Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.051
Filter
1.
J Biol Chem ; : 107543, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992440

ABSTRACT

The pathogenesis of Parkinson's disease (PD) has been associated with mitochondrial dysfunction. Given that the PINK1/Parkin pathway governs mitochondrial quality control by inducing mitophagy to remove damaged mitochondria, therapeutic approaches to activate PINK1/Parkin-mediated mitophagy have the potential in the treatment of PD. Here, we have identified a new small molecule, BL-918, as an inducer of mitophagy via activating the PINK1/Parkin pathway. BL-918 triggers PINK1 accumulation and Parkin mitochondrial translocation to initiate PINK1/Parkin-mediated mitophagy. We found that mitochondrial membrane potential and mitochondrial permeability transition (mPT) pore were involved in BL-918-induced PINK1/Parkin pathway activation. Moreover, we showed that BL-918 mitigated PD progression in MPTP-induced PD mice in a PINK1-dependent manner. Our results unravel a new activator of the PINK1/Parkin signaling pathway and provide a potential strategy for the treatment of PD and other diseases with dysfunctional mitochondria.

2.
Autophagy ; : 1-12, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38964378

ABSTRACT

The prohibitins Phb1 and Phb2 assemble at the mitochondrial inner membrane to form a multi-dimeric complex. These scaffold proteins are highly conserved in eukaryotic cells, from yeast to mammals, and have been implicated in a variety of mitochondrial functions including aging, proliferation, and degenerative and metabolic diseases. In mammals, PHB2 regulates PINK1-PRKN mediated mitophagy by interacting with lipidated MAP1LC3B/LC3B. Despite their high conservation, prohibitins have not been linked to mitophagy in budding yeasts. In this study, we demonstrate that both Phb1 and Phb2 are required to sustain mitophagy in Saccharomyces cerevisiae. Prohibitin-dependent mitophagy requires formation of the Phb1-Phb2 complex and a conserved AIM/LIR-like motif identified in both yeast prohibitins. Furthermore, both Phb1 and Phb2 interact and exhibit mitochondrial colocalization with Atg8. Interestingly, we detected a basal C terminus processing of the mitophagy receptor Atg32 that depends on the presence of the i-AAA Yme1. In the absence of prohibitins this processing is highly enhanced but reverted by the inactivation of the rhomboid protease Pcp1. Together our results revealed a novel role of yeast prohibitins in mitophagy through its interaction with Atg8 and regulating an Atg32 proteolytic event. Abbreviation: AIM/LIR: Atg8-family interacting motif/LC3-interacting region; ANOVA: analysis of variance; ATG/Atg: autophagy related; C terminus/C-terminal: carboxyl terminus/carboxyl-terminal; GFP: green fluorescent protein; HA: human influenza hemagglutinin; Idh1: isocitrate dehydrogenase 1; MAP1C3B/LC3B: microtubule associated protein 1 light chain 3 beta; mCh: mCherry; MIM: mitochondrial inner membrane; MOM: mitochondrial outer membrane; N starvation: nitrogen starvation; N terminus: amino terminus; PARL: presenilin associated rhomboid like; Pcp1: processing of cytochrome c peroxidase 1; PCR: polymerase chain reaction; PGAM5: PGAM family member 5 mitochondrial serine/threonine protein phosphatase; PHBs/Phb: prohibitins; PINK1: PTEN induced kinase 1; PMSF: phenylmethylsulfonyl fluoride; PRKN: parkin RBR E3 ubiquitin protein ligase; SD: synthetic defined medium; SDS: sodium dodecyl sulfate; SMD-N: synthetic defined medium lacking nitrogen; WB: western blot; WT: wild type; Yme1: yeast mitochondrial escape 1; YPD: yeast extract-peptone-dextrose medium; YPLac: yeast extract-peptone-lactate medium.

3.
Sci Total Environ ; 946: 174313, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964406

ABSTRACT

Nervous system diseases are a global health problem, and with the increase in the elderly population around the world, their incidence will also increase. Harmful substances in the environment are closely related to the occurrence of nervous system diseases. China is a large agricultural country, and thus the insecticide cyfluthrin has been widely used. Cyfluthrin is neurotoxic, but the mechanism of this injury is not clear. Inflammation is an important mechanism for the occurrence of nervous system diseases. Mitochondria are the main regulators of the inflammatory response, and various cellular responses, including autophagy, directly affect the regulation of inflammatory processes. Mitochondrial damage is related to mitochondrial quality control (MQC) and PTEN-induced kinase 1 (PINK1). As an anti-inflammatory factor, stimulator of interferon genes (STING) participates in the regulation of inflammation. However, the relationship between STING and mitochondria in the process of cyfluthrin-induced nerve injury is unclear. This study established in vivo and in vitro models of cyfluthrin exposure to explore the role of MQC and to clarify the mechanism of action of STING and PINK1. Our results showed that cyfluthrin can increase the reactive oxygen species (ROS) level, resulting in mitochondrial damage and inflammation. In this process, an imbalance in MQC leads to the aggravation of mitochondrial damage, and high STING expression drives the occurrence of inflammation. We established a differential expression model of STING and PINK1 to further determine the underlying mechanism and found that the interaction between STING and PINK1 regulates MQC to affect the levels of mitochondrial damage and inflammation. When STING and PINK1 expression are downregulated, mitochondrial damage and STING-induced inflammation are significantly alleviated. In summary, a synergistic effect between STING and PINK1 on cyfluthrin-induced neuroinflammation may exist, which leads to an imbalance in MQC by inhibiting mitochondrial biogenesis and division/fusion, and PINK1 can reduce STING-driven inflammation.

4.
Biomed Pharmacother ; 177: 117092, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38976956

ABSTRACT

BACKGROUND: Sepsis-associated encephalopathy (SAE) is a disease characterized by neuroinflammation and cognitive dysfunction caused by systemic infection. Inflammation-induced microglial activation is closely associated with neuroinflammation in SAE. It is widely understood that melatonin has strong anti-inflammatory and immunomodulatory properties beneficial for sepsis-related brain damage. However, the mechanism of melatonin action in SAE has not been fully elucidated. METHODS: The SAE cell model and SAE mouse model were induced by lipopolysaccharide (LPS). Behavioral tests were performed to analyze cognitive function. Microglial markers and M1/M2 markers were measured by immunofluorescence. Mitophagy was assessed by western blot, mt-Keima and transmission electron microscopy experiments. Immunoprecipitation and co-immunoprecipitation assays investigated the interactions between AMP-activated protein kinase α2 (AMPKα2) and PTEN-induced putative kinase 1 (PINK1). RESULTS: Melatonin suppresses LPS-induced microglia M1 polarization by enhancing mitophagy, thereby attenuating LPS-induced neuroinflammation and behavioral deficits. However, inhibition or knockdown of AMPKα2 can inhibit the enhancement of melatonin on mitophagy, then weaken its promotion of microglia polarization towards M2 phenotype, and eliminate its protective effect on brain function. Furthermore, melatonin enhances mitophagy through activating AMPKα2, promotes PINK1 Ser495 site phosphorylation, and ultimately regulates microglial polarization from M1 to M2. CONCLUSIONS: Our findings demonstrate that melatonin facilitates microglia polarization towards M2 phenotype to alleviate LPS-induced neuroinflammation, primarily through AMPKα2-mediated enhancement of mitophagy.

5.
Inflammation ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977539

ABSTRACT

Rheumatic heart disease (RHD) is an important and preventable cause of cardiovascular death and disability, but the lack of clarity about its exact mechanisms makes it more difficult to find alternative methods or prevention and treatment. We previously demonstrated that increased IL-17 expression plays a crucial role in the development of RHD-related valvular inflammatory injury. Macrophage autophagy/polarization may be a pro-survival strategy in the initiation and resolution of the inflammatory process. This study investigated the mechanism by which IL-17 regulates autophagy/polarization activation in macrophages. A RHD rat model was generated, and the effects of anti-IL-17 and 3-methyladenine (3-MA) were analyzed. The molecular mechanisms underlying IL-17-induced macrophage autophagy/polarization were investigated via in vitro experiments. In our established RHD rat model, the activation of the macrophage PINK1/Parkin autophagic pathway in valve tissue was accompanied by M1 macrophage infiltration, and anti-IL-17 treatment inhibited autophagy and reversed macrophage inflammatory infiltration, thereby attenuating endothelial-mesenchymal transition (EndMT) in the valve tissue. The efficacy of 3-MA treatment was similar to that of anti-IL-17 treatment. Furthermore, in THP-1 cells, the pharmacological promotion of autophagy by IL-17 induced M1-type polarization, whereas the inhibition of autophagy by 3-MA reversed this process. Mechanistically, silencing PINK1 in THP-1 blocked autophagic flux. Moreover, IL-17-induced M1-polarized macrophages promoted EndMT in HUVECs. This study revealed that IL-17 plays an important role in EndMT in RHD via the PINK1/Parkin autophagic pathway and macrophage polarization, providing a potential therapeutic target.

6.
Autophagy Rep ; 3(1): 2326402, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38988500

ABSTRACT

PINK1, mutated in familial forms of Parkinson's disease, initiates mitophagy following mitochondrial depolarization. However, it is difficult to monitor this pathway physiologically in mice as loss of PINK1 does not alter basal mitophagy levels in most tissues. To further characterize this pathway in vivo, we used mito-QC mice in which loss of PINK1 was combined with the mitochondrial-associated POLGD257A mutation. We focused on skeletal muscle as gene expression data indicates that this tissue has the highest PINK1 levels. We found that loss of PINK1 in oxidative hindlimb muscle significantly reduced mitophagy. Of interest, the presence of the POLGD257A mutation, while having a minor effect in most tissues, restored levels of muscle mitophagy caused by the loss of PINK1. Although our observations highlight that multiple mitophagy pathways operate within a single tissue, we identify skeletal muscle as a tissue of choice for the study of PINK1-dependant mitophagy under basal conditions.

7.
Sci Rep ; 14(1): 13063, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844824

ABSTRACT

Colorectal cancer (CRC) is a prevalent global health issue, with 5-fluorouracil (5-FU) being a commonly used chemotherapeutic agent for its treatment. However, the efficacy of 5-FU is often hindered by drug tolerance. Sodium butyrate (NaB), a derivative of intestinal flora, has demonstrated anti-cancer properties both in vitro and in vivo through pro-apoptotic effects and has shown promise in improving outcomes when used in conjunction with traditional chemotherapy agents. This study seeks to evaluate the impact and potential mechanisms of NaB in combination with 5-FU on CRC. We employed a comprehensive set of assays, including CCK-8, EdU staining, Hoechst 33258 staining, flow cytometry, ROS assay, MMP assay, immunofluorescence, and mitophagy assay, to detect the effect of NaB on the biological function of CRC cells in vitro. Western blotting and immunohistochemistry were used to verify the above experimental results. The xenograft tumor model was established to evaluate the in vivo anti-CRC activity of NaB. Subsequently, 16S rRNA gene sequencing was used to analyze the intestinal flora. The findings of our study demonstrate that sodium butyrate (NaB) exerts inhibitory effects on tumor cell proliferation and promotes tumor cell apoptosis in vitro, while also impeding tumor progression in vivo through the enhancement of the mitophagy pathway. Furthermore, the combined treatment of NaB and 5-fluorouracil (5-FU) yielded superior therapeutic outcomes compared to monotherapy with either agent. Moreover, this combination therapy resulted in the specific enrichment of Bacteroides, LigiLactobacillus, butyric acid-producing bacteria, and acetic acid-producing bacteria in the intestinal microbiota. The improvement in the intestinal microbiota contributed to enhanced therapeutic outcomes and reduced the adverse effects of 5-FU. Taken together, these findings indicate that NaB, a histone acetylation inhibitor synthesized through intestinal flora fermentation, has the potential to significantly enhance the therapeutic efficacy of 5-FU in CRC treatment and improve the prognosis of CRC patients.


Subject(s)
Butyric Acid , Cell Proliferation , Colorectal Neoplasms , Fluorouracil , Gastrointestinal Microbiome , Signal Transduction , Ubiquitin-Protein Ligases , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Butyric Acid/pharmacology , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Humans , Gastrointestinal Microbiome/drug effects , Animals , Mice , Signal Transduction/drug effects , Cell Proliferation/drug effects , Ubiquitin-Protein Ligases/metabolism , Apoptosis/drug effects , Xenograft Model Antitumor Assays , Cell Line, Tumor , Mice, Nude , Drug Synergism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
8.
Autophagy ; : 1-3, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855880

ABSTRACT

The serine/threonine kinase, PINK1, and the E3 ubiquitin ligase, PRKN/Parkin facilitate LC3-dependent autophagosomal encasement and lysosomal clearance of dysfunctional mitochondria, and defects in this pathway contribute to the pathogenesis of numerous cardiometabolic and neurological diseases. Although dynamic actin remodeling has recently been shown to play an important role in governing spatiotemporal control of mitophagy, the mechanisms remain unclear. We recently found that the RhoGAP, ARHGAP26/GRAF1 is a PRKN-binding protein that is rapidly recruited to damaged mitochondria where upon phosphorylation by PINK1 it serves to coordinate phagophore capture by regulating mitochondrial-associated actin remodeling and by facilitating PRKN-LC3 interactions. Because ARHGAP26 phosphorylation on PINK1-dependent sites is dysregulated in human heart failure and ARHGAP26 depletion in mouse hearts blunts mitochondrial clearance and attenuates compensatory metabolic adaptations to stress, this enzyme may be a tractable target to treat the many diseases associated with mitochondrial dysfunction.

9.
Autophagy ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38873928

ABSTRACT

Osteopenia and osteoporosis are among the most common metabolic bone diseases and represent major public health problems, with sufferers having an increased fracture risk. Diabetes is one of the most common diseases contributing to osteopenia and osteoporosis. However, the mechanisms underlying diabetes-induced osteopenia and osteoporosis remain unclear. Bone reconstruction, including bone formation and absorption, is a dynamic process. Large-conductance Ca2+-activated K+ channels (BK channels) regulate the function of bone marrow-derived mesenchymal stem cells, osteoblasts, and osteoclasts. Our previous studies revealed the relationship between BK channels and the function of osteoblasts via various pathways under physiological conditions. In this study, we reported a decrease in the expression of BK channels in mice with diabetes-induced osteopenia. BK deficiency enhanced mitochondrial Ca2+ and activated classical PINK1 (PTEN induced putative kinase 1)-PRKN/Parkin (parkin RBR E3 ubiquitin protein ligase)-dependent mitophagy, whereas the upregulation of BK channels inhibited mitophagy in osteoblasts. Moreover, SLC25A5/ANT2 (solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator), member 5), a critical inner mitochondrial membrane protein participating in PINK1-PRKN-dependent mitophagy, was also regulated by BK channels. Overall, these data identified a novel role of BK channels in regulating mitophagy in osteoblasts, which might be a potential target for diabetes-induced bone diseases.

10.
Res Sq ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38854001

ABSTRACT

Parkinson's disease (PD) is the most common progressive neurodegenerative movement disorder and results from the selective loss of dopaminergic neurons in the substantia nigra pars compacta. Pink1 and Parkin are proteins that function together in mitochondrial quality control, and when they carry loss-of-function mutations lead to familial forms of PD. While much research has focused on central nervous system alterations in PD, peripheral contributions to PD pathogenesis are increasingly appreciated. We report Pink1/Parkin regulate glycolytic and mitochondrial oxidative metabolism in peripheral blood mononuclear cells (PBMCs) from rats. Pink1/Parkin deficiency induces changes in the circulating lymphocyte populations, namely increased CD4 + T cells and decreased CD8 + T cells and B cells. Loss of Pink1/Parkin leads to elevated platelet counts in the blood and increased platelet-T cell aggregation. Platelet-lymphocyte aggregates are associated with increased thrombosis risk, and venous thrombosis is a cause of sudden death in PD, suggesting targeting the Pink1/Parkin pathway in the periphery has therapeutic potential.

11.
Exp Neurol ; 379: 114842, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823674

ABSTRACT

Postoperative cognitive dysfunction (POCD) is a common complication in elderly surgical patients, significantly affecting their quality of life. Dexmedetomidine (Dex), an anesthetic, has shown promise in alleviating POCD, but its underlying mechanism remains unclear. This study aims to explore how Dex improves POCD in aged rats by targeting the PINK1-mediated mitochondrial autophagy pathway, reducing caspase-1/11-GSDMD-induced hippocampal neuronal pyroptosis. Transcriptome sequencing identified 300 differentially expressed genes enriched in the mitochondrial autophagy pathway in Dex-treated POCD rat hippocampal tissue, with Pink1 as a key candidate. In a POCD rat model, Dex treatment upregulated hippocampal PINK1 expression. In vitro experiments using H19-7 rat hippocampal neurons revealed that Dex enhanced mitochondrial autophagy and suppressed neuronal pyroptosis by upregulating PINK1. Further mechanistic validation demonstrated that Dex activated PINK1-mediated mitochondrial autophagy, inhibiting caspase-1/11-GSDMD-induced neuronal pyroptosis. In vivo experiments confirmed Dex's ability to reduce caspase-1/11-GSDMD-dependent hippocampal neuronal pyroptosis and improve postoperative cognitive function in aged rats. Dexmedetomidine improves postoperative cognitive dysfunction in elderly rats by enhancing mitochondrial autophagy via PINK1 upregulation, mitigating caspase-1/11-GSDMD-induced neuronal pyroptosis.

12.
Chem Biol Interact ; 398: 111110, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38876248

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disorder that is linked to metabolic syndrome, mitochondrial dysfunction and impaired autophagy. Polydatin (PD), a natural polyphenol from Polygonum cuspidatum, exhibits various pharmacological effects and protects against NAFLD. The aim of this study was to reveal the molecular mechanisms and therapeutic potential of PD for NAFLD, with a focus on the role of mitochondrial autophagy mediated by sirtuin 3 (SIRT3), fork-head box O3 (FOXO3) and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), and by PTEN-induced putative kinase 1 (PINK1) and parkin (PRKN). We combined network pharmacology analysis, animal models and cell culture experiments to show that PD could regulate the mitochondrial autophagy pathway by modulating several key genes related to mitochondrial function, and ameliorate the liver function, histopathology and mitochondrial biogenesis of NAFLD mice and hepatocytes by activating the SIRT3-FOXO3-BNIP3 axis and the PINK1-PRKN-dependent mechanism of mitochondrial autophagy. We also identified the core targets of PD, including SIRT3, FOXO3A, CASP3, PARKIN, EGFR, STAT3, MMP9 and PINK, and confirmed that silencing SIRT3 could significantly attenuate the beneficial effect of PD. This study provided novel theoretical and experimental support for PD as a promising candidate for NAFLD treatment, and also suggested new avenues and methods for investigating the role of mitochondrial autophagy in the pathogenesis and intervention of NAFLD.


Subject(s)
Forkhead Box Protein O3 , Glucosides , Mice, Inbred C57BL , Mitochondria , Non-alcoholic Fatty Liver Disease , Protein Kinases , Sirtuin 3 , Stilbenes , Ubiquitin-Protein Ligases , Animals , Forkhead Box Protein O3/metabolism , Sirtuin 3/metabolism , Sirtuin 3/genetics , Glucosides/pharmacology , Glucosides/therapeutic use , Glucosides/chemistry , Stilbenes/pharmacology , Stilbenes/therapeutic use , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Protein Kinases/metabolism , Male , Mitochondria/drug effects , Mitochondria/metabolism , Humans , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Autophagy/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Hepatocytes/drug effects , Hepatocytes/metabolism , Membrane Proteins
13.
Ecotoxicol Environ Saf ; 280: 116574, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38875822

ABSTRACT

Aflatoxin B1 (AFB1) is commonly found in feed ingredients and foods all over the world, posing a significant threat to food safety and public health in animals and humans. Lactobacillus salivarius (L. salivarius) was recorded to improve the intestinal health and performance of chickens. However, whether L. salivarius can alleviate AFB1-induced hepatotoxicity in geese was unknown. A total of 300 Lande geese were randomly assigned to five groups: control group, AFB1 low-dose group (L), L. salivarius+AFB1 low-dose group (LL), AFB1 high dosage groups (H), L. salivarius+AFB1 high dosage groups (LH), respectively. The results showed that the concentrations of ALT, AST, and GGT significantly increased after exposure to AFB1. Similarly, severe damage of hepatic morphology was observed including the hepatic structure injury and inflammatory cell infiltration. The oxidative stress was evidenced by the elevated concentrations of MDA, and decreased activities of GSH-Px, GSH and SOD. The observation of immunofluorescence, real-time PCR, and western blotting showed that the expression of PINK1 and the value of LC3II/LC3I were increased, but that of p62 significantly decreased after AFB1 exposure. Moreover, the supplementation of L. salivarius effectively improved the geese performance, ameliorated AFB1-induced oxidative stress, inhibited mitochondrial mitophagy and enhanced the liver restoration to normal level. The present study demonstrated that L. salivarius ameliorated AFB1-induced the hepatotoxicity by decreasing the oxidative stress, and regulating the expression of PINK1/Parkin-mediated mitophagy in the mitochondria of the geese liver. Furthermore, this investigation suggested that L. salivarius might serve as a novel and safe additive for preventing AFB1 contamination in poultry feed.


Subject(s)
Aflatoxin B1 , Geese , Ligilactobacillus salivarius , Liver , Mitophagy , Protein Kinases , Ubiquitin-Protein Ligases , Animals , Aflatoxin B1/toxicity , Mitophagy/drug effects , Ubiquitin-Protein Ligases/metabolism , Ligilactobacillus salivarius/physiology , Liver/drug effects , Liver/pathology , Protein Kinases/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/pathology , Oxidative Stress/drug effects , Probiotics/pharmacology
14.
J Cell Mol Med ; 28(12): e18455, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898772

ABSTRACT

Cancer-related fatigue (CRF) significantly impacts the quality of life of cancer patients. This study investigates the therapeutic potential of Shenqi Fuzheng injection (SFI) in managing CRF, focusing on its mechanistic action in skeletal muscle. We utilized a CRF mouse model to examine the effects of SFI on physical endurance, monitoring activity levels, swimming times and rest periods. Proteomic analysis of the gastrocnemius muscle was performed using isobaric tags and liquid chromatography-tandem mass spectrometry to map the muscle proteome changes post-SFI treatment. Mitochondrial function in skeletal muscle was assessed via ATP bioluminescence assay. Furthermore, the regulatory role of the hypoxia inducible factor 1 subunit alpha (HIF-1α) signalling pathway in mediating SFI's effects was explored through western blotting. In CRF-induced C2C12 myoblasts, we evaluated cell viability (CCK-8 assay), apoptosis (flow cytometry) and mitophagy (electron microscopy). The study also employed pulldown, luciferase and chromatin immunoprecipitation assays to elucidate the molecular mechanisms underlying SFI's action, particularly focusing on the transcriptional regulation of PINK1 through HIF-1α binding at the PINK1 promoter region. Our findings reveal that SFI enhances physical mobility, reduces fatigue symptoms and exerts protective effects on skeletal muscles by mitigating mitochondrial damage and augmenting antioxidative responses. SFI promotes cell viability and induces mitophagy while decreasing apoptosis, primarily through the modulation of HIF-1α, PINK1 and p62 proteins. These results underscore SFI's efficacy in enhancing mitochondrial autophagy, thereby offering a promising approach for ameliorating CRF. The study not only provides insight into SFI's potential therapeutic mechanisms but also establishes a foundation for further exploration of SFI interventions in CRF management.


Subject(s)
Drugs, Chinese Herbal , Fatigue , Hypoxia-Inducible Factor 1, alpha Subunit , Mitophagy , Muscle, Skeletal , Neoplasms , Ubiquitination , Animals , Mitophagy/drug effects , Drugs, Chinese Herbal/pharmacology , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Ubiquitination/drug effects , Neoplasms/metabolism , Neoplasms/complications , Neoplasms/drug therapy , Neoplasms/pathology , Fatigue/drug therapy , Fatigue/metabolism , Fatigue/etiology , Male , Apoptosis/drug effects , Humans , Proteomics/methods , Disease Models, Animal , Cell Line
15.
Biomed Pharmacother ; 177: 117006, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908197

ABSTRACT

Neuropathic pain is a pathological state induced by the aberrant generation of pain signals within the nervous system. Ginkgolide B(GB), an active component found of Ginkgo. biloba leaves, has neuroprotective properties. This study aimed to explore the effects of GB on neuropathic pain and its underlying mechanisms. In the in vivo study, we adopted the rat chronic constriction injury model, and the results showed that GB(4 mg/kg) treatment effectively reduced pain sensation in rats and decreased the expressions of Iba-1 (a microglia marker), NLRP3 inflammasome, and inflammatory factors, such as interleukin (IL)-1ß, in the spinal cord 7 days post-surgery. In the in vitro study, we induced microglial inflammation using lipopolysaccharide (500 ng/mL) / adenosine triphosphate (5 mM) and treated it with GB (10, 20, and 40 µM). GB upregulated the expression of mitophagy proteins, such as PINK1, Parkin, LC3 II/I, Tom20, and Beclin1, and decreased the cellular production of reactive oxygen species. Moreover, it lowered the expression of inflammation-related proteins, such as Caspase-1, IL-1ß, and NLRP3 in microglia. However, this effect was reversed by Parkin shRNA/siRNA or the autophagy inhibitor 3-methyladenine (5 mM). These findings reveal that GB alleviates neuropathic pain by mitigating neuroinflammation through the activation of PINK1-Parkin-mediated mitophagy.

16.
Dev Cell ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38897197

ABSTRACT

Selective degradation of damaged mitochondria by autophagy (mitophagy) is proposed to play an important role in cellular homeostasis. However, the molecular mechanisms and the requirement of mitochondrial quality control by mitophagy for cellular physiology are poorly understood. Here, we demonstrated that primary human cells maintain highly active basal mitophagy initiated by mitochondrial superoxide signaling. Mitophagy was found to be mediated by PINK1/Parkin-dependent pathway involving p62 as a selective autophagy receptor (SAR). Importantly, this pathway was suppressed upon the induction of cellular senescence and in naturally aged cells, leading to a robust shutdown of mitophagy. Inhibition of mitophagy in proliferating cells was sufficient to trigger the senescence program, while reactivation of mitophagy was necessary for the anti-senescence effects of NAD precursors or rapamycin. Furthermore, reactivation of mitophagy by a p62-targeting small molecule rescued markers of cellular aging, which establishes mitochondrial quality control as a promising target for anti-aging interventions.

17.
Environ Pollut ; : 124383, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897282

ABSTRACT

Parkinson's disease (PD) is one of the fastest-growing neurodegenerative diseases and has been linked to the exposure to numerous environmental neurotoxins. Although lead (Pb) exposure has been related to the development of PD, the molecular target of Pb to cause the onset of PD is insufficiently investigated. Herein, we explored the effects of Pb exposure on behavior, pathophysiology, and gene expression of wild-type (WT) fly (Drosophila melanogaster) by comparison with its PD model. After exposure to Pb, the WT flies showed PD-like locomotor impairments and selective loss of dopaminergic (DAergic) neurons, displaying similar phenotypes to fly PD model (PINK1). Transcriptomic analysis showed the similarity in gene expression profiles between Pb treatment WT flies and PINK1 mutant flies. Moreover, Pb exposure resulted in endogenous dopamine deficits in WT flies. Analyses of gene expression and enzyme activity confirmed that Pb exposure reduced tyrosine hydroxylase (TH) activity and led to failure of dopamine synthesis. Furthermore, molecular dynamics simulation confirmed that Pb was adsorbed by TH and subsequently inhibited the enzymatic activity. Exogenous injection of L-dopa and melatonin could partially rescue the pathological phenotypes of Pb-exposed flies and PD fly model. Antagonist injection of microRNA-133, which negatively regulated the expression of TH gene, ultimately rescued in the manifestation of PD phenotypes in flies. Involvement of TH overexpression mutants of fly strongly promoted the resistance to Pb exposure and rescued both behavior and the number of DAergic neurons. Therefore, our study elucidates the Pb molecular target in dopamine pathway and mechanism underlying the risks of Pb exposure on the occurrence of PD at environmentally-relevant concentrations.

18.
J Agric Food Chem ; 72(23): 13039-13053, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38809522

ABSTRACT

Deregulation of mitochondrial functions in hepatocytes contributes to many liver diseases, such as nonalcoholic fatty liver disease (NAFLD). Lately, it was referred to as MAFLD (metabolism-associated fatty liver disease). Hesperetin (Hst), a bioactive flavonoid constituent of citrus fruit, has been proven to attenuate NAFLD. However, a potential connection between its preventive activities and the modulation of mitochondrial functions remains unclear. Here, our results showed that Hst alleviates palmitic acid (PA)-triggered NLRP3 inflammasome activation and cell death by inhibition of mitochondrial impairment in HepG2 cells. Hst reinstates fatty acid oxidation (FAO) rates measured by seahorse extracellular flux analyzer and intracellular acetyl-CoA levels as well as intracellular tricarboxylic acid cycle metabolites levels including NADH and FADH2 reduced by PA exposure. In addition, Hst protects HepG2 cells against PA-induced abnormal energetic profile, ATP generation reduction, overproduction of mitochondrial reactive oxygen species, and collapsed mitochondrial membrane potential. Furthermore, Hst improves the protein expression involved in PINK1/Parkin-mediated mitophagy. Our results demonstrate that it restores PA-impaired mitochondrial function and sustains cellular homeostasis due to the elevation of PINK1/Parkin-mediated mitophagy and the subsequent disposal of dysfunctional mitochondria. These results provide therapeutic potential for Hst utilization as an effective intervention against fatty liver disease.


Subject(s)
Hesperidin , Mitochondria , Mitophagy , Palmitic Acid , Protein Kinases , Ubiquitin-Protein Ligases , Humans , Hep G2 Cells , Palmitic Acid/pharmacology , Hesperidin/pharmacology , Mitophagy/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Protein Kinases/metabolism , Protein Kinases/genetics , Reactive Oxygen Species/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Membrane Potential, Mitochondrial/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Protective Agents/pharmacology
19.
Int J Biol Macromol ; 270(Pt 2): 132370, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763253

ABSTRACT

BACKGROUND: Polysaccharides from Grifola frondosa(GFP) have gained worldwide attention owing to their promising biological activities and potential health benefits. PURPOSE: This study aimed to investigate the effects of GFP on alleviation of osteoporosis in ovariectomized (OVX) mice and examine the underlying mechanism. METHOD: A mouse model of postmenopausal osteoporosis was established by OVX method, Forty eight C57BL/6 female mice were randomly divided into Normal group, OVX alone (Model group, n = 8), OVX + 10 mg/kg GFP (GFP-L group, n = 8), OVX + 20 mg/kg GFP (GFP-M group, n = 8), OVX + 40 mg/kg GFP (GFP-H group, n = 8), OVX + 10 mg/kg Estradiol valerate (Positive group, n = 8). RESULTS: The results showed that compared with Model group, the concentrations of interleukin (IL)-1ß, interleukin (IL)-6 and Tumor necrosis factor-α (TNF-α) were significantly reduced, the activity of superoxide dismutase (SOD) and glutathione (GSH) were significantly increased, the content of myeloperoxidase (MPO) and malondialdehyde (MDA) were significantly reduced, and the proteins levels of PINK1, Parkin, Beclin-1 and LC3-II were significantly decreased in the GFP groups. CONCLUSION: This study demonstrates that GFP alleviates ovariectomy-induced osteoporosis via reduced secretion of inflammatory cytokines, improvement in the oxidative stress status in the body, and inhibition of the PINK1/Parkin signaling pathway.


Subject(s)
Grifola , Inflammation , Osteoporosis , Ovariectomy , Oxidative Stress , Protein Kinases , Signal Transduction , Ubiquitin-Protein Ligases , Animals , Ovariectomy/adverse effects , Oxidative Stress/drug effects , Female , Mice , Signal Transduction/drug effects , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoporosis/prevention & control , Osteoporosis/metabolism , Protein Kinases/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Ubiquitin-Protein Ligases/metabolism , Grifola/chemistry , Mice, Inbred C57BL , Cytokines/metabolism , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Disease Models, Animal
20.
Mol Med ; 30(1): 72, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822247

ABSTRACT

BACKGROUND: 8-Oxoguanine DNA glycosylase (OGG1), a well-known DNA repair enzyme, has been demonstrated to promote lung fibrosis, while the specific regulatory mechanism of OGG1 during pulmonary fibrosis remains unclarified. METHODS: A bleomycin (BLM)-induced mouse pulmonary fibrosis model was established, and TH5487 (the small molecule OGG1 inhibitor) and Mitochondrial division inhibitor 1 (Mdivi-1) were used for administration. Histopathological injury of the lung tissues was assessed. The profibrotic factors and oxidative stress-related factors were examined using the commercial kits. Western blot was used to examine protein expression and immunofluorescence analysis was conducted to assess macrophages polarization and autophagy. The conditional medium from M2 macrophages was harvested and added to HFL-1 cells for culture to simulate the immune microenvironment around fibroblasts during pulmonary fibrosis. Subsequently, the loss- and gain-of function experiments were conducted to further confirm the molecular mechanism of OGG1/PINK1. RESULTS: In BLM-induced pulmonary fibrosis, OGG1 was upregulated while PINK1/Parkin was downregulated. Macrophages were activated and polarized to M2 phenotype. TH5487 administration effectively mitigated pulmonary fibrosis, M2 macrophage polarization, oxidative stress and mitochondrial dysfunction while promoted PINK1/Parkin-mediated mitophagy in lung tissues of BLM-induced mice, which was partly hindered by Mdivi-1. PINK1 overexpression restricted M2 macrophages-induced oxidative stress, mitochondrial dysfunction and mitophagy inactivation in lung fibroblast cells, and OGG1 knockdown could promote PINK1/Parkin expression and alleviate M2 macrophages-induced mitochondrial dysfunction in HFL-1 cells. CONCLUSION: OGG1 inhibition protects against pulmonary fibrosis, which is partly via activating PINK1/Parkin-mediated mitophagy and retarding M2 macrophage polarization, providing a therapeutic target for pulmonary fibrosis.


Subject(s)
Bleomycin , DNA Glycosylases , Disease Models, Animal , Macrophages , Mitophagy , Protein Kinases , Pulmonary Fibrosis , Animals , Mitophagy/drug effects , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/pathology , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , Mice , Macrophages/metabolism , Protein Kinases/metabolism , Bleomycin/adverse effects , Male , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Oxidative Stress/drug effects , Mice, Inbred C57BL , Macrophage Activation , Humans , Quinazolinones
SELECTION OF CITATIONS
SEARCH DETAIL