Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.637
Filter
1.
Pediatr Surg Int ; 40(1): 214, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102048

ABSTRACT

PURPOSE: We performed animal and organoid study to evaluate the anti-fibrotic effect of steroid on biliary atresia (BA) and the underlying patho-mechanism. METHODS: BA animal models were created by inoculation of mice on post-natal day 1 with rhesus rotavirus (RRV). They received either 20 µl phosphate-buffered saline (PBS) or steroid from day 21 to day 34. On day 34, their serum samples were collected for hormonal markers. Necrosis, fibrosis and CK 19 expression in the liver were evaluated. Liver organoids were developed and their morphology as well as bulk RNA sequencing data were analyzed. RESULTS: Twenty-four mice developed BA features after RRV injection and were equally divided into steroid and PBS groups. On day 34, the weight gain of steroid group increased significantly than PBS group (p < 0.0001). All mice in the PBS group developed liver fibrosis but only one mouse in the steroid group did. Serum bilirubin and liver parenchymal enzymes were significantly lower in steroid group. The morphology of liver organoids were different between the two groups. A total of 6359 differentially expressed genes were found between steroid group and PBS group. CONCLUSION: Based on our findings obtained from RRV-induced BA animal and organoid models, steroid has the potential to mitigate liver fibrosis in BA.


Subject(s)
Biliary Atresia , Disease Models, Animal , Liver Cirrhosis , Organoids , Animals , Mice , Organoids/drug effects , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver/pathology , Liver/drug effects
2.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126108

ABSTRACT

Damage to the central nervous system (CNS) often leads to irreversible neurological deficits, and there are currently few effective treatments available. However, recent advancements in regenerative medicine have identified CNS organoids as promising therapeutic options for addressing CNS injuries. These organoids, composed of various neurons and supporting cells, have shown potential for direct repair at injury sites. CNS organoids resemble the structure and function of actual brain tissue, which allows them to adapt and function well within the physiological environment when transplanted into injury sites. Research findings suggest that CNS organoids can replace damaged neurons, form new neural connections, and promote neural recovery. This review highlights the emerging benefits, evaluates preclinical transplantation outcomes, and explores future strategies for optimizing neuroregeneration using CNS organoids. With continued research and technological advancements, these organoids could provide new hope for patients suffering from neurological deficits.


Subject(s)
Central Nervous System , Organoids , Humans , Organoids/cytology , Organoids/transplantation , Nerve Regeneration , Animals , Neurons/cytology , Neurons/physiology , Regenerative Medicine/methods
3.
J Tissue Eng ; 15: 20417314241268344, 2024.
Article in English | MEDLINE | ID: mdl-39130682

ABSTRACT

Antifibrotic drug screening requires evaluating the inhibitory effects of drug candidates on fibrotic cells while minimizing any adverse effects on normal cells. It is challenging to create organ-specific vascularized organoids that accurately model fibrotic and normal tissues for drug screening. Our previous studies have established methods for culturing primary microvessels and epithelial cells from adult tissues. In this proof-of-concept study, we used rats as a model organism to create a two-dimensional vascularized liver organoid model that comprised primary microvessels, epithelia, and stellate cells from adult livers. To provide appropriate substrates for cell culture, we engineered ECMs with defined stiffness to mimic the different stages of fibrotic tissues and normal tissues. We examined the effects of two TGFß signaling inhibitors, A83-01 and pirfenidone, on the vascularized liver organoids on the stiff and soft ECMs. We found that A83-01 inhibited fibrotic markers while promoting epithelial genes of hepatocytes and cholangiocytes. However, it inhibited microvascular genes on soft ECM, indicating a detrimental effect on normal tissues. Furthermore, A83-01 significantly promoted the expression of markers of stem cells and cancers, increasing the potential risk of it being a carcinogen. In contrast, pirfenidone, an FDA-approved compound for antifibrotic treatments, did not significantly affect all the genes examined on soft ECM. Although pirfenidone had minor effects on most genes, it did reduce the expression of collagens, the major components of fibrotic tissues. These results explain why pirfenidone can slow fibrosis progression with minor side effects in clinical trials. In conclusion, our study presents a method for creating vascularized liver organoids that can accurately mimic fibrotic and normal tissues for drug screening. Our findings provide valuable insights into the potential risks and benefits of using A83-01 and pirfenidone as antifibrotic drugs. This method can be applied to other organs to create organ-specific vascularized organoids for drug development.

4.
Gene ; : 148841, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39134101

ABSTRACT

Ovarian cancer (OC) ranks among the prevalent tumors affecting the female reproductive system. The aim of this study was to evaluate mitochondria-associated platinum resistance genes using organoid models. Univariate Cox regression, LASSO and multivariate Cox regression analyses were performed on The Cancer Genome Atlas (TCGA) database to construct 2-gene prognostic signature (MUL1 and SSBP1), and GSE26712 dataset was used for external validation. In addition, the relationship between MUL1 and platinum resistance was examined by organoid culture, lentiviral transduction, CCK8 assay, and Western blot. The results showed that patients in the high-risk group exhibited significantly worse OS (P = 0.002, P = 0.017). Drug sensitivity analysis revealed that platinum resistance increased with the upregulation of MUL1 expression (Cor = 0.5154, P = 0.02). Our experimental findings demonstrated that knockout of the MUL1 gene significantly increased apoptosis and enhanced the sensitivity of the OC cell line A2780 to cisplatin. Through this study, we have provided strong evidence for further research on prognostic risk factors and individualized treatment in OC patients, and provided new insights into addressing platinum resistance in OC.

5.
Gastroenterology ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39128638

ABSTRACT

BACKGROUND AND AIMS: Intestinal epithelial cell (IEC) damage is a hallmark of celiac disease (CeD); however, its role in gluten-dependent T-cell activation is unknown. We investigated IEC-gluten-T cell interactions in organoid monolayers expressing human MHC class II (HLA-DQ2.5), which facilitates gluten antigen recognition by CD4+ T cells in CeD. METHODS: Epithelial MHC class II (MHCII) was determined in active and treated CeD, and in non-immunized and gluten-immunized DR3-DQ2.5 transgenic mice, lacking mouse MHCII molecules. Organoid monolayers from DR3-DQ2.5 mice were treated with or without IFN-γ, and MHCII expression was evaluated by flow cytometry. Organoid monolayers and CD4+ T cell co-cultures were incubated with gluten, pre-digested, or not by elastase-producing Pseudomonas aeruginosa or its lasB mutant. T cell function was assessed based on proliferation, expression of activation markers, and cytokine release in the co-culture supernatants. RESULTS: Active CeD patients and gluten-immunized DR3-DQ2.5 mice demonstrated epithelial MHCII expression. Organoid monolayers derived from gluten-immunized DR3-DQ2.5 mice expressed MHCII, which was upregulated by IFN-γ. In organoid monolayer-T cell co-cultures, gluten increased the proliferation of CD4+ T cells, expression of T cell activation markers, and the release of IL-2, IFN-γ, and IL-15 in co-culture supernatants. Gluten metabolized by P. aeruginosa, but not the lasB mutant, enhanced CD4+ T cell proliferation and activation. CONCLUSIONS: Gluten antigens are efficiently presented by MHCII-expressing IECs, resulting in the activation of gluten-specific CD4+ T cells, which is enhanced by gluten pre-digestion with microbial elastase. Therapeutics directed at IECs may offer a novel approach for modulating both adaptive and innate immunity in CeD patients.

6.
Eur J Cell Biol ; 103(4): 151450, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39137450

ABSTRACT

Over the past decade, the induction protocols for the two types of kidney organoids (nephron organoids and ureteric bud organoids) from pluripotent stem cells (PSCs) have been established based on the knowledge gained in developmental nephrology. Kidney organoids are now used for disease modeling and drug screening, but they also have potential as tools for clinical transplantation therapy. One of the options to achieve this goal would be to assemble multiple renal progenitor cells (nephron progenitor, ureteric bud, stromal progenitor) to reproduce the organotypic kidney structure from PSCs. At least from mouse PSCs, all the three progenitors have been induced and assembled into such "higher order" kidney organoids. We will provide an overview of the developmental nephrology required for the induction of renal progenitors and discuss recent advances and remaining challenges of kidney organoids for clinical transplantation therapy.

8.
Cells ; 13(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39120332

ABSTRACT

Hepatocyte organoids (HOs) have superior hepatic functions to cholangiocyte-derived organoids but suffer from shorter lifespans. To counteract this, we co-cultured pig HOs with adipose-derived mesenchymal stem cells (A-MSCs) and performed transcriptome analysis. The results revealed that A-MSCs enhanced the collagen synthesis pathways, which are crucial for maintaining the three-dimensional structure and extracellular matrix synthesis of the organoids. A-MSCs also increased the expression of liver progenitor cell markers (KRT7, SPP1, LGR5+, and TERT). To explore HOs as a liver disease model, we exposed them to alcohol to create an alcoholic liver injury (ALI) model. The co-culture of HOs with A-MSCs inhibited the apoptosis of hepatocytes and reduced lipid accumulation of HOs. Furthermore, varying ethanol concentrations (0-400 mM) and single-versus-daily exposure to HOs showed that daily exposure significantly increased the level of PLIN2, a lipid storage marker, while decreasing CYP2E1 and increasing CYP1A2 levels, suggesting that CYP1A2 may play a critical role in alcohol detoxification during short-term exposure. Moreover, daily alcohol exposure led to excessive lipid accumulation and nuclear fragmentation in HOs cultured alone. These findings indicate that HOs mimic in vivo liver regeneration, establishing them as a valuable model for studying liver diseases, such as ALI.


Subject(s)
Apoptosis , Coculture Techniques , Hepatocytes , Liver Regeneration , Mesenchymal Stem Cells , Organoids , Mesenchymal Stem Cells/metabolism , Animals , Hepatocytes/metabolism , Hepatocytes/pathology , Organoids/metabolism , Apoptosis/drug effects , Swine , Adipose Tissue/cytology , Adipose Tissue/metabolism , Ethanol , Fatty Liver/pathology , Fatty Liver/metabolism , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/metabolism , Lipid Metabolism
9.
J Transl Med ; 22(1): 754, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135062

ABSTRACT

BACKGROUND: Organoids are approved by the US FDA as an alternative to animal experiments to guide drug development and for sensitivity screening. Stable organoids models of gastric cancer are desirable for personalized medicine and drug screening. METHODS: Tumor tissues from a primary cancer of the stomach and metastatic cancer of the lymph node were collected for 3D culture. By long-term culture for over 50 generations in vitro, we obtained stably growing organoid lines. We analyzed short tandem repeats (STRs) and karyotypes of cancer cells, and tumorigenesis of the organoids in nude mice, as well as multi-omics profiles of the organoids. A CCK8 method was used to determine the drugs sensitivity to fluorouracil (5-Fu), platinum and paclitaxel. RESULTS: Paired organoid lines from primary cancer (SPDO1P) and metastatic lymph node (SPDO1LM) were established with unique STRs and karyotypes. The organoid lines resulted in tumorigenesis in vivo and had clear genetic profiles. Compared to SPDO1P from primary cancer, upregulated genes of SPDO1LM from the metastatic lymph node were enriched in pathways of epithelial-mesenchymal transition and angiogenesis with stronger abilities of cell migration, invasion, and pro-angiogenesis. Based on drug sensitivity analysis, the SOX regimen (5-Fu plus oxaliplatin) was used for chemotherapy with an optimal clinical outcome. CONCLUSIONS: The organoid lines recapitulate the drug sensitivity of the parental tissues. The paired organoid lines present a step-change toward living biobanks for further translational usage.


Subject(s)
Lymphatic Metastasis , Mice, Nude , Organoids , Precision Medicine , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/drug therapy , Organoids/drug effects , Organoids/pathology , Humans , Animals , Lymphatic Metastasis/pathology , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Carcinogenesis/pathology , Carcinogenesis/genetics , Carcinogenesis/drug effects , Mice , Microsatellite Repeats/genetics
10.
J Control Release ; 374: 112-126, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39117112

ABSTRACT

Primary sclerosing cholangitis (PSC) is a challenging cholestatic liver disease marked by progressive bile duct inflammation and fibrosis that has no FDA-approved therapy. Although obeticholic acid (OCA) has been sanctioned for PSC, its clinical utility in PSC is constrained by its potential hepatotoxicity. Here, we introduce a novel therapeutic construct consisting of OCA encapsulated within a reactive oxygen species (ROS)-responsive, biodegradable polymer, further cloaked with human placenta-derived mesenchymal stem cell (hP-MSC) membrane (MPPFTU@OCA). Using PSC patient-derived organoid models, we assessed its cellular uptake and cytotoxicity. Moreover, using a PSC mouse model induced by 3,5-diethoxycarbonyl-1,4-dihydro-collidine (DDC), we demonstrated that intravenous administration of MPPFTU@OCA not only improved cholestasis via the FXR-SHP pathway but also reduced macrophage infiltration and the accumulation of intracellular ROS, and alleviated mitochondria-induced apoptosis. Finally, we verified the ability of MPPFTU@OCA to inhibit mitochondrial ROS thereby alleviating apoptosis by measuring the mitochondrial adenosine triphosphate (ATP) concentration, ROS levels, and membrane potential (ΔΨm) using H2O2-stimulated PSC-derived organoids. These results illuminate the synergistic benefits of integrating an ROS-responsive biomimetic platform with OCA, offering a promising therapeutic avenue for PSC.

11.
Organogenesis ; 20(1): 2386727, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39126669

ABSTRACT

With the rapid development of the field of life sciences, traditional 2D cell culture and animal models have long been unable to meet the urgent needs of modern biomedical research and new drug development. Establishing a new generation of experimental models and research models is of great significance for deeply understanding human health and disease processes, and developing effective treatment measures. As is well known, long research and development cycles, high risks, and high costs are the "three mountains" facing the development of new drugs today. Organoids and organ-on-chips technology can highly simulate and reproduce the human physiological environment and complex reactions in vitro, greatly improving the accuracy of drug clinical efficacy prediction, reducing drug development costs, and avoiding the defects of drug testing animal models. Therefore, organ-on-chips have enormous potential in medical diagnosis and treatment.


Subject(s)
Lab-On-A-Chip Devices , Organoids , Humans , Animals , Microphysiological Systems
12.
Front Immunol ; 15: 1422031, 2024.
Article in English | MEDLINE | ID: mdl-39136020

ABSTRACT

The tumor microenvironment (TME) contains cells that regulate medication response and cancer growth in a major way. Tumor immunology research has been rejuvenated and cancer treatment has been changed by immunotherapy, a rapidly developing therapeutic approach. The growth patterns of tumor cells in vivo and the heterogeneity, complexity, and individuality of tumors produced from patients are not reflected in traditional two-dimensional tumor cell profiles. On the other hand, an in vitro three-dimensional (3D) model called the organoid model is gaining popularity. It can replicate the physiological and pathological properties of the original tissues in vivo. Tumor cells are the source of immune organoids. The TME characteristics can be preserved while preserving the variety of tumors by cultivating epithelial tumor cells with various stromal and immunological components. In addition to having genetic and physical similarities to human diseases and the ability to partially reconstruct the complex structure of tumors, these models are now widely used in research fields including cancer, developmental biology, regenerative mechanisms, drug development, disease modeling, and organ transplantation. This study reviews the function of organoids in immunotherapy and the tumor immune milieu. We also discuss current developments and suggest translational uses of tumor organoids in immuno-oncology research, immunotherapy modeling, and precision medicine.


Subject(s)
Immunotherapy , Neoplasms , Organoids , Tumor Microenvironment , Humans , Organoids/immunology , Tumor Microenvironment/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/pathology , Animals , Immunotherapy/methods , Precision Medicine
13.
Front Cell Dev Biol ; 12: 1412337, 2024.
Article in English | MEDLINE | ID: mdl-39092186

ABSTRACT

The functional heterogeneity and ecological niche of prostate cancer stem cells (PCSCs), which are major drivers of prostate cancer development and treatment resistance, have attracted considerable research attention. Cancer-associated fibroblasts (CAFs), which are crucial components of the tumor microenvironment (TME), substantially affect PCSC stemness. Additionally, CAFs promote PCSC growth and survival by releasing signaling molecules and modifying the surrounding environment. Conversely, PCSCs may affect the characteristics and behavior of CAFs by producing various molecules. This crosstalk mechanism is potentially crucial for prostate cancer progression and the development of treatment resistance. Using organoids to model the TME enables an in-depth study of CAF-PCSC interactions, providing a valuable preclinical tool to accurately evaluate potential target genes and design novel treatment strategies for prostate cancer. The objective of this review is to discuss the current research on the multilevel and multitarget regulatory mechanisms underlying CAF-PCSC interactions and crosstalk, aiming to inform therapeutic approaches that address challenges in prostate cancer treatment.

14.
Environ Pollut ; 360: 124645, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39095001

ABSTRACT

Microplastics (MPs) have emerged as a pervasive environmental pollutant of global concern. Their detection within the human placenta and fetal organs has prompted apprehension regarding the potential hazards of MPs during early organogenesis. The kidney, a vital multifunctional organ, is susceptible to damage from MPs in adulthood. However, the precise adverse effects of MP exposure on human nephrogenesis remain ambiguous due to the absence of a suitable model. Here, we explore the potential impact of MPs on early kidney development utilizing human kidney organoids in vitro. Human kidney organoids were subjected to polystyrene-MPs (PS-MPs, 1 µm) during the nephron progenitor cell (NPC) stage, a critical phase in early kidney development and patterning. We delineate the effects of PS-MPs on various stages of nephrogenesis, including NPC, renal vesicle, and comma-shaped body, through sequential examination of kidney organoids. PS-MPs were observed to adhere to the surface of cells during the NPC stage and accumulate within glomerulus-like structures within kidney organoids. Moreover, both short- and long-term exposure to PS-MPs resulted in diminished organoid size and aberrant nephron structure. PS-MP exposure heightened reactive oxygen species (ROS) production, leading to NPC apoptosis during early kidney development. Increased apoptosis, diminished cell viability, and NPC reduction likely contribute to the observed organoid size reduction under PS-MP treatment. Transcriptomic analysis at both NPC and endpoint stages revealed downregulation of Notch signaling, resulting in compromised proximal and distal tubular structures, thereby disrupting normal nephron patterning following PS-MP exposure. Our findings highlight the significant disruptive impact of PS-MPs on human kidney development, offering new insights into the mechanisms underlying PS-MP-induced nephron toxicity.

15.
Transpl Int ; 37: 12708, 2024.
Article in English | MEDLINE | ID: mdl-39100755

ABSTRACT

Liver transplantation is the only curative option for many liver diseases that end up in liver failure, and cholangiopathy remains a challenging complication post-liver transplant, associated with significant morbidity and potential graft loss. The low availability of organs and high demand for transplantation motivate scientists to find novel interventions. Organoids, as three-dimensional cell cultures derived from adult cells or induced pluripotent cells, may help to address this problem. Different types of organoids have been described, from which cholangiocyte organoids offer a high level of versatility and plasticity for a deeper study of liver disease mechanisms. Cholangiocytes can be obtained from different segments of the biliary tree and have shown a remarkable capacity to adapt to new environments, presenting an effective system for studying cholangiopathies. Studies using cholangiocyte organoids show promising results for disease modeling, where organoids offer fundamental features to recapitulate the complexities of tissues in vitro and uncover fundamental pathological pathways to potentially reveal therapeutic strategies for personalized medicine. Organoids could hold the potential for regeneration of injured livers, representing tools of clinical impact in regenerative medicine when tissue damage is already present.


Subject(s)
Liver Transplantation , Organoids , Humans , Liver Transplantation/adverse effects , Animals , Bile Ducts/cytology , Liver/cytology , Liver/pathology , Induced Pluripotent Stem Cells/cytology , Regenerative Medicine/methods , Liver Diseases/surgery , Liver Diseases/therapy , Liver Diseases/pathology
16.
Hum Cell ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103559

ABSTRACT

The choroid plexus (CP), a highly vascularized endothelial-epithelial convolute, is placed in the ventricular system of the brain and produces a large part of the cerebrospinal fluid (CSF). Additionally, the CP is the location of a blood-CSF barrier (BCSFB) that separates the CSF from the blood stream in the CP endothelium. In vitro models of the CP and the BCSFB are of high importance to investigate the biological functions of the CP and the BCSFB. Since the CP is involved in several serious diseases, these in vitro models promise help in researching the processes contributing to the diseases and during the development of treatment options. In this review, we provide an overview on the available models and the advances that have been made toward more sophisticated and "in vivo near" systems as organoids and microfluidic lab-on-a-chip approaches. We go into the applications and research objectives for which the various modeling systems can be used and discuss the possible future prospects and perspectives.

17.
Pediatr Pulmonol ; 59 Suppl 1: S98-S106, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39105342

ABSTRACT

Hepatobiliary complications of Cystic Fibrosis (CF) constitute a significant burden for persons with CF of all ages, with advanced CF liver disease in particular representing a leading cause of mortality. The causes of the heterogeneity of clinical manifestations, ranging from steatosis to focal biliary cholestasis and biliary strictures, are poorly understood and likely reflect a variety of environmental and disease-modifying factors in the setting of underlying CFTR mutations. This review summarizes the current understanding of the pathophysiology of hepatobiliary manifestations of CF, and discusses emerging disease models and therapeutic approaches that hold promise to impact this important yet incompletely addressed aspect of CF care.


Subject(s)
Cystic Fibrosis , Liver Diseases , Cystic Fibrosis/physiopathology , Cystic Fibrosis/complications , Cystic Fibrosis/genetics , Humans , Liver Diseases/physiopathology , Liver Diseases/etiology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Mutation
19.
J Pediatr Surg ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39048421

ABSTRACT

BACKGROUND: The cause of duodenal atresia (DA) is not known. Tandler's "solid cord" hypothesis conflicts with current biological evidence. In humans, a genetic aetiology is supported by the association with Trisomy 21. Interruption of Fgf10 is the strongest genetic link to DA in mice, demonstrating an increased incidence and severity as embryos mature. This project aimed to develop an organoid model to facilitate ex vivo DA research on the FGF10/FGFR2b signalling pathway. We hypothesised that DA morphology represents an evolving spectrum of disease and that Fgf10 knockout organoids would vary in growth pattern compared to wild-type. METHODS: Organoids were cultured from the duodenum of E12.5 Fgf10 knockout, heterozygous and wild-type embryos, using an air-liquid interface with Growth Factor reduced Matrigel. Organoids were photographed every 48 h to observe growth. Organoids were isolated and fixed after 14 days, then stained with DAPI, KI-67, and cytokeratin to demonstrate proliferation and differentiation. RESULTS: Wild-type duodenum developed into crypt-forming organoids. Fgf10 heterozygous duodenum failed to progress beyond the development stage of spheroids. Fgf10 knockout duodenum failed to demonstrate any growth. Wholemount staining showed the greatest cell proliferation and differentiation in wild-type tissue. CONCLUSION: This research presents a novel concept for the growth of embryonic gastrointestinal tissue to inform normal biology. The small sample numbers and restricted culture duration limit longer-term growth analysis. While this model serves as a potential ex vivo setting for future research, that research should consider organoid models with greater standardisation and other gastrointestinal regions. LEVEL OF EVIDENCE: Animal/laboratory study.

20.
J Microbiol Biotechnol ; 34(8): 1-7, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39049484

ABSTRACT

This study evaluates the efficacy of a decellularized intestine tissue-derived extracellular matrix (Intestine ECM) as a scaffold for culturing colorectal cancer (CRC) organoids and establishing cellderived xenograft (CDX) models, comparing its performance to traditional Matrigel. Intestine ECM demonstrates comparable support for organoid formation and cellular function, highlighting its potential as a more physiologically relevant and reproducible platform. Our findings suggest that Intestine ECM enhances the mimetic environment for colon epithelium, supporting comparable growth and improved differentiation compared to Matrigel. Moreover, when used as a delivery carrier, Intestine ECM significantly increases the growth rate of CDX models using patient-derived primary colorectal cancer cells. This enhancement demonstrates Intestine ECM's role not only as a scaffold but also as a vital component of the tumor microenvironment, facilitating more robust tumorigenesis. These findings advocate for the broader application of Intestine ECM in cancer model systems, potentially leading to more accurate preclinical evaluations and the development of targeted cancer therapies.

SELECTION OF CITATIONS
SEARCH DETAIL