunoglobulin (Ig) A, IgM, the VH of the duodenum, the CD of the jejunum, the VH of the ileum, and the VH/CD of the ileum (P < 0.05) and strongly significantly increased IgG (P < 0.01). The addition of 200 mg/kg thymol to the diet increased the VH/CD of the duodenum (P < 0.05). The addition of 300 mg/kg thymol to the diet significantly increased the VH and CD of the jejunum (P < 0.05). The addition of 200 mg/kg and 300 mg/kg thymol to the diets increased the final weight (FW) (P < 0.05). Adding 100 mg/kg thymol significantly increased the levels of interleukin-4 (IL-4) and catalase (CAT) compared with those in the other groups (P < 0.05). 16S rRNA gene detection revealed that thymol can change the abundances of Bifidobacterium, Fusobacterium, Allobaculum, Streptococcus, Megasphaera, and Lactobacillus in the gut. Conclusion: The addition of thymol to diets can increase the abundance of Bifidobacterium, Fusobacterium, and Allobaculum, which may contribute to improving the growth performance of blue foxes.

8.
Zookeys ; 1205: 115-167, 2024.
Article in English | MEDLINE | ID: mdl-38947168

ABSTRACT

The Old World braconine wasp genus Trigastrotheca Cameron is revised. The genus is recorded from the island of Madagascar for the first time based on two new species, T.christianhenrichi Quicke & Butcher, sp. nov. and T.formosa Quicke & Friedman, sp. nov. Trigastrothecagriffini Quicke, sp. nov. is described from Australia; T.aethiopica Quicke & Friedman, sp. nov. is described from Ethiopia; T.braeti Quicke & Butcher, sp. nov. is described from Congo; T.simba van Noort, sp. nov. is described from Tanzania; T.freidbergi Quicke & Friedman, sp. nov., T.carinata Ranjith, sp. nov., T.flava Ranjith, sp. nov. and T.similidentata Ranjith, sp. nov. are described from India; T.khaoyaiensis Quicke & Butcher, sp. nov., T.naniensis Quicke & Butcher, sp. nov., and T.sublobata Quicke & Butcher, sp. nov. are described from Thailand. Trigastrothecatridentata is recorded from Thailand for the first time. A putative female of T.sureeratae is described for the first time. Acroceriliatricolor Quicke & Ingram, 1993 is transferred into Trigastrotheca, as T.acroceropsis nom. nov. A key is provided for the identification of species.

9.
Front Med (Lausanne) ; 11: 1402768, 2024.
Article in English | MEDLINE | ID: mdl-38947236

ABSTRACT

As machine learning progresses, techniques such as neural networks, decision trees, and support vector machines are being increasingly applied in the medical domain, especially for tasks involving large datasets, such as cell detection, recognition, classification, and visualization. Within the domain of bone marrow cell morphology analysis, deep learning offers substantial benefits due to its robustness, ability for automatic feature learning, and strong image characterization capabilities. Deep neural networks are a machine learning paradigm specifically tailored for image processing applications. Artificial intelligence serves as a potent tool in supporting the diagnostic process of clinical bone marrow cell morphology. Despite the potential of artificial intelligence to augment clinical diagnostics in this domain, manual analysis of bone marrow cell morphology remains the gold standard and an indispensable tool for identifying, diagnosing, and assessing the efficacy of hematologic disorders. However, the traditional manual approach is not without limitations and shortcomings, necessitating, the exploration of automated solutions for examining and analyzing bone marrow cytomorphology. This review provides a multidimensional account of six bone marrow cell morphology processes: automated bone marrow cell morphology detection, automated bone marrow cell morphology segmentation, automated bone marrow cell morphology identification, automated bone marrow cell morphology classification, automated bone marrow cell morphology enumeration, and automated bone marrow cell morphology diagnosis. Highlighting the attractiveness and potential of machine learning systems based on bone marrow cell morphology, the review synthesizes current research and recent advances in the application of machine learning in this field. The objective of this review is to offer recommendations to hematologists for selecting the most suitable machine learning algorithms to automate bone marrow cell morphology examinations, enabling swift and precise analysis of bone marrow cytopathic trends for early disease identification and diagnosis. Furthermore, the review endeavors to delineate potential future research avenues for machine learning-based applications in bone marrow cell morphology analysis.

10.
Heliyon ; 10(11): e32375, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947444

ABSTRACT

Aging manifests as many phenotypes, among which age-related changes in brain vessels are important, but underexplored. Thus, in the present study, we constructed a model to predict age using cerebrovascular morphological features, further assessing their clinical relevance using a novel pipeline. Age prediction models were first developed using data from a normal cohort (n = 1181), after which their relevance was tested in two stroke cohorts (n = 564 and n = 455). Our novel pipeline adapted an existing framework to compute generic vessel features for brain vessels, resulting in 126 morphological features. We further built various machine learning models to predict age using only clinical factors, only brain vessel features, and a combination of both. We further assessed deviation from healthy aging using the age gap and explored its clinical relevance by correlating the predicted age and age gap with various risk factors. The models constructed using only brain vessel features and those combining clinical factors with vessel features were better predictors of age than the clinical factor-only model (r = 0.37, 0.48, and 0.26, respectively). Predicted age was associated with many known clinical factors, and the associations were stronger for the age gap in the normal cohort. The age gap was also associated with important factors in the pooled cohort atherosclerotic cardiovascular disease risk score and white matter hyperintensity measurements. Cerebrovascular age, computed using the morphological features of brain vessels, could serve as a potential individualized marker for the early detection of various cerebrovascular diseases.

11.
Toxicol Res (Camb) ; 13(4): tfae101, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38962114

ABSTRACT

Background: Sachet water is the most common form of portable water commercially available in Nigeria. Methodology: Using the murine sperm count and sperm abnormality assay, the germ cell toxicity of five common commercially available sachet waters in Nigeria was assessed in this study. The levels of hormones such as Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH) and Total Testosterone (TT); and activities of catalase (CAT), alanine aminotransferase (ALT), superoxide dismutase (SOD), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were evaluated. The heavy metal and physicochemical parameters of the sachet waters were also analyzed. Healthy male mice were allowed to freely drink the sachet waters for 35 days after which they were sacrificed. Results: The findings indicated that the concentrations of some heavy metals (As, Cr, and Cd) in the sachet waters exceeded the limit by regulatory organizations. The data of the total carcinogenic risk (TCR) and total non-carcinogenic risk (THQ) of some heavy metals associated with the ingestion of sachet water for adults and children showed that the values exceeded the acceptable threshold, and thus, is indicative of a high non-carcinogenic and carcinogenic risks. The data of the sperm abnormality assay showed that in the exposed mice, the five sachet waters induced a statistically significant (P < 0.05) increase in abnormal sperm cells and a significantly lower mean sperm count. Additionally noted were changes in the serum activities of TT, FSH, ALP, AST, ALT, and LH. Conclusion: Thus, the sachet waters studied contained agents that can induce reproductive toxicity in exposed humans. This is of public health importance and calls for immediate action by regulatory bodies.

12.
Brain Res ; : 149110, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964705

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) brain abnormalities have been reported in the corpus callosum (CC) of patients with adult-onset hypothyroidism. However, no study has directly compared CC-specific morphological or functional alterations among subclinical hypothyroidism (SCH), overt hypothyroidism (OH), and healthy controls (HC). Moreover, the association of CC alterations with cognition and emotion is not well understood. METHODS: Demographic data, clinical variables, neuropsychological scores, and MRI data of 152 participants (60 SCH, 37 OH, and 55 HC) were collected. This study investigated the clinical performance, morphological and functional changes of CC subregions across three groups. Moreover, a correlation analysis was performed to explore potential relationships between these factors. RESULTS: Compared to HC, SCH and OH groups exhibited lower cognitive scores and higher depressive/anxious scores. Notably, rostrum and rostral body volume of CC was larger in the SCH group. Functional connectivity between rostral body, anterior midbody and the right precentral and dorsolateral superior frontal gyrus were increased in the SCH group. In contrast, the SCH and OH groups exhibited a decline in functional connectivity between splenium and the right angular gyrus. Within the SCH group, rostrum volume demonstrated a negative correlation with Montreal Cognitive Assessment and visuospatial/executive scores, while displaying a positive correlation with 24-item Hamilton Depression Rating Scale scores. In the OH group, rostral body volume exhibited a negative correlation with serum thyroid stimulating hormone levels, while a positive correlation with serum total thyroxine and free thyroxine levels. CONCLUSIONS: This study suggests that patients with different stages of adult-onset hypothyroidism may exhibit different patterns of CC abnormalities. These findings offer new insights into the neuropathophysiological mechanisms in hypothyroidism.

13.
Article in English | MEDLINE | ID: mdl-38965821

ABSTRACT

In polymer electrolyte fuel cells (PEFCs), the gas diffusion layer (GDL) is crucial for managing the flooding tolerance, which is the ability to remove the water produced during power generation from the assembled cell. However, an improved understanding of the properties of GDLs is required to develop effective waterproofing strategies. This study investigated the influence of the polytetrafluoroethylene (PTFE) content on the pore diameter, porosity, wettability, water saturation, and flooding tolerance of waterproofed carbon papers as cathode GDLs in PEFCs. The addition of minimal PTFE (∼6 wt %) to carbon paper provided external waterproofing, whereas internal waterproofing was achieved at a higher PTFE content (∼13 wt %). However, excessive PTFE (∼37 wt %) led to macropore collapse within the carbon paper, reducing fuel cell performance. Although PTFE addition was expected to improve the flooding tolerance, operando synchrotron X-ray radiography revealed that the water saturation level in carbon paper increased with increasing PTFE content. These findings provide a benchmark for assessing whether GDLs meet the flooding tolerance requirements of PEFCs and may be applicable to waterproofed GDLs in electrochemical devices for water and CO2 electrolysis.

14.
Anat Histol Embryol ; 53(4): e13085, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965917

ABSTRACT

At the top of many ecosystems, raptors, also known as birds of prey, hold major influence. They shape their surroundings through their powerful hunting skills and complex interactions with their environment. This study investigates the beak morphology of four prominent raptor species, Golden eagle (Aquila chrysaetos), Common buzzard (Buteo buteo), Peregrine falcon (Falco peregrinus) and Common kestrel (Falco tinnunculus), found in Türkiye. By employing geometric morphometric methods, we investigate shape variations in the beaks of these species to unravel the adaptive significance of their cranial structures. This analysis reveals distinct beak morphologies among the studied raptors, reflecting adaptations to their feeding habits, hunting techniques and ecological niches. The results from Principal component analysis and Canonical variate analysis demonstrate significant differences in beak morphology between the Falconiformes and Accipitriformes clades, as well as among all three groups. The overall mean beak shapes of Golden Eagles are quite similar to Common Buzzards, with both species having longer beaks. In contrast, Falcons exhibit a distinctly different beak morphology, characterized by wider and shorter beaks. Changes in beak shape can lead to changes depending on the skull. It is thought that skull shape variations among predator families may have an impact on beak shape. These findings highlight the importance of integrating morphometric analyses with ecological insights to enhance our understanding of the evolutionary processes shaping raptor beak morphology.


Subject(s)
Beak , Falconiformes , Animals , Beak/anatomy & histology , Falconiformes/anatomy & histology , Falconiformes/physiology , Raptors/anatomy & histology , Skull/anatomy & histology , Principal Component Analysis , Eagles/anatomy & histology , Eagles/physiology , Predatory Behavior/physiology , Species Specificity
15.
J Environ Manage ; 366: 121705, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972192

ABSTRACT

Plastic production has increased manifold over the last decade, with worldwide production reaching 400 million tonnes in 2021, and the trend is estimated to have a sharp rise in the future. Apart from being non-biodegradable, plastics are essentially durable, which makes waste plastic disposal extremely difficult and poses a threat to solid waste management. Disposal methods, including incinerating, landfilling, disposal into water bodies, etc., are having hazardous environmental impacts. Hence, plastic recycling is essential for ensuring sustainability. The construction industry is a major contributor to global warming primarily due to the Portland cement production emitting 6% of global CO2 production. Growing awareness has emphasized partial replacement of Portland cement with other binders, such as metakaolin, fly ash, slag, etc., to be used in conventional composites or complete replacement to yield geopolymer composites. Waste plastics can be used in geopolymer concrete (GPC) as a partial or complete replacement of natural aggregates or added as fibers. Based on the above background, various researchers have incorporated plastics in GPC in the form of aggregate replacement or fiber addition, justifying sustainability and enhancing GPC characteristics. Plastic supplementation in GPC is a relatively new research domain. An attempt has been made through the current review work to develop a comprehensive database established on various concrete characteristics through the globally available research performances involving various forms of plastic incorporation in GPC yielding plastic-supplemented GPC (PSGPC). A detailed plastic classification and varying forms are poised, with identified plastics elicited from its global acceptance so far in PSGPC production. Through various PSGPC characteristics like fresh, physical, mechanical, durability, and microstructural analysis with different plastic types and forms, the optimal waste plastic disposable range is entrenched justifying eco-friendly and sustainable concrete yield.

16.
Chemosphere ; 362: 142787, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972261

ABSTRACT

In this research, the dimensional catalysts of pure g-C3N4 photocatalysts (1D, 2D, and 3D) were investigated for the reduction of the highly toxic/carcinogenic Cr(VI) under visible light irradiation. The catalysts underwent explanation through various surface analysis techniques. According to the BET data, the specific surface area of the 3D catalyst was 1.3 and 7 times higher than those of the 2D and 1D CN catalysts, respectively. The 3D catalyst demonstrated superior performance, achieving an efficiency greater than 99% within 60 min under visible light irradiation in the presence of EDTA due to the abundance of active sites. The study also delved into the influence of factors such as the amount of EDTA-hole scavenger, pH, catalyst dosage, and temperature on the photocatalytic reduction of Cr(VI). Moreover, the 3D catalyst showed excellent reusability, maintaining an efficiency of more than 80% even after 10 cycles, and performed effectively in real water samples. The 3D CN catalyst, with its facile synthesis process, excellent visible light harvesting properties, high reduction efficiency that sustains over multiple cycles, and outstanding performance in real water samples, presents a significant advancement for practical applications in environmental remediation. This research contributes to a new understanding of developing efficient degradation methods for heavy metals in polluted water, highlighting the potential of 3D g-C3N4 catalysts in environmental cleanup efforts.

17.
Am J Ophthalmol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972498

ABSTRACT

OBJECTIVE: To describe varying morphological features of patients with RRD based on the extent of regulation of the subretinal space by the retinal pigment epithelium (RPE) pump using swept-source optical coherence tomography (SS-OCT). DESIGN: Prospective clinical cohort study. Methods SETTING: St. Michael's Hospital, Toronto, Canada, from August 2020-August 2023. PARTICIPANTS: 120 consecutive eyes with primary RRD. COHORTS: Subclinical, non-progressive, localized RRD defined as regulated vs. acute, progressive, and extensive defined as dysregulated assessed with swept-source SS-OCT. MAIN OUTCOME: Morphological features of regulated vs dysregulated RRDs with SS-OCT. RESULTS: 19.2 % (23/120) of RRDs were classified as regulated and 80.8% (97/120) were dysregulated. The mean age of patients with regulated RRDs was 37.1 years (±13.7 SD) versus 62.6 years (±11.6SD) for patients with dysregulated RRDs (P<0.001). The presence of outer retinal corrugations (ORCs) on OCT was observed in 4.3%(1/23) of regulated vs 81.4% (79/97) of dysregulated RRDs (P<0.001). CME was found in 41.6%(5/12) of regulated RRDs compared to 87.3%(83/95) of dysregulated RRDs(P<0.001). ORC presence was an independent predictor of having a dysregulated RRD (P= 0.02,ß = 6.6,95 %CI [1.3 -33.2]) when controlling for age, sex, baseline VA, lens status, and RD extent. Among patients with regulated RRDs, 25.0% (3/12) were in Stage 2, 0% (0/16) in Stage 3A, 8.3% (1/12) in Stage 3B, 0% (0/16) in Stage 4, and 66.7% (8/12) in Stage 5. In patients with dysregulated RRDs, 14.7% (14/95) were in Stage 2, 15.7% (15/95) were in Stage 3A, 37.9% (36/95) in Stage 3B, 22.1% (21/95) in Stage 4, and 9.5% (9/95) in Stage 5 (P<0.001). CONCLUSIONS: There are significant morphologic differences between regulated and dysregulated RRDs using SS-OCT. ORCs are present in almost all dysregulated cases but in a minority of regulated cases and they are an independent predictor of RPE-photoreceptor regulation status. Demographic and clinical features differentiate regulated and dysregulated RRD and understanding these differences has significant implications for optimal management and postoperative outcomes.

18.
Biotechnol Bioeng ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973124

ABSTRACT

Fast diagnostic methods are crucial to reduce the burden on healthcare systems. Currently, detection of diabetes complications such as neuropathy requires time-consuming approaches to observe the correlated red blood cells (RBCs) morphological changes. To tackle this issue, an optical analysis of RBCs in air was conducted in the 250-2500 nm range. The distinct oscillations present in the scattered and direct transmittance spectra have been analyzed with both Mie theory and anomalous diffraction approximation. The results provide information about the swelling at the ends of RBCs and directly relate the optical data to RBCs morphology and deformability. Both models agree on a reduction in the size and deformability of RBCs in diabetic patients, thus opening the way to diabetes diagnosis and disease progression assessment.

19.
Int J Fertil Steril ; 18(3): 240-247, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38973277

ABSTRACT

BACKGROUND: Age, smoking, sleep duration, sleep quality, and obesity are risk factors that can affect the amount of sperm concentration, morphology, and motility. The aim of this study is to assess the lifestyle effects: of age, smoking, sleep duration, sleep quality, and obesity on the amount of concentration, morphology, and motility of sperm. MATERIALS AND METHODS: The study utilized an analytical observational approach with a cross-sectional design. The study subjects comprised 70 male partners of infertile couples admitted to the Sekar Fertility Clinic at the Dr. Moewardi General Hospital between March and August 2022. The study assessed variables including age, body mass index (BMI), smoking status, sleep duration, sleep quality, sperm concentration, sperm morphology, and sperm motility. Furthermore, the data were analyzed using univariate, bivariate, and multivariate methods with SPSS 25 software. RESULTS: The research findings demonstrate that obesity is significantly associated with abnormal sperm concentration [odds ratio (OR)=40.07, confidence interval (CI)=3.90-411.67, P=0.002]. Furthermore, moderate or heavy smoking is significantly associated with abnormal sperm concentration (OR=17.45, CI=1.83-166.15, P=0.013) and sleep quality with severe disorders (OR=5.73, CI=1.12-29.21, P=0.036). Moreover, obesity is significantly associated with abnormal sperm motility (OR=12.97, CI=2.66-63.15, P=0.002), while moderate or heavy smoking (OR=5.89, CI=1.23- 28.20, P=0.026) and poor sleep duration (OR=6.21, CI=1.43-26.92, P=0.015) also exhibit significant associations with abnormal sperm motility. However, no significant findings were observed regarding sperm morphology. CONCLUSION: The findings of this study indicate that obesity, moderate or heavy smoking, and sleep quality have statistically significant effects on sperm concentration, while obesity, moderate or heavy smoking, and sleep duration have statistically significant effects on sperm motility. However, no statistically significant influence was observed on sperm morphology. Further research with larger sample sizes and more diverse populations is needed to validate these findings and explore other potential factors that may impact male fertility.

20.
J Exp Orthop ; 11(3): e12072, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966184

ABSTRACT

Purpose: To determine whether scapular morphology could predict isolated supraspinatus tendon tear propagation after exercise therapy. We hypothesised that a larger critical shoulder angle (CSA) and type III acromial morphology predict a positive change in tear size. Methods: Fifty-nine individuals aged 40-70 years with isolated symptomatic high-grade partial or full-thickness supraspinatus tendon tears were included. Individuals participated in a structured, individualised 12-week exercise therapy programme and underwent ultrasound to measure tear size at baseline and 12 months following therapy. Computed tomography images were segmented to create three-dimensional subject-specific bone models and reviewed by three trained clinicians to measure CSA and to determine acromion morphology based on the Bigliani classification. A binary logistic regression was performed to determine the predictive value of CSA and acromion morphology on tear propagation. Results: The CSA was 30.0 ± 5.4°. Thirty-one individuals (52.5%) had type II acromial morphology, followed by type III and type I morphologies (25.4% and 22.0%, respectively); 81.4% experienced no change in tear size, four (6.8%) individuals experienced tear propagation and seven (11.9%) individuals had a negative change in tear size. No significant difference in tear propagation rates based on CSA or acromion morphology (not significant [NS]) was observed. The model predicted tear size status in 81.4% of cases but only predicted tear propagation 8.3% of the time. Overall, CSA and acromion morphology only predicted 24.3% (R 2 = 0.243) of variance in tear propagation (NS). Conclusions: CSA and acromion morphology were NS predictors of tear propagation of the supraspinatus tendon 12 months following an individualised exercise therapy programme. Level of Evidence: II.

SELECTION OF CITATIONS
SEARCH DETAIL