Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters








Publication year range
1.
New Phytol ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39312406

ABSTRACT

We explored the adaptive mechanisms of Ostreococcus tauri, a marine picophytoplankton with a ubiquitous ocean presence. We aimed to understand its photosynthetic acclimation, as featured in the cryo-EM structure of its photosystem I (PSI) supercomplex. This structure revealed a unique composition involving a phosphorylated Lhcp trimer bound to the PSI core along with two additional Lhcp trimers, suggesting potential state transitions for photoacclimation. To investigate this hypothesis, we conducted a series of biochemical and physiological experiments. We analyzed absorption spectra to differentiate between PSI and PSII, particularly focusing on blue-green wavelengths, and examined the effects of specific excitation of Lhcp with green light, including its phosphorylation and the formation of the PSI-LHCI-Lhcp supercomplex. Our experiments clarified the distinctive effects attributable to absorption by pigments associated with Lhcp. Exciting Lhcp with green light induced its phosphorylation, leading to the formation of the PSI-LHCI-Lhcp supercomplex. Notably, the functional antenna size of PSI could reversibly expand in response to green light, demonstrating its state transition capability. These findings not only highlight the unique photosynthetic acclimation adapted to the marine environment but also suggest a possible ancestral role of state transitions in green plants, given the phylogenetic position of Prasinophyceae.

2.
Plant Cell Physiol ; 65(6): 1029-1046, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38252418

ABSTRACT

Sphingolipids (SLs) are ubiquitous components of eukaryotic cell membranes and are found in some prokaryotic organisms and viruses. They are composed of a sphingoid backbone that may be acylated and glycosylated. Assembly of various sphingoid base, fatty acyl and glycosyl moieties results in highly diverse structures. The functional significance of variations in SL chemical diversity and abundance is still in the early stages of investigation. Among SL modifications, Δ8-desaturation of the sphingoid base occurs only in plants and fungi. In plants, SL Δ8-unsaturation is involved in cold hardiness. Our knowledge of the structure and functions of SLs in microalgae lags far behind that of animals, plants and fungi. Original SL structures have been reported from microalgae. However, functional studies are still missing. Ostreococcus tauri is a minimal microalga at the base of the green lineage and is therefore a key organism for understanding lipid evolution. In the present work, we achieved the detailed characterization of O. tauri SLs and unveiled unique glycosylceramides as sole complex SLs. The head groups are reminiscent of bacterial SLs, as they contain hexuronic acid residues and can be polyglycosylated. Ceramide backbones show a limited variety, and SL modification is restricted to Δ8-unsaturation. The Δ8-SL desaturase from O. tauri only produced E isomers. Expression of both Δ8-SL desaturase and Δ8-unsaturation of sphingolipids varied with temperature, with lower levels at 24°C than at 14°C. Overexpression of the Δ8-SL desaturase dramatically increases the level of Δ8 unsaturation at 24°C and is paralleled by a failure to increase cell size. Our work provides the first characterization of O. tauri SLs and functional evidence for the involvement of SL Δ8-unsaturation for temperature acclimation in microalgae, suggesting that this function is an ancestral feature in the green lineage.


Subject(s)
Chlorophyta , Sphingolipids , Temperature , Sphingolipids/metabolism , Chlorophyta/metabolism , Chlorophyta/genetics , Microalgae/metabolism
3.
Plant J ; 116(3): 650-668, 2023 11.
Article in English | MEDLINE | ID: mdl-37531328

ABSTRACT

Circadian regulation produces a biological measure of time within cells. The daily cycle in the availability of light for photosynthesis causes dramatic changes in biochemical processes in photosynthetic organisms, with the circadian clock having crucial roles in adaptation to these fluctuating conditions. Correct alignment between the circadian clock and environmental day-night cycles maximizes plant productivity through its regulation of metabolism. Therefore, the processes that integrate circadian regulation with metabolism are key to understanding how the circadian clock contributes to plant productivity. This forms an important part of exploiting knowledge of circadian regulation to enhance sustainable crop production. Here, we examine the roles of circadian regulation in metabolic processes in source and sink organ structures of Arabidopsis. We also evaluate possible roles for circadian regulation in root exudation processes that deposit carbon into the soil, and the nature of the rhythmic interactions between plants and their associated microbial communities. Finally, we examine shared and differing aspects of the circadian regulation of metabolism between Arabidopsis and other model photosynthetic organisms, and between circadian control of metabolism in photosynthetic and non-photosynthetic organisms. This synthesis identifies a variety of future research topics, including a focus on metabolic processes that underlie biotic interactions within ecosystems.


