Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Biochim Biophys Acta Biomembr ; 1866(7): 184365, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38960299

ABSTRACT

Membrane contacts sites (MCSs) play important roles in lipid trafficking across cellular compartments and maintain the widespread structural diversity of organelles. We have utilized microsecond long all-atom (AA) molecular dynamics (MD) simulations and enhanced sampling techniques to unravel the MCS structure targeting by yeast oxysterol binding protein (Osh4) in an environment that mimics the interface of membranes with an increased proportion of anionic lipids using CHARMM36m forcefield with additional CUFIX parameters for lipid-protein electrostatic interactions. In a dual-membrane environment, unbiased MD simulations show that Osh4 briefly interacts with both membranes, before aligning itself with a single membrane, adopting a ß-crease-bound conformation similar to observations in a single-membrane scenario. Targeted molecular dynamics simulations followed by microsecond-long AA MD simulations have revealed a distinctive dual-membrane bound state of Osh4 at MCS, wherein the protein interacts with the lower membrane via the ß-crease surface, featuring its PHE-239 residue positioned below the phosphate plane of membrane, while concurrently establishing contact with the opposite membrane through the extended α6-α7 region. Osh4 maintains these dual membrane contacts simultaneously over the course of microsecond-long MD simulations. Moreover, binding energy calculations highlighted the essential roles played by the phenylalanine loop and the α6 helix in dynamically stabilizing dual-membrane bound state of Osh4 at MCS. Our computational findings were corroborated through frequency of contact analysis, showcasing excellent agreement with past experimental cross-linking data. Our computational study reveals a dual-membrane bound conformation of Osh4, providing insights into protein-membrane interactions at membrane contact sites and their relevance to lipid transfer processes.


Subject(s)
Molecular Dynamics Simulation , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry , Cell Membrane/chemistry , Cell Membrane/metabolism , Protein Binding , Receptors, Steroid/chemistry , Receptors, Steroid/metabolism , Binding Sites , Membrane Proteins
2.
Article in English | MEDLINE | ID: mdl-31108203

ABSTRACT

Structural lipids are mostly synthesized in the endoplasmic reticulum (ER), from which they are actively transported to the membranes of other organelles. Lipids can leave the ER through vesicular trafficking or non-vesicular lipid transfer and, curiously, both processes can be regulated either by the transported lipid cargos themselves or by different secondary lipid species. For most structural lipids, transport out of the ER membrane is a key regulatory component controlling their synthesis. Distribution of the lipids between the two leaflets of the ER bilayer or between the ER and other membranes is also critical for maintaining the unique membrane properties of each cellular organelle. How cells integrate these processes within the ER depends on fine spatial segregation of the molecular components and intricate metabolic channeling, both of which we are only beginning to understand. This review will summarize some of these complex processes and attempt to identify the organizing principles that start to emerge. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.


Subject(s)
Endoplasmic Reticulum/metabolism , Lipid Metabolism , Membrane Lipids/metabolism , Animals , Biological Transport , Carrier Proteins/metabolism , Humans , Lipogenesis , Models, Molecular , Phospholipids/metabolism , Transport Vesicles/metabolism
3.
Biochimie ; 96: 85-95, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24076129

ABSTRACT

The family of StAR related lipid transfer proteins (START) is so-named based on the distinctive capacity for these proteins to transport lipids between membranes. The START domain is a module of about 210 residues, which binds lipids such as glycerolipids, sphingolipids and sterols. This domain has a deep lipid-binding pocket - which shields the hydrophic ligand from the external aqueous environment - covered by a lid. Based on their homology, the fifteen START proteins in mammals have been allocated to six distinct subfamilies, each subfamily being more specialized in the transport and/or sensing of a lipid ligand species. However within the same subgroup, their expression profile and their subcellular localization distinguish them and are critical for their different biological functions. Indeed, START proteins act in a variety of distinct physiological processes, such as lipid transfer between intracellular compartments, lipid metabolism and modulation of signaling events. Mutation or deregulated expression of START proteins is linked to pathological processes, including genetic disorders, autoimmune diseases and cancers. Besides the common single START domain, which is always located at the carboxy-terminal end in mammals, most START proteins harbor additional domains predicted to be critical in favoring lipid exchange. Evidence from well characterized START proteins indicates that these additional domains might be tethering machineries able to bring distinct organelles together and create membrane contact sites prone to lipid exchange via the START domain.


Subject(s)
Lipid Metabolism , Membrane Transport Proteins/physiology , Organelles/metabolism , Animals , Bile Acids and Salts/metabolism , Biological Transport , Ceramides/metabolism , Cholesterol/metabolism , Humans , Phospholipids/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL