Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Am J Physiol Renal Physiol ; 327(3): F373-F385, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38961847

ABSTRACT

Dietary potassium deficiency causes stimulation of sodium reabsorption leading to an increased risk in blood pressure elevation. The distal convoluted tubule (DCT) is the main rheostat linking plasma K+ levels to the activity of the Na-Cl cotransporter (NCC). This occurs through basolateral membrane potential sensing by inwardly rectifying K+ channels (Kir4.1/5.1); decrease in intracellular Cl-; activation of WNK4 and interaction and phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK); binding of calcium-binding protein 39 (cab39) adaptor protein to SPAK, leading to its trafficking to the apical membrane; and SPAK binding, phosphorylation, and activation of NCC. As kidney-specific with-no-lysine kinase 1 (WNK1) isoform (KS-WNK1) is another participant in this pathway, we examined its function in NCC regulation. We eliminated KS-WNK1 specifically in the DCT and demonstrated increased expression of WNK4 and long WNK1 (L-WNK1) and increased phosphorylation of NCC. As in other KS-WNK1 models, the mice were not hyperkalemic. Although wild-type mice under low-dietary K+ conditions demonstrated increased NCC phosphorylation, the phosphorylation levels of the transporter, already high in KS-WNK1, did not change under the low-K+ diet. Thus, in the absence of KS-WNK1, the transporter lost its sensitivity to low plasma K+. We also show that under low K+ conditions, in the absence of KS-WNK1, there was no formation of WNK bodies. These bodies were observed in adjacent segments, not affected by the targeting of KS-WNK1. As our data are overall consistent with those of the global KS-WNK1 knockout, they indicate that the DCT is the predominant segment affecting the salt transport regulated by KS-WNK1.NEW & NOTEWORTHY In this paper, we show that KS-WNK1 is a critical component of the distal convoluted tubule (DCT) K+ switch pathway. Its deletion results in an inability of the DCT to sense changes in plasma potassium. Absence of KS-WNK1 leads to abnormally high levels of WNK4 and L-WNK1 in the DCT, resulting in increased Na-Cl phosphorylation and function. Our data are consistent with KS-WNK1 targeting WNK4 and L-WNK1 to degradation.


Subject(s)
Kidney Tubules, Distal , Protein Serine-Threonine Kinases , Solute Carrier Family 12, Member 3 , WNK Lysine-Deficient Protein Kinase 1 , Animals , Male , Mice , Kidney Tubules, Distal/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Potassium/metabolism , Potassium/blood , Potassium, Dietary/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Solute Carrier Family 12, Member 3/metabolism , Solute Carrier Family 12, Member 3/genetics , WNK Lysine-Deficient Protein Kinase 1/metabolism , WNK Lysine-Deficient Protein Kinase 1/genetics
2.
Hum Cell ; 37(5): 1306-1315, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38985392

ABSTRACT

The Na-Cl cotransporter (NCC) is a well-recognized regulator of ion transportation in the kidneys that facilitates Na+ reabsorption in the distal convoluted tubule. It is also the pharmacologic inhibitory target of thiazide diuretics, a class of front-line antihypertensive agents that have been widely used for decades. NCC is a potent regulator of Na+ reabsorption and homeostasis. Hence, its overactivation and suppression lead to hypertension and hypotension, respectively. Genetic mutations that affect NCC function contribute to several diseases such as Gordon and Gitelman syndromes. We summarized the role of NCC in various physiologic processes and pathological conditions, such as maintaining ion and water homeostasis, controlling blood pressure, and influencing renal physiology and injury. In addition, we discussed the recent advancements in understanding cryo-EM structure of NCC, the regulatory mechanisms and binding mode of thiazides with NCC, and novel physiologic implications of NCC in regulating the cross-talk between the immune system and adipose tissue or the kidneys. This review contributes to a comprehensive understanding of the pivotal role of NCC in maintaining ion homeostasis, regulating blood pressure, and facilitating kidney function and NCC's novel role in immune and metabolic regulation.


Subject(s)
Blood Pressure , Homeostasis , Hypertension , Kidney , Humans , Kidney/metabolism , Hypertension/metabolism , Blood Pressure/physiology , Gitelman Syndrome/metabolism , Gitelman Syndrome/genetics , Solute Carrier Family 12, Member 3/metabolism , Sodium/metabolism , Mutation , Ion Transport , Thiazides , Hypotension/metabolism , Adipose Tissue/metabolism , Animals
3.
Cureus ; 16(1): e52594, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38374860

ABSTRACT

Pseudohypoaldosteronism type II (PHA II) or Gordon syndrome is characterized by hyperkalemia, hypertension, hyperchloremic metabolic acidosis, low plasma renin activity, and normal kidney function. We report a rare case of a young adult female patient presenting with abdominal pain, diarrhea, and vomiting. She was hypertensive during the presentation. Blood work showed mild anemia, hyperkalemia, hyperchloremia, and metabolic acidosis, with normal renal function and liver function. Plasma renin activity and aldosterone levels were low-normal. These findings were suggestive of PHA II or Gordon syndrome. It is a rare familial disease, with a non-specific presentation and no specific diagnostic criteria, and physicians should suspect it in patients with hyperkalemia in the setting of normal glomerular filtration, along with hypertension (which can be absent), metabolic acidosis, hyperchloremia, low plasma renin activity, and relatively suppressed aldosterone.

4.
Am J Physiol Renal Physiol ; 326(3): F460-F476, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38269409

ABSTRACT

Kidney-specific with-no-lysine kinase 1 (KS-WNK1) is an isoform of WNK1 kinase that is predominantly found in the distal convoluted tubule of the kidney. The precise physiological function of KS-WNK1 remains unclear. Some studies have suggested that it could play a role in regulating potassium renal excretion by modulating the activity of the Na+-Cl- cotransporter (NCC). However, changes in the potassium diet from normal to high failed to reveal a role for KS-WNK1, but under a normal-potassium diet, the expression of KS-WNK1 is negligible. It is only detectable when mice are exposed to a low-potassium diet. In this study, we investigated the role of KS-WNK1 in regulating potassium excretion under extreme changes in potassium intake. After following a zero-potassium diet (0KD) for 10 days, KS-WNK1-/- mice had lower plasma levels of K+ and Cl- while exhibiting higher urinary excretion of Na+, Cl-, and K+ compared with KS-WNK1+/+ mice. After 10 days of 0KD or normal-potassium diet (NKD), all mice were challenged with a high-potassium diet (HKD). Plasma K+ levels markedly increased after the HKD challenge only in mice previously fed with 0KD, regardless of genotype. KSWNK1+/+ mice adapt better to HKD challenge than KS-WNK1-/- mice after a potassium-retaining state. The difference in the phosphorylated NCC-to-NCC ratio between KS-WNK1+/+ and KS-WNK1-/- mice after 0KD and HKD indicates a role for KS-WNK1 in both NCC phosphorylation and dephosphorylation. These observations show that KS-WNK1 helps the distal convoluted tubule to respond to extreme changes in potassium intake, such as those occurring in wildlife.NEW & NOTEWORTHY The findings of this study demonstrate that kidney-specific with-no-lysine kinase 1 plays a role in regulating urinary electrolyte excretion during extreme changes in potassium intake, such as those occurring in wildlife. .


Subject(s)
Mice, Knockout , Potassium, Dietary , WNK Lysine-Deficient Protein Kinase 1 , Animals , Male , Mice , Kidney/metabolism , Kidney Tubules, Distal/metabolism , Mice, Inbred C57BL , Phosphorylation , Potassium/urine , Potassium/metabolism , Potassium/blood , Potassium, Dietary/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Renal Elimination , Solute Carrier Family 12, Member 3/metabolism , Solute Carrier Family 12, Member 3/genetics , WNK Lysine-Deficient Protein Kinase 1/metabolism , WNK Lysine-Deficient Protein Kinase 1/genetics , Female
5.
Ann Pharm Fr ; 82(1): 44-52, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37422255

ABSTRACT

BACKGROUND: Hydrochlorothiazide, a diuretic commonly used for the treatment of hypertension, is often associated with serious metabolic side effects. Pyrrosia petiolosa (Christ) Ching is a traditional Chinese medicine that possesses diuretic properties, without any obvious side effects. AIM: To evaluate the diuretic effect of P. petiolosa (Christ) Ching and to elucidate its underlying mechanism of action. METHODS: Extracts obtained from different polar components of P. petiolosa (Christ) Ching were analyzed for toxicity in a Kunming mouse model. The diuretic effects of the extracts were compared to that of hydrochlorothiazide in rats. In addition, compound isolation procedures, cell assays of Na-Cl cotransporter inhibition and rat diuretic test of monomeric compounds were conducted to identify the active ingredients in the extract. Subsequently, homology modeling and molecular docking were performed to explain the reason behind the diuretic activity observed. Finally, LC-MS analysis was used to elucidate the underlying mechanism of action of P. petiolosa (Christ) Ching. RESULTS: No toxicity was observed in mice administered P. petiolosa (Christ) Ching extracts. The ethyl acetate fraction showed the most significant diuretic effect. Similar results were obtained during the analysis for Na+ content in rat urine. Further separation of P. petiolosa (Christ) Ching components led to the isolation of methyl chlorogenate, 2',3'-dihydroxy propyl pentadecanoate, and ß-carotene. Results from cell assays showed that the Na-Cl cotransporter inhibitory activity of methyl chlorogenate was greater than that of hydrochlorothiazide. This result was again confirmed by the diuresis tests of monomeric compounds in rats. The molecular simulations explain the stronger interactions between the methyl chlorogenate and Na-Cl cotransporter. Of the compounds determined using LC-MS analysis, 185 were identified to be mostly organic acids. CONCLUSIONS: P. petiolosa possesses significant diuretic activities without any obvious toxicity, with least two possible mechanisms of action. Further study on this herb is warranted.


