Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
1.
Semina cienc. biol. saude ; 45(2): 121-132, jul./dez. 2024. ilus
Article in English | LILACS | ID: biblio-1568654

ABSTRACT

Myocastor coypus (coypu or nutria) is considered one of the 100 worst invasive species in the world due to its risk to local wildlife, such as waterfowl, zoonotic risks, and environmental damage, such as riverbank erosion, arising from its habit of constructing burrows along the edge of water bodies. The presence of M. coypus is already known locally in the municipality of Londrina based on records at Igapó Lake. This paper presents the first record of M. coypus in Arthur Thomas Municipal Park, a Conservation Unit of Integral Protection located in the urban area of Londrina. The records were obtained through direct observation of one live individual and one carcass during campaigns to monitor medium and large mammals. Subsequently, ten records were obtained using camera traps, of unknown gender, located near waterbodies. We emphasize the need for continuous fauna monitoring in conservation units to detect and verify potential increases in invasive alien species populations that can result in environmental damage.


A espécie Myocastor coypus (ratão-do-banhado) é considerada uma das 100 piores espécies invasoras do mundo por representar risco para a fauna local, como aves aquáticas, e risco de zoonoses, além de causar danos ambientais, como desbarrancamento de encostas de rios, devido ao seu hábito de construção de tocas nas margens de corpos d'água. A presença de M. coypus já é conhecida localmente no município de Londrina a partir de registros no Lago Igapó. Assim, este estudo apresenta o primeiro registro de M. coypus no Parque Municipal Arthur Thomas, uma Unidade de Conservação de Proteção Integral localizada na zona urbana de Londrina. Os registros foram obtidos através da observação direta de um indivíduo vivo e uma carcaça durante campanhas de monitoramento de mamíferos de médio e grande porte. Posteriormente foram obtidos dez registros por armadilha fotográfica de indivíduos de sexo desconhecido, próximos a corpos d'água. Enfatiza-se a necessidade do monitoramento contínuo da fauna em áreas de conservação para a detecção do potencial aumento na população de espécies exóticas e invasoras que podem causar severos danos ambientais.


Subject(s)
Animals
2.
Animals (Basel) ; 14(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39272318

ABSTRACT

Rapid urbanization and its associated human activities have facilitated the colonization and spread of non-native species, rendering urban ecosystems, particularly in megacities such as Beijing, highly susceptible to biological invasions. This study employed environmental DNA (eDNA) metabarcoding to evaluate the biodiversity and geographical distribution of non-native fish, as well as their interactions with native fish species, across three river basins in Beijing pertaining to the Daqing River, the North Canal, and the Ji Canal. Across all the 67 sampling sites, we identified 60 fish taxa, representing 11 orders, 23 families, and 40 genera, with an average of 33.0 taxa per site. Of these, 40 taxa were native, accounting for only 47.1% of the historically recorded native fish species. Additionally, we detected 20 non-native fish taxa, spanning 11 orders, 13 families, and 17 genera. Native fish exhibited geographical homogenization across the basins, while non-native taxa displayed varied geographical distributions. Non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) revealed no significant variation in the non-native communities across the river basins. Although most of the non-native taxa were widespread, some were restricted to specific sites or basins. The North Canal exhibited significantly lower non-native biodiversity compared with the Ji Canal across all alpha diversity indices. Simple linear regression analyses indicated positive correlations between the number of taxa and species richness for both native and non-native taxa. Interestingly, species co-occurrence analyses revealed predominantly positive interactions among both native and non-native species pairs, with only two negative relationships involving one native and two non-native taxa. This study provides insights into the biodiversity and geographical distribution of non-native fish in Beijing and establishes a baseline for future biomonitoring and conservation efforts. The findings underscore the need for further investigation into the mechanisms and dynamics of biological invasions within urban environments in Beijing.

3.
Environ Sci Ecotechnol ; 22: 100453, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39175512

ABSTRACT

Marine protected areas (MPAs) across various countries have contributed to safeguarding coastal and marine environments. Despite these efforts, marine non-native species (NNS) continue to threaten biodiversity and ecosystems, even within MPAs. Currently, there is a lack of comprehensive studies on the inventories, distribution patterns, and effect factors of NNS within MPAs. Here we show a database containing over 15,000 occurrence records of 2714 marine NNS across 16,401 national or regional MPAs worldwide. To identify the primary mechanisms driving the occurrence of NNS, we utilize model selection with proxies representing colonization pressure, environmental variables, and MPA characteristics. Among the environmental predictors analyzed, sea surface temperature emerged as the sole factor strongly associated with NNS richness. Higher sea surface temperatures are linked to increased NNS richness, aligning with global marine biodiversity trends. Furthermore, human activities help species overcome geographical barriers and migration constraints. Consequently, this influences the distribution patterns of marine introduced species and associated environmental factors. As global climate change continues to alter sea temperatures, it is crucial to protect marine regions that are increasingly vulnerable to intense human activities and biological invasions.

4.
Ecol Appl ; 34(6): e3013, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004420

ABSTRACT

Streamflow regimes that maintain vital functions and processes of aquatic ecosystems are critical to sustaining ecosystem health. In rivers with altered flow regimes, restoring components of the natural flow regime is predicted to conserve freshwater biodiversity by supporting ecological functions and geomorphological processes to which native communities are adapted. However, the effectiveness of environmental flow restoration is poorly understood because of inadequate monitoring and uncertainty in ecological responses to managed changes in specific, quantifiable aspects of the annual streamflow regime. Here, we used time series models to analyze 25 years of fish assemblage data collected before and after environmental flow implementation in a dammed river in California, USA. We examined the response of the fish community to changes in individual components of the flow regime known to support ecosystem functions. We found that as functional flow components shifted toward their predicted natural range, the quasi-extinction risk (likelihood of population declines of >80%) decreased for the native fish assemblage. Following environmental flow implementation, observed changes toward natural ranges of dry season duration, fall pulse flow magnitude, and wet season timing each reduced quasi-extinction risk by at least 40% for the native assemblage. However, functional flow components that shifted away from their predicted natural range, including lower spring recession flows and higher dry season baseflow, resulted in greater quasi-extinction risk for native species. In contrast, non-native species decreased in abundance when flow components shifted toward predicted natural ranges and increased when components shifted away from their natural range. Although most functional flow components remained outside of their natural range following environmental flow implementation, our results indicate that even moderate shifts toward a natural flow regime can benefit native and suppress non-native fish species. Overall, this study provides the most compelling evidence to date of the effectiveness of functional environmental flows in supporting native fish recovery in a highly regulated river.


Subject(s)
Fishes , Rivers , Water Movements , Animals , Fishes/physiology , California , Conservation of Natural Resources
5.
Oecologia ; 205(3-4): 445-459, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972958

ABSTRACT

Irruptive or boom-and-bust population dynamics, also known as 'outbreaks', are an important phenomenon that has been noted in biological invasions at least since Charles Elton's classic book was published in 1958. Community-level consequences of irruptive dynamics are poorly documented and invasive species provide excellent systems for their study. African Jewelfish (Rubricatochromis letourneuxi, "jewelfish") are omnivores that demonstrate opportunistic carnivory, first reported in Florida in the 1960s and in Everglades National Park (ENP) in 2000. Twelve years after invasion in ENP, jewelfish underwent a 25-fold increase in density in one year. By 2016, jewelfish represented 25-50% of fish biomass. Using a 43-year fish community dataset at two sites (1978-2021), and a 25-year dataset of fish and invertebrate communities from the same drainage (1996-2021), with additional spatial coverage, we quantified differences in fish and invertebrate communities during different phases of invasion. During jewelfish boom, abundant, native cyprinodontiform fishes decreased in density and drove changes in community structure as measured by similarity of relativized abundance. Density of two species declined by > 70%, while four declined by 50-62%. Following the jewelfish bust, some species recovered to pre-boom densities while others did not. Diversity of recovery times produced altered community structure that lagged for at least four years after the jewelfish population declined. Community structure is an index of ecological functions such as resilience, productivity, and species interaction webs; therefore, these results demonstrate that irruptive population dynamics can alter ecological functions of ecosystems mediated by community structure for years following that population's decline.


