Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.735
Filter
1.
Bull Exp Biol Med ; 177(1): 35-38, 2024 May.
Article in English | MEDLINE | ID: mdl-38954301

ABSTRACT

The features of the participation of Smad3 in the functioning of neural stem cells (NSC), neuronal committed precursors (NCP), and neuroglial elements were studied in vitro. It was found that this intracellular signaling molecule enhances the clonogenic and proliferative activities of NCP and inhibits specialization of neuronal precursors. At the same time, Smad3 does not participate in the realization of the growth potential of NSC. With regard to the secretory function (production of neurotrophic growth factors) of neuroglial cells, the stimulating role of Smad3-mediated signaling was shown. These results indicate the promise of studying the possibility of using Smad3 as a fundamentally new target for neuroregenerative agents.


Subject(s)
Cell Proliferation , Neural Stem Cells , Neuroglia , Smad3 Protein , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Smad3 Protein/metabolism , Smad3 Protein/genetics , Animals , Neuroglia/metabolism , Neuroglia/cytology , Cell Proliferation/physiology , Signal Transduction , Cell Differentiation/physiology , Cells, Cultured , Rats , Neurons/metabolism , Neurons/cytology , Mice
2.
Front Immunol ; 15: 1421076, 2024.
Article in English | MEDLINE | ID: mdl-39011039

ABSTRACT

Cognitive impairment is a decline in people's ability to think, learn, and remember, and so forth. Cognitive impairment is a global health challenge that affects the quality of life of thousands of people. The condition covers a wide range from mild cognitive impairment to severe dementia, which includes Alzheimer's disease (AD) and Parkinson's disease (PD), among others. While the etiology of cognitive impairment is diverse, the role of chemokines is increasingly evident, especially in the presence of chronic inflammation and neuroinflammation. Although inflammatory chemokines have been linked to cognitive impairment, cognitive impairment is usually multifactorial. Researchers are exploring the role of chemokines and other inflammatory mediators in cognitive dysfunction and trying to develop therapeutic strategies to mitigate their effects. The pathogenesis of cognitive disorders is very complex, their underlying causative mechanisms have not been clarified, and their treatment is always one of the challenges in the field of medicine. Therefore, exploring its pathogenesis and treatment has important socioeconomic value. Chemokines are a growing family of structurally and functionally related small (8-10 kDa) proteins, and there is growing evidence that pro-inflammatory chemokines are associated with many neurobiological processes that may be relevant to neurological disorders beyond their classical chemotactic function and play a crucial role in the pathogenesis and progression of cognitive disorders. In this paper, we review the roles and regulatory mechanisms of pro-inflammatory chemokines (CCL2, CCL3, CCL4, CCL5, CCL11, CCL20, and CXCL8) in cognitive impairment. We also discuss the intrinsic relationship between the two, hoping to provide some valuable references for the treatment of cognitive impairment.


Subject(s)
Cell Communication , Chemokines , Cognitive Dysfunction , Humans , Cognitive Dysfunction/etiology , Cognitive Dysfunction/immunology , Cognitive Dysfunction/metabolism , Chemokines/metabolism , Animals , Inflammation/immunology , Inflammation/metabolism , Inflammation Mediators/metabolism
3.
Arch Med Res ; 55(6): 103039, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981341

ABSTRACT

Aging is characterized by the decline in many of the individual's capabilities. It has been recognized that the brain undergoes structural and functional changes during aging that are occasionally associated with the development of neurodegenerative diseases. In this sense, altered glutamatergic neurotransmission, which involves the release, binding, reuptake, and degradation of glutamate (Glu) in the brain, has been widely studied in physiological and pathophysiological aging. In particular, changes in glutamatergic neurotransmission are exacerbated during neurodegenerative diseases and are associated with cognitive impairment, characterized by difficulties in memory, learning, concentration, and decision-making. Thus, in the present manuscript, we aim to highlight the relevance of glutamatergic neurotransmission during cognitive impairment to develop novel strategies to prevent, ameliorate, or delay cognitive decline. To achieve this goal, we provide a comprehensive review of the changes reported in glutamatergic neurotransmission components, such as Glu transporters and receptors during physiological aging and in the most studied neurodegenerative diseases. Finally, we describe the current therapeutic strategies developed to target glutamatergic neurotransmission.

4.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000191

ABSTRACT

Alzheimer's disease is a pathology characterized by the progressive loss of neuronal connections, which leads to gray matter atrophy in the brain. Alzheimer's disease is the most prevalent type of dementia and has been classified into two types, early onset, which has been associated with genetic factors, and late onset, which has been associated with environmental factors. One of the greatest challenges regarding Alzheimer's disease is the high economic cost involved, which is why the number of studies aimed at prevention and treatment have increased. One possible approach is the use of resistance exercise training, given that it has been shown to have neuroprotective effects associated with Alzheimer's disease, such as increasing cortical and hippocampal volume, improving neuroplasticity, and promoting cognitive function throughout the life cycle. However, how resistance exercise training specifically prevents or ameliorates Alzheimer's disease has not been fully characterized. Therefore, the aim of this review was to identify the molecular basis by which resistance exercise training could prevent or treat Alzheimer's disease.


Subject(s)
Alzheimer Disease , Resistance Training , Alzheimer Disease/prevention & control , Alzheimer Disease/therapy , Alzheimer Disease/pathology , Humans , Animals
5.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000492

ABSTRACT

Oxidative stress can damage neuronal cells, greatly contributing to neurodegenerative diseases (NDs). In this study, the protective activity of arzanol, a natural prenylated α-pyrone-phloroglucinol heterodimer, was evaluated against the H2O2-induced oxidative damage in trans-retinoic acid-differentiated (neuron-like) human SH-SY5Y cells, widely used as a neuronal cell model of neurological disorders. The pre-incubation (for 2 and 24 h) with arzanol (5, 10, and 25 µM) significantly preserved differentiated SH-SY5Y cells from cytotoxicity (MTT assay) and morphological changes induced by 0.25 and 0.5 mM H2O2. Arzanol reduced the generation of reactive oxygen species (ROS) induced by 2 h oxidation with H2O2 0.5 mM, established by 2',7'-dichlorodihydrofluorescein diacetate assay. The 2 h incubation of differentiated SH-SY5Y cells with H2O2 determined a significant increase in the number of apoptotic cells versus control cells, evaluated by propidium iodide fluorescence assay (red fluorescence) and NucView® 488 assay (green fluorescence). Arzanol pre-treatment (2 h) exerted a noteworthy significant protective effect against apoptosis. In addition, arzanol was tested, for comparison, in undifferentiated SH-SY5Y cells for cytotoxicity and its ability to protect against H2O2-induced oxidative stress. Furthermore, the PubChem database and freely accessible web tools SwissADME and pkCSM-pharmacokinetics were used to assess the physicochemical and pharmacokinetic properties of arzanol. Our results qualify arzanol as an antioxidant agent with potential neuroprotective effects against neuronal oxidative stress implicated in NDs.


Subject(s)
Apoptosis , Cell Differentiation , Hydrogen Peroxide , Oxidative Stress , Reactive Oxygen Species , Humans , Oxidative Stress/drug effects , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/pharmacology , Cell Differentiation/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Neuroprotective Agents/pharmacology , Neurons/drug effects , Neurons/metabolism , Antioxidants/pharmacology , Cell Survival/drug effects , Pyrones/pharmacology
6.
Zool Res ; 45(4): 877-909, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39004865

ABSTRACT

The tree shrew ( Tupaia belangeri) has long been proposed as a suitable alternative to non-human primates (NHPs) in biomedical and laboratory research due to its close evolutionary relationship with primates. In recent years, significant advances have facilitated tree shrew studies, including the determination of the tree shrew genome, genetic manipulation using spermatogonial stem cells, viral vector-mediated gene delivery, and mapping of the tree shrew brain atlas. However, the limited availability of tree shrews globally remains a substantial challenge in the field. Additionally, determining the key questions best answered using tree shrews constitutes another difficulty. Tree shrew models have historically been used to study hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, myopia, and psychosocial stress-induced depression, with more recent studies focusing on developing animal models for infectious and neurodegenerative diseases. Despite these efforts, the impact of tree shrew models has not yet matched that of rodent or NHP models in biomedical research. This review summarizes the prominent advancements in tree shrew research and reflects on the key biological questions addressed using this model. We emphasize that intensive dedication and robust international collaboration are essential for achieving breakthroughs in tree shrew studies. The use of tree shrews as a unique resource is expected to gain considerable attention with the application of advanced techniques and the development of viable animal models, meeting the increasing demands of life science and biomedical research.


Subject(s)
Biomedical Research , Animals , Biomedical Research/trends , Tupaiidae , Disease Models, Animal , Tupaia , Models, Animal
7.
Eur J Neurol ; : e16388, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946703

ABSTRACT

BACKGROUND AND PURPOSE: Parkinson's disease (PD) is an age-related condition characterized by substantial phenotypic variability. Consequently, pathways and proteins involved in biological aging, such as the central aging pathway comprising insulin-like growth factor 1-α-Klotho-sirtuin 1-forkhead box O3-peroxisome proliferator-activated receptor γ, may potentially influence disease progression. METHODS: Cerebrospinal fluid (CSF) levels of α-Klotho in 471 PD patients were examined. Of the 471 patients, 96 carried a GBA1 variant (PD GBA1), whilst the 375 non-carriers were classified as PD wild-type (PD WT). Each patient was stratified into a CSF α-Klotho tertile group based on the individual level. Kaplan-Meier survival curves and Cox regression analysis stratified by tertile groups were conducted. These longitudinal data were available for 255 patients. Follow-up times reached from 8.4 to 12.4 years. The stratification into PD WT and PD GBA1 was undertaken to evaluate potential continuum patterns, particularly in relation to CSF levels. RESULTS: Higher CSF levels of α-Klotho were associated with a significant later onset of cognitive impairment. Elevated levels of α-Klotho in CSF were linked to higher Montreal Cognitive Assessment scores in male PD patients with GBA1 mutations. CONCLUSIONS: Our results indicate that higher CSF levels of α-Klotho are associated with a delayed cognitive decline in PD. Notably, this correlation is more prominently observed in PD patients with GBA1 mutations, potentially reflecting the accelerated biological aging profile characteristic of individuals harboring GBA1 variants.

8.
BJPsych Bull ; : 1-7, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949259

ABSTRACT

AIMS AND METHOD: Dementia in-patient units (DIU) are mental health wards that care for people living with dementia (PLWD) whose symptoms are causing severe distress or potential risk. DIUs look after some of the most vulnerable and unwell people in society, yet they are environments that are underresearched: a recent systematic review revealed only 36 articles worldwide relating to DIUs. To better understand research priorities in DIUs, we undertook a two-round online Delphi survey of PLWD with experience of DIUs, their carers and professionals who work in DIUs. RESULTS: Ten research priorities were described and ranked. The top three were how to use non-pharmacological techniques to manage non-cognitive symptoms of dementia, supporting families and better understanding of how to discharge PLWD safely and healthily. CLINICAL IMPLICATIONS: This is the first Delphi consensus to describe DIU research priorities. This paper will help researchers focus on the areas that matter most to people who use DIUs.

9.
Cureus ; 16(5): e61335, 2024 May.
Article in English | MEDLINE | ID: mdl-38947709

ABSTRACT

Alzheimer's and Parkinson's diseases are among the most prevalent neurodegenerative conditions affecting aging populations globally, presenting significant challenges in early diagnosis and management. This narrative review explores the pivotal role of advanced neuroimaging techniques in detecting and managing these diseases at early stages, potentially slowing their progression through timely interventions. Recent advancements in MRI, such as ultra-high-field systems and functional MRI, have enhanced the sensitivity for detecting subtle structural and functional changes. Additionally, the development of novel amyloid-beta tracers and other emerging modalities like optical imaging and transcranial ultrasonography have improved the diagnostic accuracy and capability of existing methods. This review highlights the clinical applications of these technologies in Alzheimer's and Parkinson's diseases, where they have shown improved diagnostic performance, enabling earlier intervention and better prognostic outcomes. Moreover, the integration of artificial intelligence (AI) and longitudinal research is emerging as a promising enhancement to refine early detection strategies further. However, this review also addresses the technical, ethical, and accessibility challenges in the field, advocating for the more extensive use of advanced imaging technologies to overcome these barriers. Finally, we emphasize the need for a holistic approach that incorporates both neurological and psychiatric perspectives, which is crucial for optimizing patient care and outcomes in the management of neurodegenerative diseases.

10.
Microsc Res Tech ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988205

ABSTRACT

Three-dimensional (3D) spheroid models aim to bridge the gap between traditional two-dimensional (2D) cultures and the complex in vivo tissue environment. These models, created by self-clustering cells to mimic a 3D environment with surrounding extracellular framework, provide a valuable research tool. The NSC-34 cell line, generated by fusing mouse spinal cord motor neurons and neuroblastoma cells, is essential for studying neurodegenerative diseases like amyotrophic lateral sclerosis (ALS), where abnormal protein accumulation, such as TAR-DNA-binding protein 43 (TDP-43), occurs in affected nerve cells. However, NSC-34 behavior in a 3D context remains underexplored, and this study represents the first attempt to create a 3D model to determine its suitability for studying pathology. We generated NSC-34 spheroids using a nonadhesive hydrogel-based template and characterized them for 6 days. Light microscopy revealed that NSC-34 cells in 3D maintained high viability, a distinct round shape, and forming stable membrane connections. Scanning electron microscopy identified multiple tunnel-like structures, while ultrastructural analysis highlighted nuclear bending and mitochondria alterations. Using inducible GFP-TDP-43-expressing NSC-34 spheroids, we explored whether 3D structure affected TDP-43 expression, localization, and aggregation. Spheroids displayed nuclear GFP-TDP-43 expression, albeit at a reduced level compared with 2D cultures and generated both TDP-35 fragments and TDP-43 aggregates. This study sheds light on the distinctive behavior of NSC-34 in 3D culture, suggesting caution in the use of the 3D model for ALS or TDP-43 pathologies. Yet, it underscores the spheroids' potential for investigating fundamental cellular mechanisms, cell adaptation in a 3D context, future bioreactor applications, and drug penetration studies. RESEARCH HIGHLIGHTS: 3D spheroid generation: NSC-34 spheroids, developed using a hydrogel-based template, showed high viability and distinct shapes for 6 days. Structural features: advanced microscopy identified tunnel-like structures and nuclear and mitochondrial changes in the spheroids. Protein dynamics: the study observed how 3D structures impact TDP-43 behavior, with altered expression but similar aggregation patterns to 2D cultures. Research implications: this study reveals the unique behavior of NSC-34 in 3D culture, suggests a careful approach to use this model for ALS or TDP-43 pathologies, and highlights its potential in cellular mechanism research and drug testing applications.

11.
Front Aging Neurosci ; 16: 1425784, 2024.
Article in English | MEDLINE | ID: mdl-38993694

ABSTRACT

Background: Currently, the impact of drug therapies on neurodegenerative conditions is limited. Therefore, there is a strong clinical interest in non-pharmacological interventions aimed at preserving functionality, delaying disease progression, reducing disability, and improving quality of life for both patients and their caregivers. This longitudinal multicenter Randomized Controlled Trial (RCT) applies three innovative cognitive telerehabilitation (TR) methods to evaluate their impact on brain functional connectivity reconfigurations and on the overall level of cognitive and everyday functions. Methods: We will include 110 participants with mild cognitive impairment (MCI). Fifty-five participants will be randomly assigned to the intervention group who will receive cognitive TR via three approaches, namely: (a) Network-based Cognitive Training (NBCT), (b) Home-based Cognitive Rehabilitation (HomeCoRe), or (c) Semantic Memory Rehabilitation Training (SMRT). The control group (n = 55) will receive an unstructured home-based cognitive stimulation. The rehabilitative program will last either 4 (NBTC) or 6 weeks (HomeCoRe and SMRT), and the control condition will be adapted to each TR intervention. The effects of TR will be tested in terms of Δ connectivity change, obtained from high-density electroencephalogram (HD-EEG) or functional magnetic resonance imaging at rest (rs-fMRI), acquired before (T0) and after (T1) the intervention. All participants will undergo a comprehensive neuropsychological assessment at four time-points: baseline (T0), within 2 weeks (T1), and after 6 (T2) and 12 months (T3) from the end of TR. Discussion: The results of this RCT will identify a potential association between improvement in performance induced by individual cognitive TR approaches and modulation of resting-state brain connectivity. The knowledge gained with this study might foster the development of novel TR approaches underpinned by established neural mechanisms to be validated and implemented in clinical practice.Clinical trial registration: [https://classic.clinicaltrials.gov/ct2/show/NCT06278818], identifier [NCT06278818].

12.
MedComm (2020) ; 5(7): e638, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39006764

ABSTRACT

The cerebellum is crucial for both motor and nonmotor functions. Alzheimer's disease (AD), alongside other dementias such as vascular dementia (VaD), Lewy body dementia (DLB), and frontotemporal dementia (FTD), as well as other neurodegenerative diseases (NDs) like Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias (SCA), are characterized by specific and non-specific neurodegenerations in central nervous system. Previously, the cerebellum's significance in these conditions was underestimated. However, advancing research has elevated its profile as a critical node in disease pathology. We comprehensively review the existing evidence to elucidate the relationship between cerebellum and the aforementioned diseases. Our findings reveal a growing body of research unequivocally establishing a link between the cerebellum and AD, other forms of dementia, and other NDs, supported by clinical evidence, pathological and biochemical profiles, structural and functional neuroimaging data, and electrophysiological findings. By contrasting cerebellar observations with those from the cerebral cortex and hippocampus, we highlight the cerebellum's distinct role in the disease processes. Furthermore, we also explore the emerging therapeutic potential of targeting cerebellum for the treatment of these diseases. This review underscores the importance of the cerebellum in these diseases, offering new insights into the disease mechanisms and novel therapeutic strategies.

13.
IBRO Neurosci Rep ; 16: 373-394, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39007083

ABSTRACT

Superoxide dismutase (SOD) is a common antioxidant enzyme found majorly in living cells. The main physiological role of SOD is detoxification and maintain the redox balance, acts as a first line of defence against Reactive nitrogen species (RNS), Reactive oxygen species (ROS), and other such potentially hazardous molecules. SOD catalyses the conversion of superoxide anion free radicals (O 2 -.) into molecular oxygen (O 2) and hydrogen peroxide (H 2O 2) in the cells. Superoxide dismutases (SODs) are expressed in neurons and glial cells throughout the CNS both intracellularly and extracellularly. Endogenous oxidative stress (OS) linked with enlarged production of reactive oxygen metabolites (ROMs), inflammation, deregulation of redox balance, mitochondrial dysfunction and bioenergetic crisis are found to be prerequisite for neuronal loss in neurological diseases. Clinical and genetic studies indicate a direct correlation between mutations in SOD gene and neurodegenerative diseases, like Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD), Parkinson's Disease (PD) and Alzheimer's Disease (AD). Therefore, inhibitors of OS are considered as an optimistic approach to prevent neuronal loss. SOD mimetics like Metalloporphyrin Mn (II)-cyclic polyamines, Nitroxides and Mn (III)- Salen complexes are designed and used as therapeutic extensively in the treatment of neurological disorders. SODs and SOD mimetics are promising future therapeutics in the field of various diseases with OS-mediated pathology.

15.
Front Neurol ; 15: 1399126, 2024.
Article in English | MEDLINE | ID: mdl-39011363

ABSTRACT

Introduction: eHealth seems promising in addressing challenges in the provision of care for Huntington's disease (HD) across Europe. By harnessing information and communication technologies, eHealth can partially relocate care from specialized centers to the patients' home, thereby increasing the availability and accessibility of specialty care services beyond regional borders. Previous research on eHealth (development) in HD is however limited, especially when it comes to including eHealth services specifically designed together with HD gene expansion carriers (HDGECs) and their partners to fit their needs and expectations. Methods: This article describes the qualitative human-centered design process and first evaluations of the Huntington Support App prototype: a web-app aimed to support the quality of life (QoL) of HDGECs and their partners in Europe. Prospective end-users, i.e., HDGECs, their partners, and healthcare providers (HCPs), from different countries were involved throughout the development process. Through interviews, we captured people's experiences with the disease, quality of life (QoL), and eHealth. We translated their stories into design directions that were further co-designed and subsequently evaluated with the user groups. Results: The resulting prototype centralizes clear and reliable information on the disease, HD-related news and events, as well as direct contact possibilities with HCPs via an online walk-in hour or by scheduling an appointment. The app's prototype was positively received and rated as (very) appealing, pleasant, easy to use and helpful by both HDGECs and partners. Discussion: By involving end-users in every step, we developed a healthcare app that meets relevant needs of individuals affected by HD and therefore may lead to high adoption and retention rates. As a result, the app provides low-threshold access to reliable information and specialized care for HD in Europe. A description of the Huntington Support App as well as implications for further development of the app's prototype are provided.

16.
Front Mol Neurosci ; 17: 1405415, 2024.
Article in English | MEDLINE | ID: mdl-39011540

ABSTRACT

More than 650 reversible and irreversible post-translational modifications (PTMs) of proteins have been listed so far. Canonical PTMs of proteins consist of the covalent addition of functional or chemical groups on target backbone amino-acids or the cleavage of the protein itself, giving rise to modified proteins with specific properties in terms of stability, solubility, cell distribution, activity, or interactions with other biomolecules. PTMs of protein contribute to cell homeostatic processes, enabling basal cell functions, allowing the cell to respond and adapt to variations of its environment, and globally maintaining the constancy of the milieu interieur (the body's inner environment) to sustain human health. Abnormal protein PTMs are, however, associated with several disease states, such as cancers, metabolic disorders, or neurodegenerative diseases. Abnormal PTMs alter the functional properties of the protein or even cause a loss of protein function. One example of dramatic PTMs concerns the cellular prion protein (PrPC), a GPI-anchored signaling molecule at the plasma membrane, whose irreversible post-translational conformational conversion (PTCC) into pathogenic prions (PrPSc) provokes neurodegeneration. PrPC PTCC into PrPSc is an additional type of PTM that affects the tridimensional structure and physiological function of PrPC and generates a protein conformer with neurotoxic properties. PrPC PTCC into PrPSc in neurons is the first step of a deleterious sequence of events at the root of a group of neurodegenerative disorders affecting both humans (Creutzfeldt-Jakob diseases for the most representative diseases) and animals (scrapie in sheep, bovine spongiform encephalopathy in cow, and chronic wasting disease in elk and deer). There are currently no therapies to block PrPC PTCC into PrPSc and stop neurodegeneration in prion diseases. Here, we review known PrPC PTMs that influence PrPC conversion into PrPSc. We summarized how PrPC PTCC into PrPSc impacts the PrPC interactome at the plasma membrane and the downstream intracellular controlled protein effectors, whose abnormal activation or trafficking caused by altered PTMs promotes neurodegeneration. We discussed these effectors as candidate drug targets for prion diseases and possibly other neurodegenerative diseases.

17.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999934

ABSTRACT

Biomolecular condensates (BMCs) exhibit physiological and pathological relevance in biological systems. Both liquid and solid condensates play significant roles in the spatiotemporal regulation and organization of macromolecules and their biological activities. Some pathological solid condensates, such as Lewy Bodies and other fibrillar aggregates, have been hypothesized to originate from liquid condensates. With the prevalence of BMCs having functional and dysfunctional roles, it is imperative to understand the mechanism of biomolecular condensate formation and initiation. Using the low-complexity domain (LCD) of heterogenous ribonuclear protein A1 (hnRNPA1) as our model, we monitored initial assembly events using dynamic light scattering (DLS) while modulating pH and salt conditions to perturb macromolecule and condensate properties. We observed the formation of nanometer-sized BMCs (nano-condensates) distinct from protein monomers and micron-sized condensates. We also observed that conditions that solubilize micron-sized protein condensates do not solubilize nano-condensates, indicating that the balance of forces that stabilize nano-condensates and micron-sized condensates are distinct. These findings provide insight into the forces that drive protein phase separation and potential nucleation structures of macromolecular condensation.


Subject(s)
Dynamic Light Scattering , Heterogeneous Nuclear Ribonucleoprotein A1 , Humans , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Heterogeneous Nuclear Ribonucleoprotein A1/chemistry , Protein Domains , Biomolecular Condensates/chemistry , Biomolecular Condensates/metabolism , Hydrogen-Ion Concentration
18.
Parasit Vectors ; 17(1): 284, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956725

ABSTRACT

BACKGROUND: Toxoplasma gondii infection affects a significant portion of the global population, leading to severe toxoplasmosis and, in immunocompromised patients, even death. During T. gondii infection, disruption of gut microbiota further exacerbates the damage to intestinal and brain barriers. Therefore, identifying imbalanced probiotics during infection and restoring their equilibrium can regulate the balance of gut microbiota metabolites, thereby alleviating tissue damage. METHODS: Vimentin gene knockout (vim-/-) mice were employed as an immunocompromised model to evaluate the influence of host immune responses on gut microbiota balance during T. gondii infection. Behavioral experiments were performed to assess changes in cognitive levels and depressive tendencies between chronically infected vim-/- and wild-type (WT) mice. Fecal samples were subjected to 16S ribosomal RNA (rRNA) sequencing, and serum metabolites were analyzed to identify potential gut probiotics and their metabolites for the treatment of T. gondii infection. RESULTS: Compared to the immunocompetent WT sv129 mice, the immunocompromised mice exhibited lower levels of neuronal apoptosis and fewer neurobehavioral abnormalities during chronic infection. 16S rRNA sequencing revealed a significant decrease in the abundance of probiotics, including several species of Lactobacillus, in WT mice. Restoring this balance through the administration of Lactobacillus murinus and Lactobacillus gasseri significantly suppressed the T. gondii burden in the intestine, liver, and brain. Moreover, transplantation of these two Lactobacillus spp. significantly improved intestinal barrier damage and alleviated inflammation and neuronal apoptosis in the central nervous system. Metabolite detection studies revealed that the levels of various Lactobacillus-related metabolites, including indole-3-lactic acid (ILA) in serum, decreased significantly after T. gondii infection. We confirmed that L. gasseri secreted much more ILA than L. murinus. Notably, ILA can activate the aromatic hydrocarbon receptor signaling pathway in intestinal epithelial cells, promoting the activation of CD8+ T cells and the secretion of interferon-gamma. CONCLUSION: Our study revealed that host immune responses against T. gondii infection severely disrupted the balance of gut microbiota, resulting in intestinal and brain damage. Lactobacillus spp. play a crucial role in immune regulation, and the metabolite ILA is a promising therapeutic compound for efficient and safe treatment of T. gondii infection.


Subject(s)
Brain Injuries , Gastrointestinal Microbiome , Mice, Knockout , Toxoplasma , Animals , Mice , Toxoplasma/immunology , Brain Injuries/immunology , Probiotics/administration & dosage , Brain/immunology , Lactobacillus , Disease Models, Animal , Immunocompromised Host , Toxoplasmosis/immunology , RNA, Ribosomal, 16S/genetics , Male , Intestines/immunology
19.
Front Aging Neurosci ; 16: 1417989, 2024.
Article in English | MEDLINE | ID: mdl-38962561

ABSTRACT

Background: Ferroptosis, a newly proposed concept of programmed cell death, has garnered significant attention in research across different diseases in the last decade. Despite thorough citation analyses in neuroscience, there is a scarcity of information on ferroptosis research specifically related to neurodegenerative diseases. Method: The Web of Science Core Collection database retrieved relevant articles and reviews. Data on publications, countries, institutions, authors, journals, citations, and keywords in the included studies were systematically analyzed using Microsoft Excel 2019 and CiteSpace 6.2.R7 software. Result: A comprehensive analysis and visualization of 563 research papers on ferroptosis in neurodegenerative diseases from 2014 to 2023 revealed emerging research hotspots and trends. The number of annual publications in this field of study has displayed a pattern of stabilization in the early years of the decade, followed by a notable increase in the later years and peaking in 2023 with 196 publications. Regarding publication volume and total citations, notable research contributions were observed from countries, institutions, and authors in North America, Western Europe, and China. Current research endeavors primarily focus on understanding the intervention mechanisms of neurodegenerative diseases through the ferroptosis pathway and exploring and identifying potential therapeutic targets. Conclusion: The study highlights key areas of interest and emerging trends in ferroptosis research on neurodegenerative diseases, offering valuable insights for further exploration and potential directions for diagnosing and treating such conditions.

20.
Nervenarzt ; 2024 Jul 02.
Article in German | MEDLINE | ID: mdl-38953921

ABSTRACT

BACKGROUND: Neurodegenerative diseases represent an increasing challenge in ageing societies, as only limited treatment options are currently available. OBJECTIVE: New research methods and interdisciplinary interaction of different disciplines have changed the way neurological disorders are viewed and paved the way for the comparatively new field of neuroimmunology, which was established in the early 1980s. Starting from neurological autoimmune diseases, such as multiple sclerosis, knowledge about the involvement of immunological processes in other contexts, such as stroke or traumatic brain injury, has been significantly expanded in recent years. MATERIAL AND METHODS: This review article provides an overview of the role of the immune system and the resulting potential for novel treatment approaches. RESULTS: The immune system plays a central role in fighting infections but is also able to react to the body's own signals under sterile conditions and cause inflammation and subsequent adaptive immune responses through the release of immune mediators and the recruitment and differentiation of certain immune cell types. This can be beneficial in initiating healing processes; however, chronic inflammatory conditions usually have destructive consequences for the tissue and the organism and must be interrupted. CONCLUSION: It is now known that different cells of the immune system play an important role in neurological diseases. Regulatory mechanisms, which are mediated by regulatory T cells or Th2 cells, are usually associated with a good prognosis, whereas inflammatory processes and polarization towards Th1 or Th17 have a destructive character. Novel immunomodulators, which are also increasingly being used in cancer treatment, can now be used in a tissue-specific manner and therefore offer great potential for use in neurological diseases.

SELECTION OF CITATIONS
SEARCH DETAIL