Subject(s)
Diuretics , Hydrochlorothiazide , Rats , Mice , Animals , Diuretics/toxicity , Solute Carrier Family 12, Member 3 , Molecular Docking Simulation , Hydrochlorothiazide/toxicity , Plant Extracts/toxicity
6.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;56: e12392, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1420750

ABSTRACT

Distal convoluted tubules (DCT), which contain the Na-Cl cotransporter (NCC) inhibited by thiazide diuretics, undergo complex modulation to preserve Na+ and K+ homeostasis. The lysine kinases 1 and 4 (WNK1 and WNK4), identified as hyperactive in the hereditary disease pseudohypoaldosteronism type 2, are responsible for activation of NCC and consequent hypokalemia and hypertension. WNK4, highly expressed in DCT, activates the SPAK/OSR1 kinases, which phosphorylate NCC and other regulatory proteins and transporters in the distal nephron. WNK4 works as a chloride sensor through a Cl- binding site, which acts as an on/off switch at this kinase in response to changes of basolateral membrane electrical potential, the driving force of cellular Cl- efflux. High intracellular Cl- in hyperkalemia decreases NCC phosphorylation and low intracellular Cl- in hypokalemia increases NCC phosphorylation and activity, which makes plasma K+ concentration a central modulator of NCC and of K+ secretion. The WNK4 phosphorylation by cSrc or SGK1, activated by angiotensin II or aldosterone, respectively, is another relevant mechanism of NCC, ENaC, and ROMK modulation in states such as volume reduction, hyperkalemia, and hypokalemia. Loss of NCC function induces upregulation of electroneutral NaCl reabsorption by type B intercalated cells through the combined activity of pendrin and NDCBE, as demonstrated in double knockout mice (KO) animal models, Ncc/pendrin or Ncc/NDCBE. The analysis of ks-Nedd-4-2 KO animal models introduced the modulation of NEDD4-2 by intracellular Mg2+ activity as an important regulator of NCC, explaining the thiazide-induced persistent hypokalemia.

7.
Ecotoxicol Environ Saf ; 244: 114024, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36057202

ABSTRACT

Excessive salt intake can induce a variety of diseases, such as hypertension, cardiovascular disease, kidney disease and so on,it is also one of the factors promoting bone resorption. The mechanism of osteoporosis-induced exacerbations of high salt diet is not well-defined. In this study, we used ovariectomized 6-month-old Sprague Dawley rats to construct a high bone turnover model, and then administrated with high sodium chloride diet (2.0% w/w NaCl, 8.0% w/w NaCl) for 12 weeks to observe the effect of high salt diet on bone metabolism. The results showed that high salt diet could lead to the destruction of bone microstructure, promote the excretion of urinary calcium and phosphorus and accelerate the bone turnover, as well as cause the pathologic structural abnormalities in renal tubular. At the same time, it was accompanied by the up-regulated expression of the epithelial sodium channel (ENaCα), voltage-gated chloride channels (ClC)- 3 and the down-regulated expression of Na-Cl cotransporter (NCC), sodium calcium exchanger (NCX1) in femoral tissue and renal tubules. These findings confirm that high salt diet can destroy the microstructure of bone by increasing bone resorption and affect some ion channels of bone tissue and renal tubule in ovariectomized rats.


Subject(s)
Bone Resorption , Sodium Chloride, Dietary , Animals , Bone Resorption/metabolism , Bone and Bones/metabolism , Calcium/metabolism , Chloride Channels/metabolism , Chloride Channels/pharmacology , Diet , Epithelial Sodium Channels/metabolism , Kidney , Phosphorus/metabolism , Rats , Rats, Sprague-Dawley , Sodium Chloride/pharmacology , Sodium-Calcium Exchanger/metabolism , Sodium-Calcium Exchanger/pharmacology , Solute Carrier Family 12, Member 3/metabolism
8.
Osteoporos Int ; 33(10): 2193-2204, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35767093

ABSTRACT

Gitelman syndrome (GS) is the disease model of the inactivation of thiazide-sensitive sodium chloride cotransporter (NCC), which is believed to benefit bone mass and reduce fracture risk. In this study, we found that GS patients have superior bone microarchitecture, which is associated with the disease status. Several decreased bone parameters with aging in healthy controls were reversed in GS patients to a certain extent. PURPOSE: To evaluate the impact of the inactivation of NCC on bone turnover and microarchitecture in Gitelman syndrome patients. METHODS: A cross-sectional study was conducted in 45 GS patients (25 males and 20 females). Serum procollagen type 1 N-terminal propeptide (P1NP), ß-carboxy-terminal crosslinked telopeptide of type 1 collagen (ß-CTX), and osteocalcin were measured. High-resolution peripheral quantitative computed tomography (HR-pQCT) was conducted to evaluate bone microarchitecture in GS patients and age- and sex-matched healthy controls. Areal bone mineral density (aBMD) was measured by dual-energy X-ray absorptiometry (DXA) simultaneously. RESULTS: GS patients had a relatively lower level of ß-CTX. aBMD at several skeletal sites was improved in GS patients. HR-pQCT assessment revealed that GS patients had slightly thinner but significantly more compact trabecular bone (increased trabecular number and decreased thickness), notably decreased cortical porosity, and increased volume BMD (vBMD) at both the radius and tibia compared with controls. The disease severity, represented as the relationship with the minimum level of magnesium during the course and standard base excess, was associated with bone microarchitecture parameters after adjusting for age, sex, and BMI. The decreased vBMD and Tb.BV/TV, and increased Tb.Sp and Ct.Po with aging, were reversed in GS patients to a certain extent. CONCLUSION: GS patients have superior bone microarchitecture, which suggests that the inactivation of NCC might be beneficial for avoiding osteoporosis.


Subject(s)
Gitelman Syndrome , Symporters , Absorptiometry, Photon , Bone Density/physiology , Collagen Type I , Cross-Sectional Studies , Female , Gene Silencing , Humans , Magnesium , Male , Osteocalcin , Procollagen , Radius/diagnostic imaging , Sodium Chloride Symporters , Thiazides , Tibia/diagnostic imaging
9.
Am J Physiol Cell Physiol ; 323(2): C277-C288, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35759440

ABSTRACT

The inwardly rectifying potassium channel (Kir) 4.1 (encoded by KCNJ10) interacts with Kir5.1 (encoded by KCNJ16) to form a major basolateral K+ channel in the renal distal convoluted tubule (DCT), connecting tubule (CNT), and the cortical collecting duct (CCD). Kir4.1/Kir5.1 heterotetramer plays an important role in regulating Na+ and K+ transport in the DCT, CNT, and CCD. A recent development in the field has firmly established the role of Kir4.1/Kir5.1 heterotetramer of the DCT in the regulation of thiazide-sensitive Na-Cl cotransporter (NCC). Changes in Kir4.1/Kir5.1 activity of the DCT are an essential step for the regulation of NCC expression/activity induced by dietary K+ and Na+ intakes and play a role in modulating NCC by type 2 angiotensin II receptor (AT2R), bradykinin type II receptor (BK2R), and ß-adrenergic receptor. Since NCC activity determines the Na+ delivery rate to the aldosterone-sensitive distal nephron (ASDN), a distal nephron segment from late DCT to CCD, Kir4.1/Kir5.1 activity plays a critical role not only in the regulation of renal Na+ absorption but also in modulating renal K+ excretion and maintaining K+ homeostasis. Thus, Kir4.1/Kir5.1 activity serves as an important component of renal K+ sensing mechanism. The main focus of this review is to provide an overview regarding the role of Kir4.1 and Kir5.1 of the DCT and CCD in the regulation of renal K+ excretion and Na+ absorption.


Subject(s)
Potassium Channels, Inwardly Rectifying , Kidney Tubules , Kidney Tubules, Distal , Membrane Potentials , Nephrons , Potassium Channels, Inwardly Rectifying/genetics , Sodium
10.
Dev Cell ; 57(12): 1496-1511.e6, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35675813

ABSTRACT

Diabetic patients show elevated plasma IL18 concentrations. IL18 has two receptors: the IL18 receptor (IL18r) and the Na-Cl co-transporter (NCC). Here, we report that IL18 is expressed on islet α cells, NCC on ß cells, and IL18r on acinar cells in human and mouse pancreases. The deficiency of these receptors reduces islet size, ß cell proliferation, and insulin secretion but increases ß cell apoptosis and exocrine macrophage accumulation after diet-induced glucose intolerance or streptozotocin-induced hyperglycemia. Together with the glucagon-like peptide-1 (GLP1), IL18 uses the NCC and GLP1 receptors on ß cells to trigger ß cell development and insulin secretion. IL18 also uses the IL18r on acinar cells to block hyperglycemic pancreas macrophage expansion. The ß cell-selective depletion of the NCC or acinar-cell-selective IL18r depletion reduces glucose tolerance and insulin sensitivity with impaired ß cell proliferation, enhanced ß cell apoptosis and macrophage expansion, and inflammation in mouse hyperglycemic pancreas. IL18 uses NCC, GLP1r, and IL18r to maintain islet ß cell function and homeostasis.


Subject(s)
Insulin-Secreting Cells , Interleukin-18 , Pancreas , Animals , Glucagon-Like Peptide 1/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Interleukin-18/metabolism , Mice , Pancreas/cytology , Pancreas/metabolism
11.
Front Physiol ; 12: 695824, 2021.
Article in English | MEDLINE | ID: mdl-34483955

ABSTRACT

We previously showed that the beta-3 adrenergic receptor (BAR3) is expressed in most segments of the nephron where its agonism promotes a potent antidiuretic effect. We localized BAR3 in distal convoluted tubule (DCT) cells expressing the thiazide-sensitive sodium-chloride cotransporter (NCC). Aim of this study is to investigate the possible functional role of BAR3 on NCC modulation in DCT cells. Here, we found that, in mice, the knockout of BAR3 was paralleled by a significant attenuation of NCC phosphorylation, paralleled by reduced expression and activation of STE-20/SPS1-related proline-alanine-rich kinase (SPAK) and WNKs the main kinases involved in NCC activation. Conversely, in BAR1/2 knockout mice, we found reduced NCC abundance with no changes in the phosphorylation state of NCC. Moreover, selective BAR3 agonism promotes both SPAK and NCC activation in wild-type mouse kidney slices. In conclusion, our findings suggest a novel role for BAR3 in the regulation of NCC in DCT.

12.
Front Physiol ; 11: 588664, 2020.
Article in English | MEDLINE | ID: mdl-33716756

ABSTRACT

Sodium (Na+) electrochemical gradients established by Na+/K+ ATPase activity drives the transport of ions, minerals, and sugars in both excitable and non-excitable cells. Na+-dependent transporters can move these solutes in the same direction (cotransport) or in opposite directions (exchanger) across both the apical and basolateral plasma membranes of polarized epithelia. In addition to maintaining physiological homeostasis of these solutes, increases and decreases in sodium may also initiate, directly or indirectly, signaling cascades that regulate a variety of intracellular post-translational events. In this review, we will describe how the Na+/K+ ATPase maintains a Na+ gradient utilized by multiple sodium-dependent transport mechanisms to regulate glucose uptake, excitatory neurotransmitters, calcium signaling, acid-base balance, salt-wasting disorders, fluid volume, and magnesium transport. We will discuss how several Na+-dependent cotransporters and Na+-dependent exchangers have significant roles in human health and disease. Finally, we will discuss how each of these Na+-dependent transport mechanisms have either been shown or have the potential to use Na+ in a secondary role as a signaling molecule.

13.
Eur Heart J ; 41(26): 2456-2468, 2020 07 07.
Article in English | MEDLINE | ID: mdl-31821481

ABSTRACT

AIMS: Obesity is a risk factor of abdominal aortic aneurysm (AAA). Inflammatory cytokine interleukin-18 (IL18) has two receptors: IL18 receptor (IL18r) and Na-Cl co-transporter (NCC). In human and mouse AAA lesions, IL18 colocalizes to its receptors at regions rich in adipocytes, suggesting a role of adipocytes in promoting IL18 actions in AAA development. METHODS AND RESULTS: We localized both IL18r and NCC in human and mouse AAA lesions. Murine AAA development required both receptors. In mouse AAA lesions, IL18 binding to these receptors increased at regions enriched in adipocytes or adjacent to perivascular adipose tissue. 3T3-L1 adipocytes enhanced IL18 binding to macrophages, aortic smooth muscle cells (SMCs), and endothelial cells by inducing the expression of both IL18 receptors on these cells. Adipocytes also enhanced IL18r and IL18 expression from T cells and macrophages, AAA-pertinent protease expression from macrophages, and SMC apoptosis. Perivascular implantation of adipose tissue from either diet-induced obese mice or lean mice but not that from leptin-deficient ob/ob mice exacerbated AAA development in recipient mice. Further experiments established an essential role of adipocyte leptin and fatty acid-binding protein 4 (FABP4) in promoting IL18 binding to macrophages and possibly other inflammatory and vascular cells by inducing their expression of IL18, IL18r, and NCC. CONCLUSION: Interleukin-18 uses both IL18r and NCC to promote AAA formation. Lesion adipocyte and perivascular adipose tissue contribute to AAA pathogenesis by releasing leptin and FABP4 that induce IL18, IL18r, and NCC expression and promote IL18 actions.


Subject(s)
Adipocytes , Aortic Aneurysm, Abdominal , Interleukin-18 , Animals , Aortic Aneurysm, Abdominal/etiology , Disease Models, Animal , Endothelial Cells , Mice , Mice, Inbred C57BL , Receptors, Interleukin-18 , Signal Transduction
14.
J Rural Med ; 14(2): 258-262, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31788154

ABSTRACT

Background: Gitelman syndrome (GS) is an autosomal recessive salt-losing renal tubulopathy resulting from mutations in the thiazide-sensitive Na-Cl cotransporter (NCC) gene. Notably, lack of awareness regarding GS and difficulty with prompt diagnosis are observed in clinical practice, particularly in rural settings. Case presentation: We report a case of a 48-year-old man with GS who presented to a local clinic on a remote island. Occasional laboratory investigations incidentally revealed a reduced serum potassium level of 2.6 mmol/L. A careful medical interview revealed episodes of intermittent paralysis of the lower extremities and muscular weakness for >30 years. Subsequent laboratory investigations revealed hypomagnesemia, hypocalciuria, and hypokalemic metabolic alkalosis. Based on the patient's history, clinical presentation, and laboratory investigations, we suspected GS. Genetic testing revealed a rare homozygous in-frame 18 base insertion in the NCC gene that might have resulted from the founder effect, consequent to his topographically isolated circumstances. Conclusion: More case studies similar to our study need to be added to the literature to gain a deeper understanding of the functional consequences of this mutation and to establish optimal management strategies for this condition, particularly in rural clinical settings.

15.
Front Physiol ; 10: 989, 2019.
Article in English | MEDLINE | ID: mdl-31474871

ABSTRACT

Chronic glucocorticoid infusion impairs NCC activity and induces a non-dipping profile in mice, suggesting that glucocorticoids are essential for daily blood pressure variations. In this paper, we studied mice lacking the renal tubular glucocorticoid receptor (GR) in adulthood (GR knockouts, Nr3c1 Pax8/LC1 ). Upon standard salt diet, Nr3c1 Pax8/LC1 mice grow normally, but show reduced NCC activity despite normal plasma aldosterone levels. Following diet switch to low sodium, Nr3c1 Pax8/LC1 mice exhibit a transient but significant reduction in the activity of NCC and expression of NHE3 and NKCC2 accompanied by significant increased Spak activity. This is followed by transiently increased urinary sodium excretion and higher plasma aldosterone concentrations. Plasma corticosterone levels and 11ßHSD2 mRNA expression and activity in the whole kidney remain unchanged. High salt diet does not affect whole body Na+ and/or K+ balance and NCC activity is not reduced, but leads to a significant increase in diastolic blood pressure dipping in Nr3c1 Pax8/LC1 mice. When high sodium treatment is followed by 48 h of darkness, NCC abundance is reduced in knockout mice although activity is not different. Our data show that upon Na+ restriction renal tubular GR-deficiency transiently affects Na+ handling and transport pathways. Overall, upon standard, low Na+ and high Na+ diet exposure Na+ and K+ balance is maintained as evidenced by normal plasma and urinary Na+ and K+ and aldosterone concentrations.

16.
Front Physiol ; 9: 849, 2018.
Article in English | MEDLINE | ID: mdl-30050451

ABSTRACT

Background: Probenecid is a uricosuric agent that in addition to exerting a positive ionotropic effect in the heart, blocks the ATP transporter Pannexin 1 and inhibits the Cl-/HCO3- exchanger, pendrin. In the kidney, pendrin blunts the loss of salt wasting secondary to the inhibition of the thiazide-sensitive Na+-Cl- co-transporter (NCC/SLC12A3). Hypothesis: Pre-treatment with probenecid down-regulates pendrin; therefore, leaving NCC as the main salt absorbing transporter in the distal nephron, and hence enhances the hydrochlorothiazide (HCTZ)-induced diuresis. Methods: Daily balance studies, blood and urine chemical analysis, immunofluorescence, as well as western and northern blot analyses were utilized to examine the effects of probenecid alone (at 250 mg/kg/day) or in combination with HCTZ (at 40 mg/kg/day) on kidney function and on salt and water transporters in the collecting duct. Results: Male Sprague Dawley rats were subjected to three different protocols: (1) HCTZ for 4 days, (2) probenecid for 10 days, and (3) primed with probenecid for 6 days followed by probenecid and HCTZ for 4 additional days. Treatment protocol 1 (HCTZ for 4 days) only mildly increased the urine volume (U Vol) from a baseline of 9.8-13.4 ml/day. In response to treatment protocol 2 (probenecid for 10 days), U Vol increased to 15.9 ml/24 h. Treatment protocol 3 (probenecid for 6 days followed by probenecid and HCTZ for 4 additional days) increased the U Vol to 42.9 ml/day on day 4 of co-treatment with HCTZ and probenecid (compared to probenecid p = 0.003, n = 5 or HCTZ alone p = 0.001, n = 5). Probenecid treatment at 250 mg/kg/day downregulated the expression of pendrin and led to a decrease in AQP2 expression. Enhanced diuresis by probenecid plus HCTZ was not associated with volume depletion. Conclusion: Probenecid pre-treatment downregulates pendrin and robustly enhances diuresis by HCTZ-mediated NCC inhibition in kidney.

17.
J Am Soc Nephrol ; 29(3): 977-990, 2018 03.
Article in English | MEDLINE | ID: mdl-29371419

ABSTRACT

The amiloride-sensitive epithelial sodium channel (ENaC) and the thiazide-sensitive sodium chloride cotransporter (NCC) are key regulators of sodium and potassium and colocalize in the late distal convoluted tubule of the kidney. Loss of the αENaC subunit leads to a perinatal lethal phenotype characterized by sodium loss and hyperkalemia resembling the human syndrome pseudohypoaldosteronism type 1 (PHA-I). In adulthood, inducible nephron-specific deletion of αENaC in mice mimics the lethal phenotype observed in neonates, and as in humans, this phenotype is prevented by a high sodium (HNa+)/low potassium (LK+) rescue diet. Rescue reflects activation of NCC, which is suppressed at baseline by elevated plasma potassium concentration. In this study, we investigated the role of the γENaC subunit in the PHA-I phenotype. Nephron-specific γENaC knockout mice also presented with salt-wasting syndrome and severe hyperkalemia. Unlike mice lacking αENaC or ßΕΝaC, an HNa+/LK+ diet did not normalize plasma potassium (K+) concentration or increase NCC activation. However, when K+ was eliminated from the diet at the time that γENaC was deleted, plasma K+ concentration and NCC activity remained normal, and progressive weight loss was prevented. Loss of the late distal convoluted tubule, as well as overall reduced ßENaC subunit expression, may be responsible for the more severe hyperkalemia. We conclude that plasma K+ concentration becomes the determining and limiting factor in regulating NCC activity, regardless of Na+ balance in γENaC-deficient mice.


Subject(s)
Epithelial Sodium Channels/genetics , Hyperkalemia/genetics , Potassium/blood , Pseudohypoaldosteronism/blood , Pseudohypoaldosteronism/genetics , Animals , Chelating Agents/therapeutic use , Dietary Supplements , Hyperkalemia/blood , Hyperkalemia/drug therapy , Mice , Mice, Knockout , Nephrons , Polystyrenes/therapeutic use , Potassium, Dietary/administration & dosage , Sodium, Dietary/administration & dosage , Solute Carrier Family 12, Member 3/metabolism
18.
Naunyn Schmiedebergs Arch Pharmacol ; 390(3): 321-326, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28108829

ABSTRACT

Reduced renal Na+ reabsorption along with restricted dietary Na+ depletes intravascular plasma volume which can then result in hypotension. Whether hypotension occurs and the magnitude of hypotension depends in part on compensatory angiotensin II-mediated increased vascular resistance. We investigated whether the ability of vascular resistance to mitigate the hypotension was compromised by decreased contractile reactivity. In vitro reactivity was investigated in aorta from mouse models of reduced renal Na+ reabsorption and restricted dietary Na+ associated with considerable hypotension and renin-angiotensin system activation: (1) the Na+-Cl--Co-transporter (NCC) knockout (KO) with Na+ restricted diet (0.1%, 2 weeks) and (2) the relatively more severe pendrin (apical chloride/bicarbonate exchanger) and NCC double KO. Contractile sensitivity to KCl, phenylephrine, and/or U46619 remained unaltered in aorta from both models. Maximal KCl and phenylephrine contraction expressed as force/aorta length from NCC KO with Na+-restricted diet remained unaltered, while in pendrin/NCC double KO were reduced to 49 and 64%, respectively. Wet weight of aorta from NCC KO with Na+-restricted diet remained unaltered, while pendrin/NCC double KO was reduced to 67%, consistent with decreased medial width determined with Verhoeff-Van Gieson stain. These findings suggest that hypotension associated with severe intravascular volume depletion, as the result of decreased renal Na+ reabsorption, may in part be due to decreased contractile reactivity as a consequence of reduced vascular hypertrophy.


Subject(s)
Aorta/physiopathology , Diet, Sodium-Restricted , Hypotension/metabolism , Kidney/metabolism , Renal Reabsorption , Sodium, Dietary/metabolism , Vasoconstriction , Animals , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Aorta/drug effects , Aorta/pathology , Blood Pressure , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Genotype , Hypotension/genetics , Hypotension/pathology , Hypotension/physiopathology , Male , Mice, Knockout , Phenotype , Solute Carrier Family 12, Member 3/genetics , Solute Carrier Family 12, Member 3/metabolism , Sulfate Transporters , Vascular Resistance , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology
19.
Acta Physiol (Oxf) ; 219(1): 260-273, 2017 01.
Article in English | MEDLINE | ID: mdl-27129733

ABSTRACT

Epithelial K+ channels are essential for maintaining electrolyte and fluid homeostasis in the kidney. It is recognized that basolateral inward-rectifying K+ (Kir ) channels play an important role in the control of resting membrane potential and transepithelial voltage, thereby modulating water and electrolyte transport in the distal part of nephron and collecting duct. Monomeric Kir 4.1 (encoded by Kcnj10 gene) and heteromeric Kir 4.1/Kir 5.1 (Kir 4.1 together with Kir 5.1 (Kcnj16)) channels are abundantly expressed at the basolateral membranes of the distal convoluted tubule and the cortical collecting duct cells. Loss-of-function mutations in KCNJ10 cause EAST/SeSAME tubulopathy in humans associated with salt wasting, hypomagnesaemia, metabolic alkalosis and hypokalaemia. In contrast, mice lacking Kir 5.1 have severe renal phenotype that, apart from hypokalaemia, is the opposite of the phenotype seen in EAST/SeSAME syndrome. Experimental advances using genetic animal models provided critical insights into the physiological role of these channels in electrolyte homeostasis and the control of kidney function. Here, we discuss current knowledge about K+ channels at the basolateral membrane of the distal tubules with specific focus on the homomeric Kir 4.1 and heteromeric Kir 4.1/Kir 5.1 channels. Recently identified molecular mechanisms regulating expression and activity of these channels, such as cell acidification, dopamine, insulin and insulin-like growth factor-1, Src family protein tyrosine kinases, as well as the role of these channels in NCC-mediated transport in the distal convoluted tubules, are also described.


Subject(s)
Gene Expression Regulation , Kidney Tubules, Distal/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Animals , Cell Membrane/metabolism , Membrane Potentials/physiology , Mice , Mice, Knockout , Nephrons/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Kir5.1 Channel
20.
World J Cardiol ; 7(6): 306-10, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26131334

ABSTRACT

According to a genome-wide association study, intronic SNPs within the human sterile 20/SPS1-related proline/alanine-rich kinase (SPAK) gene was linked to 20% of the general population and may be associated with elevated blood pressure. As cell volume changes, mammalian SPAK kinases respond to phosphorylate and regulate cation-coupled chloride co-transporter activity. To our knowledge, phosphorylation of upstream with-no-lysine (K) (WNK) kinases would activate SPAK kinases. The activation of WNK-OSR1/SPAK cascade on the kidneys and aortic tissue is related to the development of hypertension. Several regulators of the WNK pathway such as the Kelch kinase protein 3 - Cullin 3 E3 ligase, hyperinsulinemia, and low potassium intake to mediate hypertension have been identified. In addition, the SPAK kinases may affect the action of renin-angiotensin-aldosterone system on blood pressure as well. In 2010, two SPAK knock-in and knock-out mouse models have clarified the pathogenesis of lowering blood pressure by influencing the receptors on the kidneys and aortic smooth muscle. More recently, two novel SPAK inhibitors for mice, Stock 1S-14279 and Closantel were discovered in 2014. Targeting of SPAK seems to be promising for future antihypertensive therapy. Therefore we raised some viewpoints for the issue for the antihypertensive therapy on the SPAK (gene or kinase).

SELECTION OF CITATIONS
SEARCH DETAIL