Subject(s)
Arabidopsis , Circadian Clocks , Circadian Rhythm/physiology , Arabidopsis/metabolism , Ecosystem , Photosynthesis/physiology , Circadian Clocks/physiology , Gene Expression Regulation, Plant
4.
Elife ; 122023 03 23.
Article in English | MEDLINE | ID: mdl-36951548

ABSTRACT

As a ubiquitous picophytoplankton in the ocean and an early-branching green alga, Ostreococcus tauri is a model prasinophyte species for studying the functional evolution of the light-harvesting systems in photosynthesis. Here, we report the structure and function of the O. tauri photosystem I (PSI) supercomplex in low light conditions, where it expands its photon-absorbing capacity by assembling with the light-harvesting complexes I (LHCI) and a prasinophyte-specific light-harvesting complex (Lhcp). The architecture of the supercomplex exhibits hybrid features of the plant-type and the green algal-type PSI supercomplexes, consisting of a PSI core, an Lhca1-Lhca4-Lhca2-Lhca3 belt attached on one side and an Lhca5-Lhca6 heterodimer associated on the other side between PsaG and PsaH. Interestingly, nine Lhcp subunits, including one Lhcp1 monomer with a phosphorylated amino-terminal threonine and eight Lhcp2 monomers, oligomerize into three trimers and associate with PSI on the third side between Lhca6 and PsaK. The Lhcp1 phosphorylation and the light-harvesting capacity of PSI were subjected to reversible photoacclimation, suggesting that the formation of OtPSI-LHCI-Lhcp supercomplex is likely due to a phosphorylation-dependent mechanism induced by changes in light intensity. Notably, this supercomplex did not exhibit far-red peaks in the 77 K fluorescence spectra, which is possibly due to the weak coupling of the chlorophyll a603-a609 pair in OtLhca1-4.


Subject(s)
Chlorophyta , Photosystem I Protein Complex , Photosystem I Protein Complex/chemistry , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Chlorophyll , Photosynthesis , Chlorophyta/metabolism
5.
Int J Mol Sci ; 24(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36768595

ABSTRACT

Biological rhythms are ubiquitous across organisms and coordinate key cellular processes. Oscillations of Mg2+ levels in cells are now well-established, and due to the critical roles of Mg2+ in cell metabolism, they are potentially fundamental for the circadian control of cellular activity. The identity of the transport proteins responsible for sustaining Mg2+ levels in eukaryotic cells remains hotly debated, and several are restricted to specific groups of higher eukaryotes. Here, using the eukaryotic minimal model cells of Ostreococcus tauri, we report two homologs of common descents of the Cyclin M (CNNM)/CorC protein family. Overexpression of these proteins leads to a reduction in the overall magnesium content of cells and a lengthening of the period of circadian gene expression rhythms. However, we observed a paradoxical increase in the magnesium content of the organelle fraction. The chemical inhibition of Mg2+ transport has a synergistic effect on circadian period lengthening upon the overexpression of one CNNM homolog, but not the other. Finally, both homologs rescue the deleterious effect of low extracellular magnesium on cell proliferation rates. Overall, we identified two CNNM proteins that directly affect Mg2+ homeostasis and cellular rhythms.