Subject(s)
Fishes , Introduced Species , Population Dynamics , Animals , Ecosystem , Invertebrates , Florida
6.
Biology (Basel) ; 13(6)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38927286

ABSTRACT

The round goby Neogobius melanostomus is a notoriously invasive fish originating from the Ponto-Caspian region that in recent decades has successfully spread across the globe. One of its primary impacts is direct predation; in addition, when entering new ecosystems, the round goby is likely to become a food resource for many higher native predators. However, little is known either about the indirect effects of predators on the round goby as prey or its feeding behaviour and activity. The non-consumptive effect of the presence of higher native predators presumably plays an important role in mitigating the impact of non-native round gobies as mesopredators on benthic invertebrate communities, especially when both higher- and mesopredators occupy the same habitat. We tested the food consumption probability and gut evacuation rates in round gobies in response to chemical signals from a higher predator, the European eel Anguilla anguilla. Gobies were placed individually in experimental arenas equipped with shelters and exposed to water from a tank in which (a) the higher predator had actively preyed on a heterospecific prey, earthworms Lumbricus sp. (the heterospecific treatment; HS); (b) the higher predator had fed on round gobies (the conspecific treatment; CS); or (c) the water was provided as a control treatment (C). To ensure exposure to the chemical stimuli, this study incorporated the application of skin extracts containing damaged-released alarm cues from the CS treatment; distilled water was used for the remaining treatments. No significant differences were observed in either the food consumption probability or gut evacuation rate in the tested treatments. Despite the lack of reaction to the chemical stimuli, round gobies did exhibit high evacuation rates (R = 0.2323 ± 0.011 h-1; mean ± SE) in which complete gut clearance occurred within 16 h regardless of the applied treatment. This rapid food processing suggests high efficiency and great pressure on resources regardless of the presence or not of a higher predator. These findings hint at the boldness of round gobies, which did not exhibit any pronounced threat sensitivity. This would seem to suggest great efficiency in food processing and a potential competitive advantage over local native species when colonising new ecosystems, irrespective of the presence of native predators. Our study did not detect any non-consumptive effect attributable to the higher predator, given that the feeding activity of the invasive round goby was not altered.

7.
Ecol Evol ; 14(5): e11161, 2024 May.
Article in English | MEDLINE | ID: mdl-38774144

ABSTRACT

Understanding how and why some species or lineages become invasive is critically important for effectively predicting and mitigating biological invasions. Here, we address an important unanswered question in invasion biology: do key life-history traits of invasive versus native lineages within a species differ in response to key environmental stressors? We focus on the environmental factor of population density, which is a fundamental characteristic of all populations, and investigate how changes in density affect native versus invasive Potamopyrgus antipodarum (New Zealand mudsnail). P. antipodarum has invaded 39 countries and detrimentally affects invaded environments. Previous studies of native and invasive populations and from laboratory experiments have demonstrated that growth and reproduction of P. antipodarum is sensitive to population density, though whether and how this sensitivity varies across native versus invasive lineages remains uncharacterized. We quantified individual growth rate and reproduction in P. antipodarum from multiple distinct native and invasive lineages across three different population density treatments. The growth of native but not invasive lineages decreased as density increased. There was no differential effect of density treatment on embryo production of invasive versus native snails, but a significantly higher proportion of snails were reproductive in high density compared to intermediate density for invasive lineages. In native lineages, there were no significant differences in the relative frequency of reproductive snails across density treatments. While the extent to which these results from our laboratory study can be extrapolated to the more complex natural world remain unclear, our findings are consistent with a scenario where differential sensitivity to population density could help explain why some lineages become successful invaders. Our findings also align with previous studies that show that invasive P. antipodarum lineages exhibit a relatively wide range of tolerance to environmental stressors.

8.
Glob Chang Biol ; 30(5): e17312, 2024 May.
Article in English | MEDLINE | ID: mdl-38736133

ABSTRACT

Biological invasions pose a rapidly expanding threat to the persistence, functioning and service provisioning of ecosystems globally, and to socio-economic interests. The stages of successful invasions are driven by the same mechanism that underlies adaptive changes across species in general-via natural selection on intraspecific variation in traits that influence survival and reproductive performance (i.e., fitness). Surprisingly, however, the rapid progress in the field of invasion science has resulted in a predominance of species-level approaches (such as deny lists), often irrespective of natural selection theory, local adaptation and other population-level processes that govern successful invasions. To address these issues, we analyse non-native species dynamics at the population level by employing a database of European freshwater macroinvertebrate time series, to investigate spreading speed, abundance dynamics and impact assessments among populations. Our findings reveal substantial variability in spreading speed and abundance trends within and between macroinvertebrate species across biogeographic regions, indicating that levels of invasiveness and impact differ markedly. Discrepancies and inconsistencies among species-level risk screenings and real population-level data were also identified, highlighting the inherent challenges in accurately assessing population-level effects through species-level assessments. In recognition of the importance of population-level assessments, we urge a shift in invasive species management frameworks, which should account for the dynamics of different populations and their environmental context. Adopting an adaptive, region-specific and population-focused approach is imperative, considering the diverse ecological contexts and varying degrees of susceptibility. Such an approach could improve and refine risk assessments while promoting mechanistic understandings of risks and impacts, thereby enabling the development of more effective conservation and management strategies.


Subject(s)
Introduced Species , Invertebrates , Population Dynamics , Animals , Invertebrates/physiology , Europe , Ecosystem , Fresh Water
9.
Mar Pollut Bull ; 204: 116499, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796991

ABSTRACT

Marine litter is increasingly recognised as a vector for the spread of non-native species (NNS). However, our understanding of its role in the propagation of NNS in UK waters remains limited. As part of the Clean Seas Environmental Monitoring Programme, we opportunistically analysed seafloor macrolitter items trawled from various locations around the coast of England and Wales and examined each for the presence of NNS. Of the 41 litter items analysed, we identified a total of 133 taxa, including two non-native and four cryptogenic species. This confirms that NNS are settling on seafloor macrolitter in UK waters and that these can be detected using morphological taxonomic analysis. Furthermore, we propose a methodology to classify litter based on size, rugosity and polymer/material type to explore whether there were detectable patterns governing community composition and litter characteristics. This exploratory investigation provides evidence to inform future risk assessments of NNS vectors and pathways.


Subject(s)
Environmental Monitoring , Introduced Species , Environmental Monitoring/methods , Animals , United Kingdom , England , Wales
10.
Mar Pollut Bull ; 204: 116522, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815473

ABSTRACT

Large masses of pelagic Sargassum occur in the Atlantic Ocean between the latitudes 5°S and 38°N. Since 2011, inundations have happened in the Gulf of Mexico, the Caribbean, and West Africa, affecting biological communities and economies. A series of severe weather events in the Azores led to a Sargassum inundation between mid-December 2023 and early April 2024, here reported for the first time. Although the sea reclaimed most of the stranded algae, 555 metric tons were removed. Periodic inundations may represent an introduction pathway for non-native species since massive amounts of organisms are deposited alive on the coast. Besides the ecological impact, the inundations can be harmful to human health and impact the tourism sector. Further studies on the expected changes in the frequency and severity of storms in the region are necessary to evaluate the probability of new inundations. Measures to attenuate possible impacts should also be searched.


Subject(s)
Sargassum , Wind , Azores , Atlantic Ocean , Environmental Monitoring
11.
Ecol Evol ; 14(4): e11299, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38654709

ABSTRACT

The threat from novel marine species introductions is a global issue. When non-native marine species are introduced to novel environments and become invasive, they can affect biodiversity, industry, ecosystem function, and both human and wildlife health. Isolated areas with sensitive or highly specialised endemic species can be particularly impacted. The global increase in the scope of tourism and other human activities, together with a rapidly changing climate, now put these remote ecosystems under threat. In this context, we analyse invasion pathways into South Georgia and the South Sandwich Islands (SGSSI) for marine non-native species via vessel biofouling. The SGSSI archipelago has high biodiversity and endemism, and has historically been highly isolated from the South American mainland. The islands sit just below the Polar Front temperature boundary, affording some protection against introductions. However, the region is now warming and SGSSI increasingly acts as a gateway port for vessel traffic into the wider Antarctic, amplifying invasion likelihood. We use remote Automatic Identification System vessel-tracking data over a 2-year period to map vessel movement and behaviour around South Georgia, and across the 'Scotia Sea', 'Magellanic' and northern 'Continental High Antarctic' ecoregions. We find multiple vessel types from locations across the globe frequently now enter shallow inshore waters and stop for prolonged periods (weeks/months) at anchor. Vessels are active throughout the year and stop at multiple port hubs, frequently crossing international waters and ecoregions. Management recommendations to reduce marine invasion likelihood within SGSSI include initiating benthic and hull monitoring at the identified activity/dispersion hubs of King Edward Point, Bay of Isles, Gold Harbour, St Andrews Bay and Stromness Bay. More broadly, regional collaboration and coordination is necessary at neighbouring international ports. Here vessels need increased pre- and post-arrival biosecurity assessment following set protocols, and improved monitoring of hulls for biofouling to pre-emptively mitigate this threat.

12.
Animals (Basel) ; 14(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38539921

ABSTRACT

The genetic characteristics of invasive species have a significant impact on their ability to establish and spread. The blue mussel (Mytilus galloprovincialis), native to the Mediterranean Sea, is a leading invasive species of intertidal coasts throughout much of the world. Here, we used mitochondrial DNA sequence data to investigate the genetic diversity and phylogeographic structure of invasive (M. galloprovincialis) versus native (Mytilus chilensis) populations of blue mussels in Chile. We evaluated whether genetic diversity in invasive populations could be explained by the genetic characteristics of the native sources from which they might be derived. A phylogenetic analysis confirmed two lineages of the invasive M. galloprovincialis, i.e., the NW Atlantic and the Mediterranean lineages. We found no evidence of genetic structure in the invasive range of M. galloprovincialis in Chile, most probably because of its recent arrival. We did, however, detect a spatial mixture of both M. galloprovincialis lineages at sampling locations along the Chilean coast, giving rise to higher levels of genetic diversity in some areas compared to the population of native M. chilensis. The coastal area of the invasion is still small in extent (~100 km on either side of two large ports), which supports the hypothesis of a recent introduction. Further expansion of the distribution range of M. galloprovincialis may be limited to the north by increasing water temperatures and to the south by a natural biogeographic break that may slow or perhaps stop its spread. The use of internal borders as a tool to minimise or prevent M. galloprovincialis spread is therefore a genuine management option in Chile but needs to be implemented rapidly.

13.
Ecotoxicol Environ Saf ; 273: 116175, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38458070

ABSTRACT

Nanoplastics are recognized as emerging contaminants that can cause severe toxicity to marine fishes. However, limited researches were focusing on the toxic effects of nanoplastics on marine fish, especially the post-exposure resilience. In this study, red drum (Sciaenops ocellatus) were exposed to 5 mg/L polystyrene nanoplastics (100 nm, PS-NPs) for a 7-day exposure experiment, and a 14-day recovery experiment that followed. The aim was to evaluate the dynamic alterations in hepatic and branchial tissue damage, hepatic antioxidant capacity, as well as hepatic transcriptional and metabolic regulation in the red drum during exposure and post-exposure to PS-NPs. Histopathological observation found that PS-NPs primarily triggered hepatic lipid droplets and branchial epithelial liftings, a phenomenon persistently discernible up to the 14 days of recovery. Although antioxidant capacity partially recovered during recovery periods, PS-NPs resulted in a sustained reduction in hepatic antioxidant activity, causing oxidative damage throughout the entire exposure and recovery phases, as evidenced by decreased total superoxide dismutase activities and increased malondialdehyde content. At the transcriptional and metabolic level, PS-NPs primarily induced lipid metabolism disorders, DNA damage, biofilm disruption, and mitochondrial dysfunction. In the gene-metabolite correlation interaction network, numerous CcO (cytochrome c oxidase) family genes and lipid metabolites were identified as key regulatory genes and metabolites in detoxification processes. Among them, the red drum possesses one additional CcO6B in comparison to human and zebrafish, which potentially contributes to its enhanced capacity for maintaining a stable and positive regulatory function in detoxification. This study revealed that nanoplastics cause severe biotoxicity to red drum, which may be detrimental to the survival of wild populations and affect the economics of farmed populations.


Subject(s)
Perciformes , Water Pollutants, Chemical , Animals , Humans , Antioxidants/metabolism , Microplastics/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Perciformes/genetics , Perciformes/metabolism , Oxidative Stress , Polystyrenes/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
14.
Sci Total Environ ; 918: 170687, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38320711

ABSTRACT

Invasive macrofauna influence the biophysical state and function of soil, helping to drive ecological changes over time. Many soil-dwelling invertebrates affect soil stability by facilitating or hindering the soil aggregation process, changing the availability of plant and soil organic matter (SOM) for aggregate incorporation, and shifting the predominant mechanisms by which carbon is incorporated into soil aggregates. Using mass fractionation and stable carbon isotope techniques, this 17-month experimental study examined silt-clay-loam mesocosms either infested or not infested with soil-dwelling larvae of the invasive Japanese beetle, Popillia japonica Newman (JB). We hypothesized that larval root-herbivory would promote a pathway of large aggregate formation that features the mixing of digested root tissue with mineral soil and subsequent fecal deposition. These newly deposited, large soil aggregates will then grow by agglomeration of particles, thereby occluding a larger pool of fresh organic carbon, or be broken apart, exposing fresh organic inputs to microbial activity and mineralization processes, depending on soil conditions. Findings show a proportional increase of larger soil size fractions (2- 8 mm) in the rhizosphere of infested soil after 1½ life cycles of the beetle, but a decrease in the smaller soil size fractions (0.053-2 mm). In infested bulk surface soil (0-2.5 cm) carbon increased, primarily due to greater carbon content in the largest size fractions. Carbon also increased in all size fractions, although the proportion of total carbon in fractions was greater only in the largest fractions due to their greater relative abundance. There may also be an increase of microbially derived carbon in the largest size fractions, possibly indicating significant priming effects associated with JB larval herbivory. The implications of these findings for relative stabilization of the bulk surface soil carbon pool in JB-infested soil likely depends on the residence time of, and stable microaggregate formation within these large size fractions.


Subject(s)
Carbon , Coleoptera , Animals , Carbon/chemistry , Soil/chemistry , Larva , Carbon Isotopes/analysis
15.
J Med Microbiol ; 73(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38354038

ABSTRACT

Introduction. Red squirrel populations have declined in the UK since the introduction of the grey squirrel, due to resource competition and grey squirrels carrying a squirrelpox virus that is fatal to red squirrels.Hypothesis/Gap Statement. It is not known if the gut microbiota of the two species is similar and if this could impact the survival of red squirrels.Aim. The aim of this study was to profile the caecal microbiota of red and grey squirrels obtained opportunistically from a conservation programme in North Wales.Methodology. Bacterial DNA was extracted from ten red and ten grey squirrels and sent for 16S rRNA sequencing. Three samples from red squirrels returned less than 5000 reads, and so were not carried forward for further analyses.Results. Samples taken from the caeca of red squirrels had significantly lower bacterial diversity and a higher percentage of Bacilli bacteria when compared to samples from grey squirrels. When the abundance of bacterial groups across all levels of phylogenetic classifications was compared between the two groups of squirrels, grey squirrels had a higher abundance of bacteria belonging to the families S24-7, RF39 and Rikenellaceae. Escherichia coli with resistance to amoxicillin/clavulanic acid was identified in all samples. Cefotaxime resistance was identified in two samples from grey squirrels along with sulfamethoxazole/trimethoprim in one of these samples.Conclusion. Clear differences between the caecal microbiota of the two species of squirrel were identified, which could potentially impact their overall health and ability to compete for resources.


Subject(s)
Bacteria , Microbiota , Humans , Animals , Phylogeny , RNA, Ribosomal, 16S/genetics , United Kingdom , Bacteria/genetics , Sciuridae , Escherichia coli
16.
Ecol Evol ; 14(2): e10838, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38322004

ABSTRACT

We report the first record of the microlepidopteran Plodia interpunctella beyond the South Shetland Islands at the Chilean Yelcho scientific station (64°52'33.1428″ S; 63°35'1.9572″ W), Doumer Island, close to the west coast of the Antarctic Peninsula. It is notable that P. interpunctella, a globally distributed stored product pest species, exhibits a remarkable capacity for prolonged viability within food storage facilities. The dual challenges of food transportation and storage in the context of Antarctica's challenging operational conditions may have facilitated P. interpunctella's initial arrival to the Antarctic region. Non-perishable food items, such as grains, flour and rice, provide practical options for the bulk food transportation and storage required in the long-term operation of Antarctic research stations. The presence of P. interpunctella in Antarctica, even if restricted to synanthropic environments within buildings, is a clear threat to Antarctic biodiversity, not only through being an invasive species itself but also as a potential vector for other non-native species (bacteria, acari, between others.), which could carry diseases to the native species.

17.
Plant Environ Interact ; 5(1): e10132, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38323131

ABSTRACT

Climate change has initiated movement of both native and non-native (exotic) species across the landscape. Exotic species are hypothesized to establish from seed more readily than comparable native species. We tested the hypothesis that seed limitation is more important for exotic species than native grassland species. We compared seed limitation and invasion resistance over three growing seasons between 18 native and 18 exotic species, grown in both monocultures and mixtures in a field experiment. Half of the plots received a seed mix of the contrasting treatment (i.e., exotic species were seeded into native plots, and native species were seeded into exotic plots), and half served as controls. We found that (1) establishment in this perennial grassland is seed limited, (2) establishment from seed is greater in exotic than native species, and (3) community resistance to seedling establishment was positively related to diversity of extant species, but only in native communities. Native-exotic species diversity and composition differences did not converge over time. Our results imply that native to exotic transformations occur when diversity declines in native vegetation and exotic seeds arrive from adjacent sites, suggesting that managing for high diversity will reduce transformations to exotic dominance.

18.
Biodivers Data J ; 12: e115142, 2024.
Article in English | MEDLINE | ID: mdl-38314126

ABSTRACT

Background: The cosmopolitan genus Callitriche (Plantaginaceae) is a clade of small herbaceous plants that encompasses terrestrial and aquatic species. In Japan, six Callitriche species have been identified: four native and two naturalised species. Callitricheterrestris, a naturalised terrestrial species, was first reported in 1984 in Kanagawa Prefecture and it is thriving today. New information: We report the presence of a new naturalised terrestrial species, Callitrichedeflexa, which has been previously misidentified as C.terrestris because of its similar morphology. Callitrichedeflexa can be distinguished from C.terrestris through genetic differences and distinct morphological traits, such as longer pedicels. Re-examination of herbarium specimens in the Kanagawa Prefectural Museum of Natural History confirmed that most of the specimens labelled as C.terrestris, including voucher specimens from the original report, were indeed C.terrestris, but a few were C.deflexa. We also noted that the plants referred to as "C.terrestris" in our previous developmental studies should be corrected to C.deflexa.

19.
PeerJ ; 12: e16628, 2024.
Article in English | MEDLINE | ID: mdl-38239294

ABSTRACT

The introduction and establishment of invasive species in regions outside their native range, is one of the major threats for the conservation of ecosystems, affecting native organisms and the habitat where they live in, causing substantial biological and monetary losses worldwide. Due to the impact of invasive species, it is important to understand what makes some species more invasive than others. Here, by simulating populations using a forward-in-time approach combining ecological and single polymorphic nucleotides (SNPs) we evaluated the relation between propagule size (number of individuals = 2, 10, 100, and 1,000), extinction rate (with values 2%, 5%, 10%, and 20%), and initial heterozygosity (0.1, 0.3, and 0.5) on the population survival and maintenance of the heterozygosity of a simulated invasive crab species over 30 generations assuming a single introduction. Our results revealed that simulated invasive populations with initial propagule sizes of 2-1,000 individuals experiencing a high extinction rate (10-20% per generation) were able to maintain over 50% of their initial heterozygosity during the first generations and that under scenarios with lower extinction rates invasive populations with initial propagule sizes of 10-1,000 individuals can survive up to 30 generations and maintain 60-100% of their initial heterozygosity. Our results can help other researchers better understand, how species with small propagule sizes and low heterozygosities can become successful invaders.


Subject(s)
Ecosystem , Introduced Species , Humans , Population Density , Computer Simulation , Genetic Variation/genetics
20.
Ecol Lett ; 27(1): e14360, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38183675

ABSTRACT

Communities worldwide are losing multiple species at an unprecedented rate, but how communities reassemble after these losses is often an open question. It is well established that the order and timing of species arrival during community assembly shapes forthcoming community composition and function. Yet, whether the order and timing of species losses can lead to divergent community trajectories remains largely unexplored. Here, we propose a novel framework that sets testable hypotheses on the effects of the order and timing of species losses-inverse priority effects-and suggests its integration into the study of community assembly. We propose that the order and timing of species losses within a community can generate alternative reassembly trajectories, and suggest mechanisms that may underlie these inverse priority effects. To formalize these concepts quantitatively, we used a three-species Lotka-Volterra competition model, enabling to investigate conditions in which the order of species losses can lead to divergent reassembly trajectories. The inverse priority effects framework proposed here promotes the systematic study of the dynamics of species losses from ecological communities, ultimately aimed to better understand community reassembly and guide management decisions in light of rapid global change.


Subject(s)
Biota , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL