Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 680
Filter
1.
Int J Biol Macromol ; : 134578, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39122064

ABSTRACT

Because of the complex symptoms resulting from metabolic dysfunction in the wound microenvironment during bacterial infections, along with the necessity to combat free radicals, achieving prompt and thorough wound healing remains a significant medical challenge that has yet to be fully addressed. Moreover, the misuse of common antibiotics has contributed to the emergence of drug-resistant bacteria, underscoring the need for enhancements in the practical and commonly utilized approach to wound treatment. In this context, hydrogel dressings based on biological macromolecules with antibacterial and antioxidant properties present a promising new avenue for skin wound treatment due to their multifunctional characteristics. Despite the considerable potential of this innovative approach to wound care, comprehensive research on these multifunctional dressings is still insufficient. Consequently, the development of advanced biological macromolecule-based hydrogels, such as chitosan, alginate, cellulose, hyaluronic acid, and others, has been the primary focus of this study. These materials have been enriched with various antibacterial and antioxidant agents to confer multifunctional attributes for wound healing purposes. This review article aims to offer a comprehensive overview of the latest progress in this field, providing a critical theoretical basis for future advancements in the utilization of these advanced biological macromolecule-based hydrogels for wound healing.

2.
Article in English | MEDLINE | ID: mdl-39103593

ABSTRACT

Nanogel (NG) drug delivery systems have emerged as promising tools for targeted and controlled drug release, revolutionizing treatment approaches across various diseases. Their unique physicochemical properties, such as nano size, high surface area, biocompatibility, stability, and tunable drug release, make them ideal carriers for a wide range of therapeutic agents. Nanogels (NGs), characterized by their 3D network of crosslinked polymers, offer unique edges like high drug loading capacity, controlled release, and targeted delivery. Additionally, the diverse applications of NGs in medical therapeutics highlight their versatility and potential impact on improving patient outcomes. Their application spans cancer treatment, infectious diseases, and chronic conditions, allowing for precise drug delivery to specific tissues or cells, minimizing side effects, and enhancing therapeutic efficacy. Despite their potential, challenges such as scalability, manufacturing reproducibility, and regulatory hurdles must be addressed. Achieving clinical translation requires overcoming these obstacles to ensure therapeutic payloads' safe and efficient delivery. Strategies such as surface modification and incorporating stimuli-responsive elements enhanced NG performance and addressed specific therapeutic challenges. Advances in nanotechnology, biomaterials, and targeted drug design offer opportunities to improve the performance of NGs and address current limitations. Tailoring NGs for exploring combination therapies and integrating diagnostics for real-time monitoring represent promising avenues for future research. In conclusion, NG drug delivery systems have demonstrated tremendous potential in diverse disease applications. Overcoming challenges and leveraging emerging technologies will pave the way for their widespread clinical implementation, ushering in a new era of precision medicine and improved patient care.

3.
Drug Deliv ; 31(1): 2372269, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38956885

ABSTRACT

Acne is a common chronic inflammatory disorder of the sebaceous gland in the hair follicle. Commonly used external medications cause skin irritation, and the transdermal capacity is weak, making it difficult to penetrate the cuticle skin barrier. Hair follicles can aid in the breakdown of this barrier. As nanomaterials progress, polymer-based nanocarriers are routinely used for hair follicle drug delivery to treat acne and other skin issues. Based on the physiological and anatomical characteristics of hair follicles, this paper discusses factors affecting hair follicle delivery by polymer nanocarriers, summarizes the common combination technology to improve the targeting of hair follicles by carriers, and finally reviews the most recent research progress of different polymer nanodrug-delivery systems for the treatment of acne by targeting hair follicles.


Subject(s)
Acne Vulgaris , Drug Carriers , Hair Follicle , Polymers , Hair Follicle/drug effects , Hair Follicle/metabolism , Acne Vulgaris/drug therapy , Humans , Polymers/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Nanoparticles , Administration, Cutaneous , Animals , Nanoparticle Drug Delivery System/chemistry
4.
Biomed Mater ; 19(5)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38955335

ABSTRACT

This study aimed to develop and optimize karanjin-loaded ethosomal nanogel formulation and evaluate its efficacy in alleviating symptoms of psoriasis in an animal model induced by imiquimod. These karanjin-loaded ethosomal nanogel, were formulated to enhance drug penetration into the skin and its epidermal retention. Karanjin was taken to formulate ethosomes due to its potential ani-psoriatic activity. Ethosomes were formulated using the cold method using 32full factorial designs to optimize the formulation components. 9 batches were prepared using two independent variablesX1: concentration of ethanol andX2: concentration of phospholipid whereas vesicle size (Y1) and percentage entrapment efficiency (Y2) were selected as dependent variables. All the dependent variables were found to be statistically significant. The optimized ethosomal suspension (B3) exhibited a vesicle size of 334 ± 2.89 nm with an entrapment efficiency of 94.88 ± 1.24% and showed good stability. The morphology of vesicles appeared spherical with smooth surfaces through transmission electron microscopy analysis. X-ray diffraction analysis confirmed that the drug existed in an amorphous state within the ethosomal formulation. The optimized ethosome was incorporated into carbopol 934 to develop nanogel for easy application on the skin. The nanogel underwent characterization for various parameters including spreadability, viscosity, pH, extrudability, and percentage drug content. The ethosomal formulation remarkably enhanced the skin permeation of karanjin and increased epidermal retention of the drug in psoriatic skin compared to marketed preparation and pure drug. A skin retention study showed that ethosomal nanogel formulation has 48.33% epidermal retention in 6 h.In vivo,the anti-psoriatic activity of karanjin ethosomal nanogel demonstrated significant improvement in psoriasis, indicated by a gradual decrease in skin thickness and scaling as reflected in the Psoriasis Severity Index grading. Therefore, the prepared ethosomal nanogel is a potential vehicle for improved topical delivery of karanjin for better treatment of psoriasis.


Subject(s)
Nanogels , Psoriasis , Skin Absorption , Psoriasis/drug therapy , Psoriasis/pathology , Animals , Nanogels/chemistry , Lecithins/chemistry , Skin/metabolism , Skin/pathology , Particle Size , Liposomes/chemistry , Polyethylene Glycols/chemistry , Glycine max/chemistry , Rats , Male , Imiquimod/chemistry , Drug Carriers/chemistry , Polyethyleneimine/chemistry , X-Ray Diffraction , Ethanol/chemistry , Acrylates
5.
Acta Biomater ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025390

ABSTRACT

Transcatheter arterial chemoembolization (TACE) is the first-line therapy for hepatocellular carcinoma (HCC). However, the exacerbated hypoxia microenvironment induces tumor relapse and metastasis post-TACE. Here, temperature-sensitive block polymer complexed with polyphosphate-cisplatin (Pt-P@PND) was prepared for the enhancement of tumor artery embolization by coagulation activation. After supra-selective infusion into the tumor vessels, Pt-P@PND nanogels performed efficient embolization of tumor arteries by sol-gel transition at body temperature. Meanwhile, coagulation cascade was evoked to form blood clots in the peripheral arteries inaccessible to the nanogels by released PolyP. The blood clots-filled hydrogel networks composed of gel and clots showed a denser structure and higher modulus, thereby achieving long-term embolization of all levels of tumor arteries. Pt-P@PND nanogels efficiently inhibited tumor growth and reduced the expression of HIF-1α, VEGF, CD31, and MMP-9 on VX2 tumor-bearing rabbit model. The released Nitro-Pt stimulated the immunogenic cell death of tumor cells, thus enhancing the antitumor immune response to suppress tumor relapse and metastasis post-TACE. It is hoped that Pt-P@PND nanogels can be developed as a promising embolic agent with procoagulant activity for enhancing the antitumor immune response through a combination of embolism, coagulation, and chemotherapy. STATEMENT OF SIGNIFICANCE: Clinical embolic agents, such as Lipiodol and polyvinyl alcohol (PVA) microspheres, are limited by their rapid elimination or larger size, thus lead to incomplete embolization of trans-catheter arterial chemoembolization (TACE). Herein, temperature-sensitive Pt-P@PND nanogels were developed to achieve long-term embolization of all levels of tumor arteries by gel/clot generation. The released Nitro-Pt induced immunogenic cell death in tumor cells, which improved the antitumor immune microenvironment by the maturation of DCs and lymphocytic infiltration. Pt-P@PND nanogels successfully inhibited tumor growth and activated an antitumor immune response to curb the recurrence and metastasis of residual tumor cells both in VX2 tumor-bearing rabbit model and 4T1 tumor-bearing mouse model. These findings suggested that Pt-P@PND could be developed as an ideal embolic agent for clinical TACE treatment.

6.
Colloids Surf B Biointerfaces ; 242: 114083, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39029246

ABSTRACT

Polysaccharides have garnered significant attention as potential nanoparticle carriers for targeted tumor therapy due to their excellent biodegradability and biocompatibility. Polyguluronic acid (PG) is a homogeneous acidic polysaccharide fragment derived from alginate, which is found in brown algae, possesses excellent bioactivities, unique properties. This study explored the immunomodulatory activity of PG and developed PG-based nanogels through modified disulfide bonds and Ca2+ dual crosslinking. We characterized their structure, assessed their drug-loading and release properties, and ultimately validated both the safety of the nanocarrier and the in vitro anti-tumor efficacy of the encapsulated drug. Results indicated that PG significantly enhanced the proliferative activity and phagocytosis of RAW264.7 cells while promoting reactive oxygen species (ROS) production and cytokine secretion. The study identified TLR4 as the primary receptor for PG recognition in RAW264.7 cells. Furthermore, PG-based drug-carrying nanogels were prepared, exhibiting uniform sizes of about 184 nm and demonstrating exceptional encapsulation efficiency (82.15 ± 0.82 %) and drug loading capacity (8.12 ± 0.08 %). In vitro release experiments showed that these nanogels could responsively release drugs under conditions of high glutathione (GSH) reduction, facilitating drug accumulation at tumor sites and enhancing therapeutic efficacy. This research not only expands the application of PG in drug delivery systems but also provides valuable insights into leveraging natural immunomodulatory polysaccharides as carriers for targeted drug delivery.

7.
J Control Release ; 372: 874-884, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38977133

ABSTRACT

Dexamethasone (DEX) has been demonstrated to inhibit the inflammatory corneal neovascularization (CNV). However, the therapeutic efficacy of DEX is limited by the poor bioavailability of conventional eye drops and the increased risk of hormonal glaucoma and cataract associated with prolonged and frequent usage. To address these limitations, we have developed a novel DEX-loaded, reactive oxygen species (ROS)-responsive, controlled-release nanogel, termed DEX@INHANGs. This advanced nanogel system is constructed by the formation of supramolecular host-guest complexes by cyclodextrin (CD) and adamantane (ADA) as a cross-linking force. The introduction of the ROS-responsive material, thioketal (TK), ensures the controlled release of DEX in response to oxidative stress, a characteristic of CNV. Furthermore, the nanogel's prolonged retention on the corneal surface for over 8 h is achieved through covalent binding of the integrin ß1 fusion protein, which enhances its bioavailability. Cytotoxicity assays demonstrated that DEX@INHANGs was not notably toxic to human corneal epithelial cells (HCECs). Furthermore, DEX@INHANGs has been demonstrated to effectively inhibit angiogenesis in vitro. In a rabbit model with chemically burned eyes, the once-daily topical application of DEX@INHANGs was observed to effectively suppress CNV. These results collectively indicate that the nanomedicine formulation of DEX@INHANGs may offer a promising treatment option for CNV, offering significant advantages such as reduced dosing frequency and enhanced patient compliance.


Subject(s)
Corneal Neovascularization , Dexamethasone , Reactive Oxygen Species , Animals , Rabbits , Corneal Neovascularization/drug therapy , Dexamethasone/administration & dosage , Dexamethasone/pharmacokinetics , Humans , Reactive Oxygen Species/metabolism , Nanogels/chemistry , Delayed-Action Preparations , Cornea/metabolism , Cornea/drug effects , Male , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/pharmacokinetics , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Cell Line , Polyethylene Glycols/chemistry , Polyethylene Glycols/administration & dosage , Administration, Ophthalmic , Adamantane/administration & dosage , Adamantane/analogs & derivatives , Cyclodextrins/chemistry , Anti-Inflammatory Agents/administration & dosage , Polyethyleneimine/chemistry , Polyethyleneimine/administration & dosage , Drug Liberation
8.
Bioprocess Biosyst Eng ; 47(8): 1409-1431, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38995363

ABSTRACT

This research describes the eco-friendly green synthesis of silver nanoparticles employing Pongamia pinnata seed extracts loaded with nanogel formulations (AgNPs CUD NG) to improve the retention, accumulation, and the penetration of AgNPs into the epidermal layer of psoriasis. AgNPs were synthesized using the Box-Behnken design. Optimized AgNPs and AgNPs CUD NG were physico-chemically evaluated using UV-vis spectroscopy, SEM, FT-IR, PXRD, viscosity, spreadability, and retention studies. It was also functionally assessed using an imiquimod-induced rat model. The entrapment efficiency of AgNPs revealed ~ 79.35%. Physico-chemical parameters announced the formation of AgNPs via surface plasmon resonance and interaction between O-H, C = O, and amide I carbonyl group of protein extract and AgNO3. Optimized AgNPs showed spherical NPs ~ 116 nm with better physical stability and suitability for transdermal applications. AgNPs CUD NG revealed non-Newtonian, higher spreadability, and better extrudability, indicating its suitability for a transdermal route. AgNPs CUD NG enhanced the retention of AgNPs on the psoriatic skin compared to normal skin. Optimized formulations exhibit no irritation by the end of 72 h, indicating formulation safety. AgNPs CUD NG at a dose of 1 FTU showed significant recovery from psoriasis with a PASI score of ~ 0.8 compared to NG base and marketed formulations. Results indicated that seed extract-assisted AgNPs in association with CUD-based NG formulations could be a promising nanocarrier for psoriasis and other skin disorders.


Subject(s)
Green Chemistry Technology , Metal Nanoparticles , Millettia , Nanogels , Plant Extracts , Psoriasis , Seeds , Silver , Silver/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Animals , Seeds/chemistry , Rats , Psoriasis/drug therapy , Millettia/chemistry , Nanogels/chemistry , Rats, Wistar , Polyethylene Glycols , Polyethyleneimine
9.
Sci Rep ; 14(1): 15095, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956125

ABSTRACT

Nanogels offer hope for precise drug delivery, while addressing drug delivery hurdles is vital for effective prostate cancer (PCa) management. We developed an injectable elastin nanogels (ENG) for efficient drug delivery system to overcome castration-resistant prostate cancer (CRPC) by delivering Decursin, a small molecule inhibitor that blocks Wnt/ßcatenin pathways for PCa. The ENG exhibited favourable characteristics such as biocompatibility, flexibility, and low toxicity. In this study, size, shape, surface charge, chemical composition, thermal stability, and other properties of ENG were used to confirm the successful synthesis and incorporation of Decursin (DEC) into elastin nanogels (ENG) for prostate cancer therapy. In vitro studies demonstrated sustained release of DEC from the ENG over 120 h, with a pH-dependent release pattern. DU145 cell line induces moderate cytotoxicity of DEC-ENG indicates that nanomedicine has an impact on cell viability and helps strike a balance between therapeutics efficacy and safety while the EPR effect enables targeted drug delivery to prostate tumor sites compared to free DEC. Morphological analysis further supported the effectiveness of DEC-ENG in inducing cell death. Overall, these findings highlight the promising role of ENG-encapsulated decursin as a targeted drug delivery system for CRPC.


Subject(s)
Elastin , Nanogels , Prostatic Neoplasms, Castration-Resistant , Male , Elastin/chemistry , Humans , Cell Line, Tumor , Nanogels/chemistry , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Drug Delivery Systems , Cell Survival/drug effects , Drug Liberation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Benzopyrans , Butyrates
10.
Gels ; 10(7)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39057474

ABSTRACT

An electrochemical sensor sensitive to coenzyme A (CoA) was designed using a CoA-responsive polyallylamine-manganese oxide-polymer dot nanogel coated on the electrode surface to detect various genetic models of osteoarthritis (OA). The CoA-responsive nanogel sensor responded to the abundance of CoA in OA, causing the breakage of MnO2 in the nanogel, thereby changing the electroconductivity and fluorescence of the sensor. The CoA-responsive nanogel sensor was capable of detecting CoA depending on the treatment time and distinguishing the response towards different OA genetic models that contained different levels of CoA (wild type/WT, NudT7 knockout/N7KO, and Acot12 knockout/A12KO). The WT, N7KO, and A12KO had distinct resistances, which further increased as the incubation time were changed from 12 h (R12h = 2.11, 2.40, and 2.68 MΩ, respectively) to 24 h (R24h = 2.27, 2.59, and 2.92 MΩ, respectively) compared to the sensor without treatment (Rcontrol = 1.63 MΩ). To simplify its application, the nanogel sensor was combined with a wireless monitoring device to allow the sensing data to be directly transmitted to a smartphone. Furthermore, OA-indicated anabolic (Acan) and catabolic (Adamts5) factor transcription levels in chondrocytes provided evidence regarding CoA and nanogel interactions. Thus, this sensor offers potential usage in simple and sensitive OA diagnostics.

11.
Int J Biol Macromol ; 274(Pt 2): 133472, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942410

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder marked by cognitive impairment and memory loss. In this study, AD was experimentally induced in rats using aluminum chloride (AlCl3) and D-galactose (D-gal). Fisetin (Fis), a natural compound with antioxidant and anti-inflammatory properties, has potential for neurodegeneration management, but its low bioavailability limits clinical applications. To address this, we synthesized and characterized Pluronic-2-Acrylamido-2-methylpropane sulfonic acid (PLUR-PAMPS) nanogels using gamma radiation and successfully loaded Fis onto them (Fis-PLUR-PAMPS). The optimal formulation exhibited minimal particle size, a highly acceptable polydispersity index, and the highest zeta-potential, enhancing stability and solubilization efficiency. Our goal was to improve Fis's bioavailability and assess its efficacy against AlCl3/D-gal-induced AD. Male albino Wistar rats were pre-treated orally with Fis (40 mg/kg) or Fis-PLUR-PAMPS for seven days, followed by a seven-day intraperitoneal injection of AlCl3 and D-gal. Behavioral assessments, histopathological analysis, and biochemical evaluation of markers related to AD pathology were conducted. Results demonstrated that Fis-PLUR-PAMPS effectively mitigated cognitive impairments and neurodegenerative signs induced by AlCl3/D-gal. These findings suggest that Fis-PLUR-PAMPS nanogels enhance Fis's bioavailability and therapeutic efficacy, offering a promising approach for AD management.


Subject(s)
Alzheimer Disease , Apoptosis , Disease Models, Animal , Flavonols , Nanogels , Animals , Alzheimer Disease/drug therapy , Rats , Male , Flavonols/pharmacology , Flavonols/chemistry , Apoptosis/drug effects , Nanogels/chemistry , Poloxamer/chemistry , Rats, Wistar , Cognitive Dysfunction/drug therapy , Aluminum Chloride , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/chemical synthesis , Drug Carriers/chemistry , Galactose/chemistry
12.
ACS Nano ; 18(24): 15517-15528, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836363

ABSTRACT

Disseminated intravascular coagulation (DIC) is a pathologic state that follows systemic injury and other diseases. Often a complication of sepsis or trauma, DIC causes coagulopathy associated with paradoxical thrombosis and hemorrhage. DIC upregulates the thrombotic pathways while simultaneously downregulating the fibrinolytic pathways that cause excessive fibrin deposition, microcirculatory thrombosis, multiorgan dysfunction, and consumptive coagulopathy with excessive bleeding. Given these opposing disease phenotypes, DIC management is challenging and includes treating the underlying disease and managing the coagulopathy. Currently, no therapies are approved for DIC. We have developed clot-targeted therapeutics that inhibit clot polymerization and activate clot fibrinolysis to manage DIC. We hypothesize that delivering both an anticoagulant and a fibrinolytic agent directly to clots will inhibit active clot polymerization while also breaking up pre-existing clots; therefore, reversing consumptive coagulopathy and restoring hemostatic balance. To test this hypothesis, we single- and dual-loaded fibrin-specific nanogels (FSNs) with antithrombinIII (ATIII) and/or tissue plasminogen activator (tPA) and evaluated their clot preventing and clot lysing abilities in vitro and in a rodent model of DIC. In vivo, single-loaded ATIII-FSNs decreased fibrin deposits in DIC organs and reduced blood loss when DIC rodents were injured. We also observed that the addition of tPA in dual-loaded ATIII-tPA-FSNs intensified the antithrombotic and fibrinolytic mechanisms, which proved advantageous for clot lysis and restoring platelet counts. However, the addition of tPA may have hindered wound healing capabilities when an injury was introduced. Our data supports the benefits of delivering both anticoagulants and fibrinolytic agents directly to clots to reduce the fibrin load and restore hemostatic balance in DIC.


Subject(s)
Disseminated Intravascular Coagulation , Tissue Plasminogen Activator , Tissue Plasminogen Activator/pharmacology , Tissue Plasminogen Activator/administration & dosage , Tissue Plasminogen Activator/chemistry , Animals , Disseminated Intravascular Coagulation/drug therapy , Nanogels/chemistry , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/administration & dosage , Humans , Rats , Fibrin/metabolism , Fibrin/chemistry , Antithrombins/pharmacology , Antithrombins/chemistry , Antithrombins/administration & dosage , Mice , Male , Thrombosis/drug therapy , Drug Delivery Systems , Blood Coagulation/drug effects
13.
Int J Biol Macromol ; 273(Pt 1): 133065, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866273

ABSTRACT

Despite numerous advantages of liposomes in treating rheumatoid arthritis (RA), the in vivo stability remains a critical issue. Current strategies for improving liposomal stability often compromise their original properties. Herein, we designed an alginate nanogel-embedded liposome aiming at retaining those inherent advantages while enhancing their in vivo stability. The introduction of alginate network within the liposome core can provide mechanical support and controlled drug release without affecting the surface properties. Results showed the cross-linking of alginate network within the inner core of liposomes elevated the particle rigidity to 3 times, allowing for improved stability and decreased drug leakage. Moreover, this nanogel-embedded liposome with optimized elasticity obviously facilitated cellular uptake in inflammatory macrophages. When entering blood circulation, increased rigidity altered the composition of protein corona on the particle surface, resulting in 2-fold increase in circulation time and improved drug accumulation in arthritic joints. When anti-inflammatory chlorogenic acid (CA) was encapsulated into the nanogel network, this CA-loaded nanogel-embedded liposome significantly inhibited ROS production and inflammatory response, ultimately achieved superior therapeutic outcome in arthritic rats. Results demonstrated that this nanogel-embedded liposomes can essentially retain the inherent advantages and overcome the drawbacks of liposomes, thereby improving the drug delivery efficiency.


Subject(s)
Alginates , Drug Carriers , Liposomes , Nanogels , Alginates/chemistry , Animals , Liposomes/chemistry , Drug Carriers/chemistry , Rats , Nanogels/chemistry , Mice , Drug Liberation , Drug Delivery Systems , RAW 264.7 Cells , Male , Polyethylene Glycols/chemistry , Arthritis, Experimental/drug therapy
14.
Int J Pharm ; 660: 124310, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38848796

ABSTRACT

Breast cancer has now replaced lung cancer as the most prevalent malignant tumor worldwide, posing a serious health risk to women. We have recently designed a promising option strategy for the treatment of breast cancer. In this work, cyclodextrin metal-organic frameworks with high drug-carrying properties were endo-crosslinked by 3,3'dithiodipropionyl chloride to form cubic phase gel nanoparticles, which were drug-loaded and then coated by MCF-7 cell membranes. After intravenous injection, this multifunctional nanomedicine achieved dramatically homologous targeting co-delivery of honokiol and indocyanine green to the breast tumor. Further, the disulfide bonds in the nanostructures achieved glutathione-responsive drug release, induced tumor cells to produce reactive oxygen species and promoted apoptosis, resulting in tumor necrosis, and at the same time, inhibited Ki67 protein expression, which enhanced photochemotherapy, and resulted in a 94.08 % in vivo tumor suppression rate in transplanted tumor-bearing mice. Thereby, this nanomimetic co-delivery system may have a place in breast cancer therapy due to its simple fabrication process, excellent biocompatibility, efficient targeted delivery of insoluble drugs, and enhanced photochemotherapy.


Subject(s)
Biphenyl Compounds , Breast Neoplasms , Drug Liberation , Glutathione , Indocyanine Green , Lignans , Metal-Organic Frameworks , Photochemotherapy , Indocyanine Green/administration & dosage , Indocyanine Green/chemistry , Animals , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , MCF-7 Cells , Photochemotherapy/methods , Biphenyl Compounds/administration & dosage , Biphenyl Compounds/chemistry , Metal-Organic Frameworks/chemistry , Glutathione/metabolism , Lignans/administration & dosage , Lignans/chemistry , Lignans/pharmacology , Mice, Inbred BALB C , Cyclodextrins/chemistry , Mice , Apoptosis/drug effects , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Drug Delivery Systems/methods , Reactive Oxygen Species/metabolism , Mice, Nude , Drug Carriers/chemistry , Allyl Compounds , Phenols
15.
Curr Med Chem ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38847253

ABSTRACT

Cancer therapy has seen significant advancements in recent years, with the emergence of RNA interference (RNAi) as a promising strategy for targeted gene silencing. However, the successful delivery of small interfering RNA (siRNA) to cancer cells remains a challenge. Chitosan nanoparticles (CSNPs) can be derived from the natural polysaccharide chitin sources. CSNPs have gained considerable attention as a potential solution to encapsulate siRNA due to their biocompatibility, and biodegradability. This article explores the application of CSNPs for siRNA delivery in cancer therapy. Firstly, it discusses the significance of siRNA in gene regulation and highlights its potential to selectively silence oncogenes or tumor suppressor genes, making it a powerful tool in cancer treatment. The obstacles associated with effective siRNA delivery, such as degradation by nucleases and poor cellular uptake, are also addressed. Next, the focus shifts to the unique properties of CSNPs that make them attractive for siRNA delivery. The discussion revolves around how chitosan can interact electrostatically with siRNA to create stable complexes, as well as the controlled release of siRNA from CSNPs. This controlled release ensures sustained and efficient delivery of siRNA to cancer cells, maximizing therapeutic efficacy. Moreover, the biocompatibility and biodegradability of CSNPs make them ideal for in vivo applications. Different approaches to modifying and functionalizing surfaces are investigated by emphasizing on enhancement of stability and targeting abilities of CSNPs in cancer treatment. Registered trials for CS and siRNA are summarized, along with ongoing investigations into various applications of chitosan in medical treatments. Overall, the application of CSNPs in siRNA delivery for cancer therapy holds great promise and offers a potential solution to overcome the challenges associated with RNAi-based treatments. Continued advancements in this field will likely lead to improved targeted therapies with reduced side effects, ultimately benefitting cancer patients worldwide.

16.
Acta Pharm Sin B ; 14(6): 2669-2684, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828156

ABSTRACT

Solid oral controlled release formulations feature numerous clinical advantages for drug candidates with adequate solubility and dissolution rate. However, most new chemical entities exhibit poor water solubility, and hence are exempt from such benefits. Although combining drug amorphization with controlled release formulation is promising to elevate drug solubility, like other supersaturating systems, the problem of drug recrystallization has yet to be resolved, particularly within the dosage form. Here, we explored the potential of an emerging, non-leachable terpolymer nanoparticle (TPN) pore former as an internal recrystallization inhibitor within controlled release amorphous solid dispersion (CRASD) beads comprising a poorly soluble drug (celecoxib) reservoir and insoluble polymer (ethylcellulose) membrane. Compared to conventional pore former, polyvinylpyrrolidone (PVP), TPN-containing membranes exhibited superior structural integrity, less crystal formation at the CRASD bead surface, and greater extent of celecoxib release. All-atom molecular dynamics analyses revealed that in the presence of TPN, intra-molecular bonding, crystal formation tendency, diffusion coefficient, and molecular flexibility of celecoxib were reduced, while intermolecular H-bonding was increased as compared to PVP. This work suggests that selection of a pore former that promotes prolonged molecular separation within a nanoporous controlled release membrane structure may serve as an effective strategy to enhance amorphicity preservation inside CRASD.

17.
J Nanobiotechnology ; 22(1): 326, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858673

ABSTRACT

BACKGROUND: Properly designed second near-infrared (NIR-II) nanoplatform that is responsive tumor microenvironment can intelligently distinguish between normal and cancerous tissues to achieve better targeting efficiency. Conventional photoacoustic nanoprobes are always "on", and tumor microenvironment-responsive nanoprobe can minimize the influence of endogenous chromophore background signals. Therefore, the development of nanoprobe that can respond to internal tumor microenvironment and external stimulus shows great application potential for the photoacoustic diagnosis of tumor. RESULTS: In this work, a low-pH-triggered thermal-responsive volume phase transition nanogel gold nanorod@poly(n-isopropylacrylamide)-vinyl acetic acid (AuNR@PNIPAM-VAA) was constructed for photoacoustic detection of tumor. Via an external near-infrared photothermal switch, the absorption of AuNR@PNIPAM-VAA nanogel in the tumor microenvironment can be dynamically regulated, so that AuNR@PNIPAM-VAA nanogel produces switchable photoacoustic signals in the NIR-II window for tumor-specific enhanced photoacoustic imaging. In vitro results show that at pH 5.8, the absorption and photoacoustic signal amplitude of AuNR@PNIPAM-VAA nanogel in NIR-II increases up obviously after photothermal modulating, while they remain slightly change at pH 7.4. Quantitative calculation presents that photoacoustic signal amplitude of AuNR@PNIPAM-VAA nanogel at 1064 nm has ~ 1.6 folds enhancement as temperature increases from 37.5 °C to 45 °C in simulative tumor microenvironment. In vivo results show that the prepared AuNR@PNIPAM-VAA nanogel can achieve enhanced NIR-II photoacoustic imaging for selective tumor detection through dynamically responding to thermal field, which can be precisely controlled by external light. CONCLUSIONS: This work will offer a viable strategy for the tumor-specific photoacoustic imaging using NIR light to regulate the thermal field and target the low pH tumor microenvironment, which is expected to realize accurate and dynamic monitoring of tumor diagnosis and treatment.


Subject(s)
Acrylic Resins , Gold , Nanogels , Photoacoustic Techniques , Tumor Microenvironment , Photoacoustic Techniques/methods , Animals , Gold/chemistry , Mice , Hydrogen-Ion Concentration , Acrylic Resins/chemistry , Nanogels/chemistry , Humans , Cell Line, Tumor , Polyethylene Glycols/chemistry , Nanotubes/chemistry , Mice, Inbred BALB C , Neoplasms/diagnostic imaging , Mice, Nude , Infrared Rays , Female , Polyethyleneimine/chemistry
18.
Matrix Biol Plus ; 23: 100150, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38882395

ABSTRACT

Cardiac fibrosis is characterized by excessive accumulation and deposition of ECM proteins. Cardiac fibrosis is commonly implicated in a variety of cardiovascular diseases, including post-myocardial infarction (MI). We have previously developed a dual-delivery nanogel therapeutic to deliver tissue plasminogen activator (tPA) and Y-27632 (a ROCK inhibitor) to address MI-associated coronary artery occlusion and downregulate cell-contractility mediated fibrotic responses. Initial in vitro studies were conducted on glass substrates. The study presented here employs the use of polyacrylamide (PA) gels and microgel thin films to mimic healthy and fibrotic cardiac tissue mechanics. Soft and stiff polyacrylamide substrates or high and low loss tangent microgel thin films were utilized to examine the influence of cell-substrate interactions on dual-loaded nanogel therapeutic efficacy. In the presence of Y-27632 containing nanogels, a reduction of fibrotic marker expression was noted on traditional PA gels mimicking healthy and fibrotic cardiac tissue mechanics. These findings differed on more physiologically relevant microgel thin films, where early treatment with the ROCK inhibitor intensified the fibrotic related responses.

19.
Food Sci Nutr ; 12(6): 4385-4398, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873443

ABSTRACT

The current study aims to co-encapsulate Shirazi thyme (Zataria multiflora) essential oil (ZEO) and nisin into chitosan nanogel as an antimicrobial and antioxidant agent to enhance the shelf-life of cheese. Chitosan-caffeic acid (CS-CA) nanogel was produced to co-encapsulate Zataria multiflora essential oil and nisin. This nanogel was characterized by dynamic light scattering (DLS), Fourier Transform Infrared (FTIR) spectroscopic analysis, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) images. The effect of free (TFZN) and encapsulated ZEO-nisin in chitosan nanogel (TCZN) on the chemical and microbiological properties of Iranian white cheese was assessed. The particle size, polydispersity index value (PDI), zeta potential, antioxidant activity, and encapsulation efficiency of the optimal chitosan-ZEO-nisin nanogel were 421.6 nm, 0.343, 34.0 mV, 71.06%-82.69%, and 41.3 ± 0.5%, 0.79 ± 0.06 mg/mL. respectively. FTIR and XRD approved ZEO and nisin entrapment within chitosan nanogel. The chitosan nanogel showed a highly porous surface with an irregular shape. The bioactive compounds of ZEO and nisin decreased the pH changes in cheese. On the 60th day of storage, the acidity of treated samples was significantly lower than that of control. Although the lowest anisidine index value was observed in samples treated with sodium nitrate (NaNO3) (TS), there was no significant difference between this sample and TCZN. The lowest microbial population was observed in TCZN and TS. After 60 days of ripening, Coliforms were not detected in the culture medium of TCZN and TS. The results can contribute to the development of a natural preservative with the potential for application in the dairy industry.

20.
Saudi Pharm J ; 32(7): 102125, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38933714

ABSTRACT

Objective: Skin cancer refers to the pathological condition characterized by the proliferation of atypical skin cells in an uncontrolled manner. Plant-based products such as bixin although show promising anticancer properties, but maintaining their stability in a formulation is a difficult task. The objective of the research is to formulate a silver nanoparticle gel preparation of bixin and evaluate its anticancer properties. Methods: The extract from Bixa orellana seed was prepared by hot extraction technique to isolate the active ingredient, bixin. A green synthesis approach was utilized for preparing the silver nanoparticle gel of bixin (BOAgNPs). Characterization of silver nanoparticles was done using FTIR, scanning electron microscopy, compatibility study, homogeneity testing, pH evaluation, and drug content determination. The in-vitro anticancer activity was performed using cell lines (B16F10) and in-vivo by chemical carcinogen (7,12-dimethylbenz (a) anthracene) in mice. Results: The BOAgNPs-loaded topical gel was found to be homogeneous (clear orange color) and pH-compatible (pH ≈ 6.66) with the skin. The characterization studies indicated the presence of all functional groups in the formulation. An optimized batch of bixin-nano gel showed about 60% inhibitory effects on B16F10 cell lines (in-vitro activity) when equated with a reference drug, 5-fluorouracil. The in-vivo anticancer study suggested suppression of tumorigenesis and promotion of the healing process with bixin-nano gel application on the skin. Conclusion: The results suggested the promising anticancer property of bixin when formulated in silver nanoparticle gel. The preparation of silver particles nano gel with bixin might provide an effective alternative option for treating skin cancers, provided more research complements the findings of the present study.

SELECTION OF CITATIONS
SEARCH DETAIL