Subject(s)
Circadian Clocks , Cyclins , Magnesium/metabolism , Eukaryotic Cells/metabolism , Circadian Rhythm , Homeostasis
6.
Biochim Biophys Acta Gen Subj ; 1867(3): 130304, 2023 03.
Article in English | MEDLINE | ID: mdl-36627087

ABSTRACT

BACKGROUND: Light, oxygen and voltage (LOV) proteins detect blue light by formation of a covalent 'photoadduct' between the flavin chromophore and the neighboring conserved cysteine residue. LOV proteins devoid of this conserved photoactive cysteine are unable to form this 'photoadduct' upon light illumination, but they can still elicit functional response via the formation of neutral flavin radical. Recently, tryptophan residue has been shown to be the primary electron donors to the flavin excited state. METHODS: Photoactive cysteine (Cys42) and tryptophan (Trp68) residues in the LOV1 domain of phototropin1 of Ostreococcus tauri (OtLOV1) was mutated to alanine and threonine respectively. Effect of these mutations have been studied using molecular dynamics simulation and spectroscopic techniques. RESULTS: Molecular dynamics simulation indicated that W68T did not affect the structure of OtLOV1 protein, but C42A leads to some structural changes. An increase in the fluorescence lifetime and quantum yield values was observed for the Trp68 mutant. CONCLUSIONS: An increase in the fluorescence lifetime and quantum yield of Trp68 mutant compared to the wild type protein suggests that Trp68 residue participates in quenching of the flavin excited state followed by photoexcitation. GENERAL SIGNIFICANCE: Enhanced photo-physical properties of Trp68 OtLOV1 mutant might enable its use for the optogenetic and microscopic applications.


Subject(s)
Molecular Dynamics Simulation , Tryptophan , Tryptophan/genetics , Cysteine/chemistry , Light , Mutation
7.
Plant Mol Biol ; 108(4-5): 363-378, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34546521

ABSTRACT

Ostreococcus tauri is a picoalga that contains a small and compact genome, which resembles that of higher plants in the multiplicity of enzymes involved in starch synthesis (ADP-glucose pyrophosphorylase, ADPGlc PPase; granule bound starch synthase, GBSS; starch synthases, SSI, SSII, SSIII; and starch branching enzyme, SBE, between others), except starch synthase IV (SSIV). Although its genome is fully sequenced, there are still many genes and proteins to which no function was assigned. Here, we identify the OT_ostta06g01880 gene that encodes CBM20CP, a plastidial protein which contains a central carbohydrate binding domain of the CBM20 family, and a coiled coil domain at the C-terminus that lacks catalytic activity. We demonstrate that CBM20CP has the ability to bind starch, amylose and amylopectin with different affinities. Furthermore, this protein interacts with OsttaSSIII-B, increasing its binding to starch granules, its catalytic efficiency and promoting granule growth. The results allow us to postulate a functional role for CBM20CP in starch metabolism in green algae. KEY MESSAGE: CBM20CP, a plastidial protein that has a modular structure but lacks catalytic activity, regulates the synthesis of starch in Ostreococcus tauri.


Subject(s)
Algal Proteins/metabolism , Chlorophyta/metabolism , Starch/metabolism , Algal Proteins/genetics , Amino Acid Sequence , Amylopectin/metabolism , Amylose/metabolism , Chlorophyta/enzymology , Chlorophyta/genetics , Cloning, Molecular , Plastids , Protein Binding , Sequence Alignment
8.
Nitric Oxide ; 119: 41-49, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34942379

ABSTRACT

Nitric oxide synthase (NOS) catalyzes NO formation from the substrate l-arginine (Arg). Previously, NOS with distinct biochemical properties were characterized from two photosynthetic microorganisms, the unicellular algae Ostreococcus tauri (OtNOS) and the cyanobacteria Synechococcus PCC 7335 (SyNOS). In this work we studied the effect of recombinant OtNOS and SyNOS expressed under IPTG-induced promoter in E. coli, a bacterium that lacks NOS. Results show that OtNOS and SyNOS expression promote E. coli growth in a nutrient replete medium and allow to better metabolize Arg as N source. In LB medium, OtNOS induces the expression of the NO dioxygenase hmp in E. coli, in accordance with high NO levels visualized with the probe DAF-FM DA. In contrast, SyNOS expression does not induce hmp and show a slight increase of NO production compared to OtNOS. NOS expression reduces ROS production and increases viability of E. coli cultures growing in LB. A strong nitrosative stress provoked by the addition of 1 mM of the NO donors sodium nitroprusside (SNP) and nitrosoglutathione (GSNO) inhibits bacterial growth rate. Under these conditions, the expression of OtNOS or SyNOS counteracts NO donor toxicity restoring bacterial growth. Finally, using bioinformatic tools and ligand docking analyses, we postulate that tetrahydromonapterin (MH4), an endogenous pterin found in E. coli, could act as cofactor required for NOS catalytic activity. Our findings could be useful for the development of biotechnological applications using NOS expression to improve growth in NOS-lacking bacteria.


Subject(s)
Biopterins/analogs & derivatives , Coenzymes/metabolism , Escherichia coli/growth & development , Nitric Oxide Synthase/metabolism , Nitrosative Stress/physiology , Algal Proteins/chemistry , Algal Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biopterins/chemistry , Biopterins/metabolism , Chlorophyta/enzymology , Coenzymes/chemistry , Escherichia coli/metabolism , Molecular Docking Simulation , Nitric Oxide/metabolism , Nitric Oxide Synthase/chemistry , Protein Binding , Reactive Oxygen Species/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Synechococcus/enzymology
9.
Arch Biochem Biophys ; 708: 108898, 2021 09 15.
Article in English | MEDLINE | ID: mdl-33957092

ABSTRACT

NAD+-linked isocitrate dehydrogenases (NAD-IDHs) catalyze the oxidative decarboxylation of isocitrate into α-ketoglutarate. Previously, we identified a novel phylogenetic clade including NAD-IDHs from several algae in the type II subfamily, represented by homodimeric NAD-IDH from Ostreococcus tauri (OtIDH). However, due to its lack of a crystalline structure, the molecular mechanisms of the ligand binding and catalysis of OtIDH are little known. Here, we elucidate four high-resolution crystal structures of OtIDH in a ligand-free and various ligand-bound forms that capture at least three states in the catalytic cycle: open, semi-closed, and fully closed. Our results indicate that OtIDH shows several novel interactions with NAD+, unlike type I NAD-IDHs, as well as a strictly conserved substrate binding mode that is similar to other homologs. The central roles of Lys283' in dual coenzyme recognition and Lys234 in catalysis were also revealed. In addition, the crystal structures obtained here also allow us to understand the catalytic mechanism. As expected, structural comparisons reveal that OtIDH has a very high structural similarity to eukaryotic NADP+-linked IDHs (NADP-IDHs) within the type II subfamily rather than with the previously reported NAD-IDHs within the type I subfamily. It has also been demonstrated that OtIDH exhibits substantial conformation changes upon ligand binding, similar to eukaryotic NADP-IDHs. These results unambiguously support our hypothesis that OtIDH and OtIDH-like homologs are possible evolutionary ancestors of eukaryotic NADP-IDHs in type II subfamily.


Subject(s)
Chlorophyta/enzymology , Evolution, Molecular , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/metabolism , NADP/metabolism , NAD/metabolism , Sequence Homology, Amino Acid , Amino Acid Sequence , Coenzymes/metabolism , Crystallography, X-Ray , Models, Molecular , Phylogeny , Protein Multimerization , Protein Structure, Quaternary
10.
Front Plant Sci ; 12: 639330, 2021.
Article in English | MEDLINE | ID: mdl-33815446

ABSTRACT

Alteration of fatty-acid unsaturation is a universal response to temperature changes. Marine microalgae display the largest diversity of polyunsaturated fatty-acid (PUFA) whose content notably varies according to temperature. The physiological relevance and the molecular mechanisms underlying these changes are however, still poorly understood. The ancestral green picoalga Ostreococcus tauri displays original lipidic features that combines PUFAs from two distinctive microalgal lineages (Chlorophyceae, Chromista kingdom). In this study, optimized conditions were implemented to unveil early fatty-acid and desaturase transcriptional variations upon chilling and warming. We further functionally characterized the O. tauri ω3-desaturase which is closely related to ω3-desaturases from Chromista species. Our results show that the overall omega-3 to omega-6 ratio is swiftly and reversibly regulated by temperature variations. The proportion of the peculiar 18:5 fatty-acid and temperature are highly and inversely correlated pinpointing the importance of 18:5 temperature-dependent variations across kingdoms. Chilling rapidly and sustainably up-regulated most desaturase genes. Desaturases involved in the regulation of the C18-PUFA pool as well as the Δ5-desaturase appear to be major transcriptional targets. The only ω3-desaturase candidate, related to ω3-desaturases from Chromista species, is localized at chloroplasts in Nicotiana benthamiana and efficiently performs ω3-desaturation of C18-PUFAs in Synechocystis sp. PCC6803. Overexpression in the native host further unveils a broad impact on plastidial and non-plastidial glycerolipids illustrated by the alteration of omega-3/omega-6 ratio in C16-PUFA and VLC-PUFA pools. Global glycerolipid features of the overexpressor recall those of chilling acclimated cells.

11.
Front Microbiol ; 11: 1559, 2020.
Article in English | MEDLINE | ID: mdl-32765451

ABSTRACT

One of the major challenges in viral ecology is to assess the impact of viruses in controlling the abundance of specific hosts in the environment. To this end, techniques that enable the detection and quantification of virus-host interactions at the single-cell level are essential. With this goal in mind, we implemented virus fluorescence in situ hybridization (VirusFISH) using as a model the marine picoeukaryote Ostreococcus tauri and its virus Ostreococcus tauri virus 5 (OtV5). VirusFISH allowed the visualization and quantification of the proportion of infected cells during an infection cycle in experimental conditions. We were also able to quantify the abundance of free viruses released during cell lysis, discriminating OtV5 from other mid-level fluorescence phages in our non-axenic infected culture that were not easily distinguishable with flow cytometry. Our results showed that although the major lysis of the culture occurred between 24 and 48 h after OtV5 inoculation, some new viruses were already produced between 8 and 24 h. With this work, we demonstrate that VirusFISH is a promising technique to study specific virus-host interactions in non-axenic cultures and establish a framework for its application in complex natural communities.

12.
Metabolites ; 10(7)2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32635273

ABSTRACT

Marine phytoplankton, comprising cyanobacteria, micro- and pico-algae are key to photosynthesis, oxygen production and carbon assimilation on Earth. The unicellular green picoalga Ostreococcus tauri holds a key position at the base of the green lineage of plants, which makes it an interesting model organism. O. tauri has adapted to survive in low levels of nitrogen and phosphorus in the open ocean and also during rapid changes in the levels of these nutrients in coastal waters. In this study, we have employed untargeted proteomic and lipidomic strategies to investigate the molecular responses of O. tauri to low-nitrogen and low-phosphorus environments. In the absence of external nitrogen, there was an elevation in the expression of ammonia and urea transporter proteins together with an accumulation of triglycerides. In phosphate-limiting conditions, the expression levels of phosphokinases and phosphate transporters were increased, indicating an attempt to maximise scavenging opportunities as opposed to energy conservation conditions. The production of betaine lipids was also elevated, highlighting a shift away from phospholipid metabolism. This finding was supported by the putative identification of betaine synthase in O. tauri. This work offers additional perspectives on the complex strategies that underpin the adaptive processes of the smallest known free-living eukaryote to alterations in environmental conditions.

13.
Mar Drugs ; 18(1)2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31861403

ABSTRACT

Marine microalgae are known to be a source of bioactive molecules of interest to human health, such as n-3 polyunsaturated fatty acids (n-3 PUFAs) and carotenoids. The fact that some of these natural compounds are known to exhibit anti-inflammatory, antioxidant, anti-proliferative, and apoptosis-inducing effects, demonstrates their potential use in preventing cancers and cardiovascular diseases (CVDs). Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon (PAH), is an ubiquitous environmental pollutant known to contribute to the development or aggravation of human diseases, such as cancer, CVDs, and immune dysfunction. Most of these deleterious effects are related to the activation of the polycyclic aromatic hydrocarbon receptor (AhR). In this context, two ethanolic microalgal extracts with concentrations of 0.1 to 5 µg/mL are tested, Ostreoccoccus tauri (OT) and Phaeodactylum tricornutum (PT), in order to evaluate and compare their potential effects towards B[a]P-induced toxicity in endothelial HMEC-1 cells. Our results indicate that the OT extract can influence the toxicity of B[a]P. Indeed, apoptosis and the production of extracellular vesicles were decreased, likely through the reduction of the expression of CYP1A1, a B[a]P bioactivation enzyme. Furthermore, the B[a]P-induced expression of the inflammatory cytokines IL-8 and IL1-ß was reduced. The PT extract only inhibited the expression of the B[a]P-induced cytokine IL-8 expression. The OT extract therefore seems to be a good candidate for counteracting the B[a]P toxicity.


Subject(s)
Benzo(a)pyrene/toxicity , Biological Products/pharmacology , Microalgae/chemistry , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Cytochrome P-450 CYP1A1/metabolism , Cytokines/drug effects , Endothelial Cells , Extracellular Vesicles/drug effects , Extracellular Vesicles/ultrastructure , Humans , Oceans and Seas
14.
Genes (Basel) ; 10(2)2019 02 19.
Article in English | MEDLINE | ID: mdl-30791470

ABSTRACT

Circadian clocks in eukaryotes involve both transcriptional-translational feedback loops, post-translational regulation, and metabolic, non-transcriptional oscillations. We recently identified the involvement of circadian oscillations in the intracellular concentrations of magnesium ions (Mg2+i) that were conserved in three eukaryotic kingdoms. Mg2+i in turn contributes to transcriptional clock properties of period and amplitude, and can function as a zeitgeber to define phase. However, the mechanism-or mechanisms-responsible for the generation of Mg2+i oscillations, and whether these are functionally conserved across taxonomic groups, remain elusive. We employed the cellular clock model Ostreococcustauri to provide a first study of an MgtE domain-containing protein in the green lineage. OtMgtE shares homology with the mammalian SLC41A1 magnesium/sodium antiporter, which has previously been implicated in maintaining clock period. Using genetic overexpression, we found that OtMgtE contributes to both timekeeping and daily changes in Mg2+i. However, pharmacological experiments and protein sequence analyses indicated that critical differences exist between OtMgtE and either the ancestral MgtE channel or the mammalian SLC41 antiporters. We concluded that even though MgtE domain-containing proteins are only distantly related, these proteins retain a shared role in contributing to cellular timekeeping and the regulation of Mg2+i.


Subject(s)
Antiporters/genetics , Bacterial Proteins/genetics , Cation Transport Proteins/genetics , Chlorophyta/genetics , Circadian Rhythm , Magnesium/metabolism , Plant Proteins/genetics , Chlorophyta/physiology , Plant Proteins/metabolism
15.
Front Plant Sci ; 9: 1564, 2018.
Article in English | MEDLINE | ID: mdl-30425723

ABSTRACT

ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step for the synthesis of glycogen in cyanobacteria and starch in green algae and plants. The enzyme from cyanobacteria is homotetrameric (α4), while that from green algae and plants is heterotetrameric (α2ß2). These ADP-Glc PPases are allosterically regulated by 3-phosphoglycerate (3PGA, activator) and inorganic orthophosphate (Pi, inhibitor). Previous studies on the cyanobacterial and plant enzymes showed that 3PGA binds to two highly conserved Lys residues located in the C-terminal domain. We observed that both Lys residues are present in the small (α) subunit of the Ostreococcus tauri enzyme; however, one of these Lys residues is replaced by Arg in the large (ß) subunit. In this work, we obtained the K443R and R466K mutants of the O. tauri small and large subunits, respectively, and co-expressed them together or with their corresponding wild type counterparts. Our results show that restoring the Lys residue in the large subunit enhanced 3PGA affinity, whereas introduction of an Arg residue in the small subunit reduced 3PGA affinity of the heterotetramers. Inhibition kinetics also showed that heterotetramers containing the K443R small subunit mutant were less sensitive to Pi inhibition, but only minor changes were observed for those containing the R466K large subunit mutant, suggesting a leading role of the small subunit for Pi inhibition of the heterotetramer. We conclude that, during evolution, the ADP-Glc PPase large subunit from green algae and plants acquired mutations in its regulatory site. The rationale for this could have been to accommodate sensitivity to particular metabolic needs of the cell or tissue.

16.
Viruses ; 10(8)2018 08 19.
Article in English | MEDLINE | ID: mdl-30126244

ABSTRACT

Prasinoviruses are large dsDNA viruses commonly found in aquatic systems worldwide, where they can infect and lyse unicellular prasinophyte algae such as Ostreococcus. Host susceptibility is virus strain-specific, but resistance of susceptible Ostreococcus tauri strains to a virulent virus arises frequently. In clonal resistant lines that re-grow, viruses are usually present for many generations, and genes clustered on chromosome 19 show physical rearrangements and differential expression. Here, we investigated changes occurring during the first two weeks after inoculation of the prasinovirus OtV5. By serial dilutions of cultures at the time of inoculation, we estimated the frequency of resistant cells arising in virus-challenged O. tauri cultures to be 10-3⁻10-4 of the inoculated population. Re-growing resistant cells were detectable by flow cytometry 3 days post-inoculation (dpi), visible re-greening of cultures occurred by 6 dpi, and karyotypic changes were visually detectable at 8 dpi. Resistant cell lines showed a modified spectrum of host-virus specificities and much lower levels of OtV5 adsorption.


Subject(s)
Adaptation, Physiological/genetics , Chlorophyta/genetics , DNA, Viral/genetics , Genome, Viral , Microalgae/genetics , Phycodnaviridae/growth & development , Adaptation, Physiological/immunology , Chlorophyta/immunology , Chlorophyta/virology , Chromosomes, Plant/chemistry , Chromosomes, Plant/immunology , DNA, Viral/immunology , Disease Resistance/genetics , Host Specificity , Karyotype , Microalgae/immunology , Microalgae/virology , Phycodnaviridae/pathogenicity , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/virology , Time Factors
17.
Plant Physiol Biochem ; 126: 39-46, 2018 May.
Article in English | MEDLINE | ID: mdl-29499434

ABSTRACT

Ostreococcus tauri is the smallest free-living unicellular organism with one copy of each core cell cycle genes in its genome. There is a growing interest in this green algae due to its evolutionary origin. Since O. tauri is diverged early in the green lineage, relatively close to the ancestral eukaryotic cell, it might hold a key phylogenetic position in the eukaryotic tree of life. In this study, we focus on the regulatory network of its cell division cycle. We propose a mathematical modelling framework to integrate the existing knowledge of cell cycle network of O. tauri. We observe that feedback loop regulation of both G1/S and G2/M transitions in O. tauri is conserved, which can make the transition bistable. This is essential to make the transition irreversible as shown in other eukaryotic organisms. By performing sequence analysis, we also predict the presence of the Greatwall/PP2A pathway in the cell cycle of O. tauri. Since O. tauri cell cycle machinery is conserved, the exploration of the dynamical characteristic of the cell division cycle will help in further understanding the regulation of cell cycle in higher eukaryotes.


Subject(s)
Chlorophyta/metabolism , G1 Phase/physiology , G2 Phase/physiology , Gene Regulatory Networks/physiology , Chlorophyta/genetics
18.
J Virol ; 92(4)2018 02 15.
Article in English | MEDLINE | ID: mdl-29187539

ABSTRACT

Prasinoviruses are large DNA viruses that infect diverse genera of green microalgae worldwide in aquatic ecosystems, but molecular knowledge of their life cycles is lacking. Several complete genomes of both these viruses and their marine algal hosts are now available and have been used to show the pervasive presence of these species in microbial metagenomes. We have analyzed the life cycle of Ostreococcus tauri virus 5 (OtV5), a lytic virus, using transcriptome sequencing (RNA-Seq) from 12 time points of healthy or infected Ostreococcus tauri cells over a day/night cycle in culture. In the day, viral gene transcription remained low while host nitrogen metabolism gene transcription was initially strongly repressed for two successive time points before being induced for 8 h, but during the night, viral transcription increased steeply while host nitrogen metabolism genes were repressed and many host functions that are normally reduced in the dark appeared to be compensated either by genes expressed from the virus or by increased expression of a subset of 4.4% of the host's genes. Some host cells underwent lysis progressively during the night, but a larger proportion were lysed the following morning. Our data suggest that the life cycles of algal viruses mirror the diurnal rhythms of their hosts.IMPORTANCE Prasinoviruses are common in marine environments, and although several complete genomes of these viruses and their hosts have been characterized, little is known about their life cycles. Here we analyze in detail the transcriptional changes occurring over a 27-h-long experiment in a natural diurnal rhythm, in which the growth of host cells is to some extent synchronized, so that host DNA replication occurs late in the day or early in the night and cell division occurs during the night. Surprisingly, viral transcription remains quiescent over the daytime, when the most energy (from light) is available, but during the night viral transcription activates, accompanied by expression of a few host genes that are probably required by the virus. Although our experiment was accomplished in the lab, cyclical changes have been documented in host transcription in the ocean. Our observations may thus be relevant for eukaryotic phytoplankton in natural environments.


Subject(s)
Chlorophyta/virology , Circadian Rhythm , Phycodnaviridae/pathogenicity , Phytoplankton/virology , Biological Evolution , Chlorophyta/genetics , DNA Replication , Metagenome , Phytoplankton/genetics , Transcriptional Activation
19.
Plant Physiol Biochem ; 118: 377-384, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28710945

ABSTRACT

Calcium-dependent protein kinases (CDPKs) regulate plant development and many stress signalling pathways through the complex cytosolic [Ca2+] signalling. The genome of Ostreococcus tauri (Ot), a model prasinophyte organism that is on the base of the green lineage, harbours three sequences homologous to those encoding plant CDPKs with the three characteristic conserved domains (protein kinase, autoregulatory/autoinhibitory, and regulatory domain). Phylogenetic and structural analyses revealed that putative OtCDPK proteins are closely related to CDPKs from other Chlorophytes. We functionally characterised the first marine picophytoeukaryote CDPK gene (OtCDPK1) and showed that the expression of the three OtCDPK genes is up-regulated by nitrogen depletion. We conclude that CDPK signalling pathway might have originated early in the green lineage and may play a key role in prasinophytes by sensing macronutrient changes in the marine environment.


Subject(s)
Calcium Signaling/physiology , Chlorophyta/metabolism , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Plant/physiology , Nitrogen/metabolism , Plant Proteins/biosynthesis , Protein Kinases/biosynthesis
20.
J Plant Physiol ; 217: 4-14, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28619534

ABSTRACT

Green algae have a highly complex and diverse set of cryptochrome photoreceptor candidates including members of the following subfamilies: plant, plant-like, animal-like, DASH and cryptochrome photolyase family 1 (CPF1). While some green algae encode most or all of them, others lack certain members. Here we present an overview about functional analyses of so far investigated cryptochrome photoreceptors from the green algae Chlamydomonas reinhardtii (plant and animal-like cryptochromes) and Ostreococcus tauri (CPF1) with regard to their biological significance and spectroscopic properties. Cryptochromes of both algae have been demonstrated recently to be involved to various extents in circadian clock regulation and in Chlamydomonas additionally in life cycle control. Moreover, CPF1 even performs light-driven DNA repair. The plant cryptochrome and CPF1 are UVA/blue light receptors, whereas the animal-like cryptochrome responds to almost the whole visible spectrum including red light. Accordingly, plant cryptochrome, animal-like cryptochrome and CPF1 differ fundamentally in their structural response to light as revealed by their visible and infrared spectroscopic signatures, and in the role of the flavin neutral radical acting as dark form or signaling state.


Subject(s)
Chlorophyta/physiology , Cryptochromes/physiology , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/physiology , Chlorophyta/genetics , Chlorophyta/metabolism , Circadian Rhythm/physiology , Cryptochromes/genetics , Cryptochromes/metabolism , Oxidation-Reduction , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL