Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.169
Filter
1.
Front Vet Sci ; 11: 1460993, 2024.
Article in English | MEDLINE | ID: mdl-39355142

ABSTRACT

Positive emotions can reduce disease susceptibility during infectious challenges in humans, and emerging evidence suggests similar effects in farm animals. Because play behaviour may support a positive emotional state in pigs, this study investigates whether rearing pigs with regular intermittent play opportunities enhances disease resilience when challenged with porcine reproductive and respiratory syndrome virus (PRRSV). Litters were assigned to either play (PLY; n = 5 L) or control (CON; n = 4 L) treatments at birth. In PLY, play was promoted with extra space and enrichment items for three hours daily from five days of age (doa). At weaning (25 ± 2 doa; mean ± SD), 28 pigs (14/treatment) were selected for a disease challenge, based on weight, sex, and sow. The pigs were transported to a disease containment facility and at 43 ± 2 doa (day 0 post-inoculation, DPI) inoculated with PRRSV. Skin lesions, blood, rectal temperature, clinical signs, body weight, and behaviour were collected pre- and post-inoculation. Play opportunities for PLY continued every other day until euthanasia of all pigs at 65 ± 2 doa (22 DPI). PLY pigs exhibited fewer skin lesions following transport and throughout the infection compared to CON. Although the viral load did not differ between treatments, PLY pigs had a lower probability of experiencing moderate and severe respiratory distress, with a shorter duration. PLY also performed better throughout the infection, showing higher ADG and greater feed efficiency. The immune response differed as well. PLY pigs had fewer monocytes on 8 DPI than CON, with levels returning to baseline by 21 DPI, whereas CON levels exceeded baseline. Regardless of day of infection, lymphocyte counts tended to be lower in PLY than in CON, and white blood cells and neutrophils were also lower, but only in slow-growing pigs. PLY pigs continued to play during the infection, demonstrating less sickness behaviour and emphasizing the rewarding properties of play. Results suggest that PLY pigs were less affected by PRRSV and developed increased resilience to PRRSV compared to CON. This study demonstrates that rearing pigs in an environment supporting positive experiences through provision of play opportunities can enhance resilience against common modern production challenges, underscoring the value of positive welfare in intensive pig farming.

2.
Vet Microbiol ; 298: 110271, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39362085

ABSTRACT

NLRP12, a member of the NLR family, has been shown to exert a vital function in orchestrating immune responses. Here, using the immunosuppressive porcine reproductive and respiratory syndrome virus (PRRSV) as a model, the role of NLRP12 in virus infection was deciphered. We demonstrated that overexpression of NLRP12 significantly restrained PRRSV replication, while NLRP12 silencing resulted in increased viral titer. Mechanistically, NLRP12 interacts with glycoprotein 2a (GP2a) through its LRR domain and recruits the membrane-associated RING-CH E3 ubiquitin ligase 8 (MARCH8) via the PYD domain. NLRP12 facilitates the lysine-48 (K48)-linked polyubiquitination of GP2a at K128 and induces its lysosome degradation via the MARCH8-NDP52 (nuclear dot protein 52 kDa) pathway. To counteract this, PRRSV Nsp2 effectively prevented the polyubiquitination of GP2a induced by NLRP12 by its deubiquitinating activity. Meanwhile, the overexpression of Nsp4 decreased the mRNA of endogenous NLRP12 and cleaved NLRP12 in a 3C-like protease activity-dependent manner, which collaboratively counteracts the antiviral function of NLRP12. Collectively, this study revealed the mechanisms of the NLRP12-MARCH8-NDP52 axis in the host defense against PRRSV, which might be harnessed for the development of anti-PRRSV therapies.

3.
Vet Res ; 55(1): 132, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375803

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant swine viral infectious diseases worldwide. Vaccination is a key strategy for the control and prevention of PRRS. At present, the NADC30-like PRRSV strain has become the predominant epidemic strain in China, superseding the HP-PRRSV strain. The existing commercial vaccines offer substantial protection against HP-PRRSV, but their efficacy against NADC30-like PRRSV is limited. The development of a novel vaccine that can provide valuable cross-protection against both NADC30-like PRRSV and HP-PRRSV is highly important. In this study, an infectious clone of a commercial MLV vaccine strain, GD (HP-PRRSV), was first generated (named rGD). A recombinant chimeric PRRSV strain, rGD-SX-5U2, was subsequently constructed by using rGD as a backbone and embedding several dominant immune genes, including the NSP2, ORF5, ORF6, and ORF7 genes, from an NADC30-like PRRSV isolate. In vitro experiments demonstrated that chimeric PRRSV rGD-SX-5U2 exhibited high tropism for MARC-145 cells, which is of paramount importance in the production of PRRSV vaccines. Moreover, subsequent in vivo inoculation and challenge experiments demonstrated that rGD-SX-5U2 confers cross-protection against both HP-PRRSV and NADC30-like PRRSV, including an improvement in ADG levels and a reduction in viremia and lung tissue lesions. In conclusion, our research demonstrated that the chimeric PRRSV strain rGD-SX-5U2 is a novel approach that can provide broad-spectrum protection against both HP-PRRSV and NADC30-like PRRSV. This may be a significant improvement over previous MLV vaccinations.


Subject(s)
Cross Protection , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Vaccines , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/physiology , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Porcine Reproductive and Respiratory Syndrome/prevention & control , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Swine , Viral Vaccines/immunology , China
4.
Proteins ; 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39392104

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is one of the most serious infectious immunosuppressive diseases in the world. The nonstructural protein Nsp4 can be used as an ideal target for anti-PRRSV replication inhibitors. However, little is known about potential inhibitors that target Nsp4 to affect PRRSV replication. The purpose of this study was to screen potential natural inhibitors that affect PRRSV replication by inhibiting Nsp4. Five compounds with strong binding affinity to Nsp4 were selected by structure-based molecular docking method. The complexes of naringin dihydrochalcone (NDC), agathisflavone (AGT), and amentoflavone (AMF) with Nsp4 were stable throughout the molecular dynamics simulation. According to MM/PBSA analysis, the free energies of binding of NDC, AGT, and AMF to Nsp4 were less than-30 Kcal/mol. In conclusion, these three compounds are worthy of further investigation as novel inhibitors of PRRSV. This study provides a theoretical basis for the development of anti-PRRSV natural drugs.

5.
Porcine Health Manag ; 10(1): 39, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39390617

ABSTRACT

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) has significant productivity and economic impacts in swine herds. Accurately determining the PRRSV status at the herd level is crucial for producers and veterinarians to implement strategies to control and eliminate the virus from infected herds. This study collected oropharyngeal swabs (OSs), nasal swabs (NSs), oral fluid swabs (OFs), rectal swabs (RSs), and serum samples continuously from PRRSV challenged pigs under experimental conditions and growing pigs under field conditions. Additionally, OSs and serum samples were collected from individual sows from 50 large-scale breeding farms, and the collection of OSs does not require the sows to be restrained. Ct values of PRRSV were detected in all samples using real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). RESULTS: In PRRSV challenged pigs, OSs showed a higher PRRSV-positive rate until the end of the observation period. The Ct values of OSs were significantly lower than those of NSs, OFs, and RSs at 2, 8, 12, 14 and 20 days post-challenge (DPC) (P < 0.05). For growing pigs, the positivity rate of PRRSV in OSs was higher than that in other sample types at 30, 70, and 110 days of age. In sows, 24,718 OSs and 6259 serum samples were collected, with PRRSV-positive rate in OSs (9.4%) being significantly higher than in serum (4.1%) (P < 0.05). However, the Ct values of PRRSV RNA in serum were significantly lower than those in OSs (P < 0.001). CONCLUSIONS: The OSs sample type yielded higher PRRSV-positive rates for longer periods compared to NSs, RSs, OFs and serum samples for PRRSV detection in infected pigs. Therefore, OSs has a good potential to be a convenient, practical, and reliable sample type for implementing mass sampling and testing of PRRSV in large-scale pig farms.

6.
Microb Pathog ; 196: 106988, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374883

ABSTRACT

The aetiological agent of porcine reproductive and respiratory syndrome, a deadly disease that affects pigs and seriously jeopardises the global swine industry, is a porcine reproductive and respiratory syndrome virus (PRRSV). Tylvalosin tartrate, which is a macrolide antibiotic, is the active ingredient in Aivlosin. In recent years, tylvalosin tartrate has widely been used to control porcine reproductive and respiratory syndrome in swine herds in China. However, whether tylvalosin tartrate has exerts anti-PRRSV effects remains controversial. In the present study, tylvalosin tartrate exhibited no effect on PRRSV susceptibility but suppressed the replication of PRRSV and the activity of infecting Marc-145 cells. Next, the relationship between the replication cycle of PRRSV and the activity of tylvalosin tartrate was further assessed. Tylvalosin tartrate did not affect the attachment and release stages of PRRSV or act during the internalisation stage of the virus in HuN4; however, contrasting effects were noted for strains CH-1a and SDVD-HN21. Tylvalosin tartrate acted on the replication stage of PRRSV and was not strain-specific in the replication stage of the PRRSV life cycle. The study findings provide an initial clarification of the inhibitory effects of tylvalosin tartrate on PRRSV, providing new insights into the treatment of PRRS.

7.
Porcine Health Manag ; 10(1): 37, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375800

ABSTRACT

BACKGROUND: A Tonsil-Oral-Scrubbing (TOSc) method was developed to sample the sow's oropharyngeal and tonsillar area without snaring and has shown comparable porcine reproductive and respiratory syndrome virus (PRRSV) RNA detection rates with tonsil scraping in infected sows. This study investigated the effect of specific TOSc collection factors on the PRRSV RT-rtPCR results (detection rates and Ct values). Those factors include whether the sow was snared or not snared at TOSc collection ("snared" vs. "not snared"); whether the sow was laying down or standing at collection ("laying down" vs. "standing"); and type of collectors used for TOSc collection ("TOSc prototype" vs. "Spiral-headed AI catheter (SHAC)"). Volume of fluid was compared between "snared" and "not snared" groups, and collection time was compared between "laying down" and "standing" groups as well. RESULTS: The effect for each factor was assessed in three independent studies following the same design: TOSc was collected twice from each studied sow, once with the baseline level for a factor ("not snared", or "standing", or "TOSc prototype"), and another time followed by the other level of the paired factor ("snared", "laying down", or "SHAC", correspondingly). Results showed that "not snared" TOSc had numerically higher PRRSV RNA detection rate (60.7% vs. 52.5%, p = 0.11), significantly lower median Ct values (31.9 vs. 32.3, p < 0.01), and significantly higher volume of fluid than "snared" samples (1.8 mL vs. 1.2 mL, p < 0.01); "laying down" TOSc samples did not differ statistically (60.7% vs. 60.7%) in the PRRSV RNA detection rate, obtained numerically lower median Ct values (30.9 vs. 31.3, p = 0.19), but took 40% less collection time compared to "standing" TOSc samples; samples collected using the "TOSc prototype" had numerically higher PRRSV RNA detection rate (91.7% vs. 88.3%, p = 0.27) and significantly lower median Ct values (32.8 vs. 34.5, p < 0.01) than that from "SHAC". CONCLUSIONS: Under the conditions of this study best practices for TOSc collection aiming higher detection rate of PRRSV RNA while minimizing time for collection were suggested to be sampling TOSc without snaring, when sows are laying down, and using a prototype TOSc collector.

9.
Int J Mol Sci ; 25(19)2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39408695

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS), caused by PRRS virus (PRRSV) infection, has been a serious threat to the pork industry worldwide and continues to bring significant economic loss. Current vaccination strategies offer limited protection against PRRSV transmission, highlighting the urgent need for novel antiviral approaches. In the present study, we reported for the first time that betulonic acid (BA), a widely available pentacyclic triterpenoids throughout the plant kingdom, exhibited potent inhibition on PRRSV infections in both Marc-145 cells and primary porcine alveolar macrophages (PAMs), with IC50 values ranging from 3.3 µM to 3.7 µM against three different type-2 PRRSV strains. Mechanistically, we showed that PRRSV replication relies on energy supply from cellular ATP production, and BA inhibits PRRSV infection by reducing cellular ATP production. Our findings indicate that controlling host ATP production could be a potential strategy to combat PRRSV infections, and that BA might be a promising therapeutic agent against PRRSV epidemics.


Subject(s)
Adenosine Triphosphate , Antiviral Agents , Macrophages, Alveolar , Porcine respiratory and reproductive syndrome virus , Virus Replication , Porcine respiratory and reproductive syndrome virus/drug effects , Porcine respiratory and reproductive syndrome virus/physiology , Animals , Virus Replication/drug effects , Adenosine Triphosphate/metabolism , Swine , Macrophages, Alveolar/virology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/drug effects , Antiviral Agents/pharmacology , Cell Line , Oleanolic Acid/pharmacology , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/metabolism , Chlorocebus aethiops , Down-Regulation/drug effects
10.
Front Microbiol ; 15: 1475208, 2024.
Article in English | MEDLINE | ID: mdl-39411437

ABSTRACT

Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent 13 of porcine reproductive and respiratory syndrome (PRRS), which is one of the most economically 14 devastating viruses in the Vietnamese swine industry. Methods: With a view toward determining the 15 genetic variation among PRRSV strains in Vietnam, we examined 271 PRRSV GP5 protein 16 sequences obtained from strains isolated in Vietnam from 2007 to 2023, for which we constructed 17 phylogenetic trees. Additionally, a collection of 52 PRRSV-1 strains and 80 PRRSV-2 strains 18 isolated in different years were specifically selected for nucleotide and amino acid homology analysis 19 and amino acid sequence alignment. Results: The results revealed 76.1%-100.0% nucleotide and 20 75.2%-100.0% amino acid homologies for the PRRSV-1 GP5 gene, and 81.8%-100.0% nucleotide 21 and 81.1%-100.0% amino acid homologies for the PRRSV-2 GP5 gene. Amino acid mutation sites 22 in PRRSV-2 were found to be primarily distributed in the signal peptide region, antigenic sites, two 23 T-cell antigen regions, two highly variable regions (HVRs), and in the vicinity of the neutralizing 24 epitope, with a deletion mutation occurring in the neutralizing epitope, whereas amino acid mutations 25 in the PRRSV-1 sequences were found to occur predominantly in two T-cell epitopes. Genetic 26 analysis revealed that PRRSV-1 strains in Vietnam are of subtype 1 (Global), whereas PRRSV-2 27 strains are categorized into sublineages L1A, L5A, and L8E, with L8E being the predominantly 28 prevalent strain at present. Recombination analyses indicated that no significant recombination 29 events have occurred in any of the assessed 271 Vietnamese PRRSV strains. Discussion: Our 30 analyses of 271 Vietnamese PRRSV strains have yielded valuable insights regarding the 31 epidemiological trends and genetic dynamics of PRRSV in Vietnam, and will provide a theoretical 32 basis for formulating prevention and control measures for PRRS and the development of PRRS 33 vaccines.

11.
Front Microbiol ; 15: 1435373, 2024.
Article in English | MEDLINE | ID: mdl-39220042

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) has become widespread in China particularly the highly pathogenic porcine reproductive and respiratory syndromes (HP-PRRSV), NADC30, and NADC34 strains, and has posed a threat to the swine industry for over 20 years. To monitor genetic variation in PRRSV-2 GP3 strains in China, we analyzed 618 strains isolated between 1996 to 2023 and constructed phylogenetic trees. Additionally, 60 selected strains were used to analyze nucleotide and amino acid homology. PRRSV GP3 gene exhibited nucleotide identity ranging from 78.2% to 100.0% and amino acid similarity ranging from 74.9% to 99.6%. The GP3 gene in the 60 selected strains consisted of 254 amino acids, and amino acid mutations in the strains primarily occurred in B-cell epitopes, T-cell epitopes, and highly variable regions. The glycosylation sites of the strains used for amino acid sequence comparisons remained unaltered, except for the N29 site in the GD20220303-2022 strain. PRRSV-2 strains in China belong to lineages 1, 3, 5, and 8. Recombination analysis detected two recombination events, involving lineages 1 and 8. In conclusion, this study investigated multiple strains of the PRRSV-2 GP3 gene to explore the prevalence and genetic diversity of the GP3 gene in China from a gene family perspective. The results of the analyses provide a basis for clinical prevention strategies and vaccine development.

12.
J Virol ; : e0081624, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264156

ABSTRACT

Viruses employ various evasion strategies to establish prolonged infection, with evasion of innate immunity being particularly crucial. Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant pathogen in swine industry, characterized by reproductive failures in sows and respiratory distress in pigs of all ages, leading to substantial economic losses globally. In this study, we found that the non-structural protein 5 (Nsp5) of PRRSV antagonizes innate immune responses via inhibiting the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs), which is achieved by degrading multiple proteins of RIG-I-like receptor (RLR) signaling pathway (RIG-I, MDA5, MAVS, TBK1, IRF3, and IRF7). Furthermore, we showed that PRRSV Nsp5 is located in endoplasmic reticulum (ER), where it promotes accumulation of RLR signaling pathway proteins. Further data demonstrated that Nsp5 activates reticulophagy (ER-phagy), which is responsible for the degradation of RLR signaling pathway proteins and IFN-I production. Mechanistically, Nsp5 interacts with one of the ER-phagy receptor family with sequence similarity 134 member B (FAM134B), promoting the oligomerization of FAM134B. These findings elucidate a novel mechanism by which PRRSV utilizes FAM134B-mediated ER-phagy to elude host antiviral immunity.IMPORTANCEInnate immunity is the first line of host defense against viral infections. Therefore, viruses developed numerous mechanisms to evade the host innate immune responses for their own benefit. PRRSV, one of the most important endemic swine viruses, poses a significant threat to the swine industry worldwide. Here, we demonstrate for the first time that PRRSV utilizes its non-structural protein Nsp5 to degrade multiple proteins of RLR signaling pathways, which play important roles in IFN-I production. Moreover, FAM134B-mediated ER-phagy was further proved to be responsible for the protein's degradation. Our study highlights the critical role of ER-phagy in immune evasion of PRRSV to favor replication and provides new insights into the prevention and control of PRRSV.

13.
Virology ; 600: 110213, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39265448

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) significantly impacts the global swine industry. Sichuan province, a key pig breeding center in China, has limited data on the molecular epidemiology of PRRS Virus (PRRSV). To address this, 1618 suspected PRRSV samples were collected from 2021 to 2023, with a prevalence rate of 39.74% (643/1618). Phylogenetic analysis showed PRRSV-2 as dominant (95.65%, 615/643), with PRRSV-1 at 4.35% (28/643). PRRSV-2 strains were further classified into NADC30-like (74.18%), NADC34-like (11.98%), C-PRRSV (5.44%), and HP-PRRSV (4.04%). The significant change in the proportions of different lineages indicates genomic divergence. NADC30-like strains exhibited significant amino acid mutations in ORF5, aiding immune evasion. Recombination analysis revealed complex patterns, primarily involving NADC30-like strains. This study highlights the genomic divergence of PRRSV in Sichuan, with NADC30-like strains becoming predominant and emerging strains like NADC34-like showing potential for further spread.

14.
Front Microbiol ; 15: 1443295, 2024.
Article in English | MEDLINE | ID: mdl-39228381

ABSTRACT

Currently, the efficacy of vaccination for preventing and controlling PRRSV is insufficient. Therefore, there is an urgent need for novel effective preventive strategies. This study aimed to investigate the antiviral effect of Eucalyptus essential oil (EEO) against PRRSV in vitro. Marc-145 cells were infected with PRRSV (rJXA1-R), and the toxicity of EEO in the cells was measured using the Cell Counting Kit-8 method. Additionally, the antiviral effect of EEO on PRRSV-infected cells was assessed using three treatment methods: drug administration post-PRRSV inoculation (post-treatment), drug administration before PRRSV inoculation (pre-treatment), and simultaneous drug administration and PRRSV inoculation (co-treatment). The EEO could not inhibit virus adsorption and/or replication since post-treatment and pre-treatment did not prevent viral infectivity. However, EEO exerted a significant virucidal effect on PRRSV. When PRRSV-infected cells were treated with 0.0156, 0.0312, and 0.0625% EEO, the cell survival rates were 55.37, 118.96, and 121.67%, respectively, and the titer of progeny virions decreased from 5.77 Log10TCID50 to 5.21 Log10TCID50, 0.55 Log10TCID50, and less than 0.167 Log10TCID50, respectively (where TCID50 is the 50% tissue culture infected dose). The fluorescence intensity of the PRRSV N protein significantly decreased in the indirect immunofluorescence assay. When cells were co-treated with EEO (0.0625%) and PRRSV (1000 TCID50) for 15 min, the viral particles were inactivated, and PRRSV (1000 TCID50) particles loss infectivity when the co-treatment time reached 60 min. In a word, EEO has no obvious therapeutic effect on PRRSV infection, but it can effectively inactivate virus particles and make them lose the ability to infect cells. These findings provide insights for the development and use of EEO to treat PRRS.

15.
Comput Struct Biotechnol J ; 23: 3348-3357, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39310279

ABSTRACT

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) have been a critical threat to swine health since 1987 due to its high mutation rate and substantial economic loss over half a billion dollar in USA. The rapid mutation rate of PRRSV presents a significant challenge in developing an effective vaccine. Even though surveillance and intervention studies have recently (2019) unveiled utilization of PRRSV glycoprotein 5 (GP5; encoded by ORF5 gene) to induce immunogenic reaction and production of neutralizing antibodies in porcine populations, the future viral generations can accrue escape mutations. In this study we identify 63 porcine-PRRSV protein-protein interactions which play primary or ancillary roles in viral entry and infection. Using genome-proteome annotation, protein structure prediction, multiple docking experiments, and binding energy calculations, we identified a list of 75 epitope locations on PRRSV proteins crucial for infection. Additionally, using machine learning-based diffusion model, we designed 56 stable immunogen peptides that contain one or more of these epitopes with their native tertiary structures stabilized through optimized N- and C-terminus flank sequences and interspersed with appropriate linker regions. Our workflow successfully identified numerous known interactions and predicted several novel PRRSV-porcine interactions. By leveraging the structural and sequence insights, this study paves the way for more effective, high-avidity, multi-valent PRRSV vaccines, and leveraging neural networks for immunogen design.

16.
Front Microbiol ; 15: 1465449, 2024.
Article in English | MEDLINE | ID: mdl-39323887

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) has caused severe economic losses to the global swine industry. In recent years, the incidence of PRRSV-1 has been gradually increasing in China, but there are still few studies on it. In this study, clinical samples for PRRS virus isolation were collected from a pig farm in South China in 2022. We effectively isolated a strain of PRRSV utilizing PAM cells and demonstrated its consistent transmission capability on Marc-145 cells. The isolated strain was confirmed as PRRSV-1 by RT-qPCR, IFA, electron microscopy, etiolated spot purification and whole genome sequencing, the strain was named GD2022. The length of GD2022 genome is 15058nt; Based on the genome-wide genetic evolutionary analysis of GD2022, the strain was classified as PRRSV-1. Further genetic evolutionary analysis of its ORF5 gene showed that GD2022 belonged to PRRSV-1 subtype 1 and formed an independent branch in the evolutionary tree. Compared with the sequence of the classical PRRSV-1 strain (LV strain), GD2022 has several amino acid site mutations in the antigenic region from GP3 to GP5, these mutations are different from those of other PRRSV-1 strains in China. Recombination analysis showed no recombination events with GD2022. In addition, piglets infected with GD2022 displayed clinical respiratory symptoms and typical pathological changes. In this study, a strain of the PRRSV-1 virus was isolated using both PAM cells and Marc-145 and proved to be pathogenic to piglets, providing an important reference for the identification, prevention, and control of PRRSV-1.

17.
Front Vet Sci ; 11: 1419340, 2024.
Article in English | MEDLINE | ID: mdl-39346961

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a global challenge for swine health. Yim-Im et al. 2023 provides a standard genetic nomenclature, extending previously published works to better characterize PRRSV-2 ORF5-based genetic lineages on a global scale. To facilitate the use of this nomenclature, scaffold sequences, including historical and contemporary vaccines, were synthesized into a dataset designed for Nextclade v3.0. Metadata from the scaffold sequences representing year, country, and RFLP typing of the sequence were incorporated into the dataset. These scaffold sequences were processed through the Augur pipeline using DQ478308.1 as a reference strain for rooting and comparison. The resultant classifier can be accessed through the Nextclade website (https://clades.nextstrain.org/) or a link on the PRRSView homepage (https://prrsv.vdl.iastate.edu/). The resultant classifier functions the same as other classifiers hosted by the Nextclade core group and can provide phylogenetic-based PRRSV-2 ORF5 classifications on demand. Nextclade provides additional sequence metrics such as classification quality and notable mutations relative to the reference. The submitted sequences are grafted to the reference tree using phylogenetic placement, allowing for comparison to nearby sequences of reference viruses and vaccine strains. Additional comparisons between sequences can be made with metadata incorporated in the dataset. Although Nextclade is hosted as a webtool, the sequences are not uploaded to a server, and all analysis stay strictly confidential to the user. This work provides a standardized, trivial workflow facilitated by Nextclade to rapidly assign lineage classifications to PRRSV-2, identify mutations of interest, and compare contemporary strains to relevant vaccines.

18.
Vet Sci ; 11(9)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39330771

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) has caused substantial damage to the pig industry. MicroRNAs (miRNAs) were found to play crucial roles in modulating the pathogenesis of PRRS virus (PRRSV). In the present study, we revealed that PRRSV induced let-7f-5p to influence lipid metabolism to regulate PRRSV pathogenesis. A transcriptome analysis of PRRSV-infected PK15CD163 cells transfected with let-7f-5p mimics or negative control (NC) generated 1718 differentially expressed genes, which were primarily associated with lipid metabolism processes. Furthermore, the master regulator of lipogenesis SREBP2 was found to be directly targeted by let-7f-5p using a dual-luciferase reporter system and Western blotting. The findings demonstrate that let-7f-5p modulates lipogenesis by targeting SREBP2, providing novel insights into miRNA-mediated PRRSV pathogenesis and offering a potential antiviral therapeutic target.

19.
Prev Vet Med ; 233: 106350, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39340954

ABSTRACT

Responsible antibiotic usage (ABU) is crucial for both animal and human health and requires constant improvement of antimicrobial stewardship (AMS). The presence of porcine reproductive and respiratory syndrome virus (PRRSV), a viral pathogen with immunosuppressive effects on swine, can intensify bacterial co-infections, alter antibiotic pharmacokinetics, and potentially lead to increased ABU. This study aimed to measure ABU changes in the grow-finish population associated with PRRSV infection and describe the antibiotic classes employed to manage clinical signs from a farrow-to-finish genetic multiplier system. Three PRRSV statuses (naïve, positive epidemic, and positive endemic) were established to classify the lots based on PRRSV circulation, with a total of 135,063 animals evaluated. The number of pig treatments per animal days at risk (PTDR) was calculated by administration route to quantify ABU across PRRSV status using negative binomial regression and non-parametric tests (P-value < 0.05). Moreover, to improve ABU comparability in the international scenario, the milligrams per population correction unit (mg/PCU) was calculated according to the European Medicines Agency guidelines. In the nursery phase, there was a statistically significant difference between PRRSV statuses for the overall PTDR (injectable and water routes of administration), with an ABU increase of 3.79 and 2.51 times the naïve PTDR for positive epidemic and endemic status, respectively. For the finishing phase, there was a statistically significant difference between PRRSV statuses in the injectable PTDR, with an ABU increase of 2.74 and 2.28 times the naïve PTDR level for positive epidemic and endemic statuses, respectively. In the nursery phase, the mean mg/PCU was 22.27 mg/PCU for naïve, 86.71 for positive epidemic, and 33.37 for positive endemic statuses; in the finishing phase, 81.31, 76.55, and 67.09 mg/PCU, respectively. The most frequently injected antibiotic in the nursery phase was ampicillin, with 49 % of total injections, followed by lincomycin (31 %) and enrofloxacin (20 %), and in the finishing phase, 72 % of injections were lincomycin, followed by enrofloxacin (28 %). The results highlight that the PRRSV outbreak in the source was associated with a grow-finish ABU increase, revealing the importance of preventing PRRSV infection to potentially decrease ABU and improve AMS within swine production systems.

20.
Vet Microbiol ; 298: 110255, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39332164

ABSTRACT

Following infection of a porcine dam with PRRSV around 90 days of gestation, the virus crosses the placenta and starts to infect fetuses. This can lead to consequences such as abortions, stillbirths, and respiratory issues in newborn piglets. CD163 is an essential cellular viral entry receptor for porcine reproductive and respiratory syndrome virus (PRRSV). CD163 contains nine scavenger receptor cysteine-rich (SRCR) and two proline-serine-threonine (PST) domains. Gene-edited pigs possessing a complete deletion of CD163 are resistant to PRRSV infection. Recently, we demonstrated that pigs harboring a clean deletion of CD163 exon 13 (ΔExon13 CD163 pigs) which encodes the first 12 amino acids of the CD163 PSTII domain were not susceptible to PRRSV infection. In this study, ΔExon13 CD163 (-/-) gilts were bred with wildtype CD163 (+/+) boars producing heterozygous, CD163 (+/-) fetuses. We found that fetuses with a wildtype CD163, recovered between day 103 of gestation or 17 days after the maternal infection with PRRSV, were fully protected from PRRSV in dams containing a clean deletion of CD163 exon 13. These findings suggest a feasible approach for eliminating PRRSV-related reproductive illness, which is a significant cause of economic losses in agriculture.

SELECTION OF CITATIONS
SEARCH DETAIL