Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters








Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 406, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750463

ABSTRACT

BACKGROUND: The lifestyle transition from autotrophy to heterotrophy often leads to extensive degradation of plastomes in parasitic plants, while the evolutionary trajectories of plastome degradation associated with parasitism in hemiparasitic plants remain poorly understood. In this study, phylogeny-oriented comparative analyses were conducted to investigate whether obligate Loranthaceae stem-parasites experienced higher degrees of plastome degradation than closely related facultative root-parasites and to explore the potential evolutionary events that triggered the 'domino effect' in plastome degradation of hemiparasitic plants. RESULTS: Through phylogeny-oriented comparative analyses, the results indicate that Loranthaceae hemiparasites have undergone varying degrees of plastome degradation as they evolved towards a heterotrophic lifestyle. Compared to closely related facultative root-parasites, all obligate stem-parasites exhibited an elevated degree plastome degradation, characterized by increased downsizing, gene loss, and pseudogenization, thereby providing empirical evidence supporting the theoretical expectation that evolution from facultative parasitism to obligate parasitism may result in a higher degree of plastome degradation in hemiparasites. Along with infra-familial divergence in Loranthaceae, several lineage-specific gene loss/pseudogenization events occurred at deep nodes, whereas further independent gene loss/pseudogenization events were observed in shallow branches. CONCLUSIONS: The findings suggest that in addition to the increasing levels of nutritional reliance on host plants, cladogenesis can be considered as another pivotal evolutionary event triggering the 'domino effect' in plastome degradation of hemiparasitic plants. These findings provide new insights into the evolutionary trajectory of plastome degradation in hemiparasitic plants.


Subject(s)
Loranthaceae , Phylogeny , Loranthaceae/genetics , Loranthaceae/physiology , Biological Evolution , Plastids/genetics , Evolution, Molecular
2.
Plant Mol Biol ; 114(3): 40, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622367

ABSTRACT

Parasitic lifestyle can often relax the constraint on the plastome, leading to gene pseudogenization and loss, and resulting in diverse genomic structures and rampant genome degradation. Although several plastomes of parasitic Cuscuta have  been reported, the evolution of parasitism in the family Convolvulaceae which is linked to structural variations and reduction of plastome has not been well investigated. In this study, we assembled and collected 40 plastid genomes belonging to 23 species representing four subgenera of Cuscuta and ten species of autotrophic Convolvulaceae. Our findings revealed nine types of structural variations and six types of inverted repeat (IR) boundary variations in the plastome of Convolvulaceae spp. These structural variations were associated with the shift of parasitic lifestyle, and IR boundary shift, as well as the abundance of long repeats. Overall, the degradation of Cuscuta plastome proceeded gradually, with one clade exhibiting an accelerated degradation rate. We observed five stages of gene loss in Cuscuta, including NAD(P)H complex → PEP complex → Photosynthesis-related → Ribosomal protein subunits → ATP synthase complex. Based on our results, we speculated that the shift of parasitic lifestyle in early divergent time promoted relaxed selection on plastomes, leading to the accumulation of microvariations, which ultimately resulted in the plastome reduction. This study provides new evidence towards a better understanding of plastomic evolution, variation, and reduction in the genus Cuscuta.


Subject(s)
Convolvulaceae , Cuscuta , Genome, Plastid , Convolvulaceae/genetics , Cuscuta/genetics , Genes, Plant , Photosynthesis/genetics , Phylogeny , Evolution, Molecular
3.
Mol Phylogenet Evol ; 186: 107842, 2023 09.
Article in English | MEDLINE | ID: mdl-37321361

ABSTRACT

Distinct hosts have been hypothesized to possess the potential for affecting species differentiation and genome evolution of parasitic organisms. However, what host shift history is experienced by the closely related parasites and whether disparate evolution of their genomes occur remain largely unknown. Here, we screened horizontal gene transfer (HGT) events in a pair of sister species of holoparasitic Boschniakia (Orobanchaceae) having obligate hosts from distinct families to recall the former host-parasite associations and performed a comparative analysis to investigate the difference of their organelle genomes. Except those from the current hosts (Ericaceae and Betulaceae), we identified a number of HGTs from Rosaceae supporting the occurrence of unexpected ancient host shifts. Different hosts transfer functional genes which changed nuclear genomes of this sister species. Likewise, different donors transferred sequences to their mitogenomes, which vary in size due to foreign and repetitive elements rather than other factors found in other parasites. The plastomes are both severely reduced, and the degree of difference in reduction syndrome reaches the intergeneric level. Our findings provide new insights into the genome evolution of parasites adapting to different hosts and extend the mechanism of host shift promoting species differentiation to parasitic plant lineages.


Subject(s)
Genome, Plastid , Orobanchaceae , Humans , Phylogeny , Orobanchaceae/genetics , Genes, Plant , Repetitive Sequences, Nucleic Acid , Gene Transfer, Horizontal
4.
BMC Plant Biol ; 22(1): 507, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36316655

ABSTRACT

BACKGROUND: Mycoheterotrophy is a unique survival strategy adapted to dense forests and has attracted biologists' attention for centuries. However, its evolutionary origin and related plastome degradation are poorly understood. The tribe Neottieae contains various nutrition types, i.e., autotrophy, mixotrophy, and mycoheterotrophy. Here, we present a comprehensive phylogenetic analysis of the tribe based on plastome and nuclear ITS data. We inferred the evolutionary shift of nutrition types, constructed the patterns of plastome degradation, and estimated divergence times and ancestral ranges. We also used an integration of molecular dating and ecological niche modeling methods to investigate the disjunction between the Loess Plateau and Changbai Mountains in Diplandrorchis, a mycoheterotrophic genus endemic to China that was included in a molecular phylogenetic study for the first time. RESULTS: Diplandrorchis was imbedded within Neottia and formed a clade with four mycoheterotrophic species. Autotrophy is the ancestral state in Neottieae, mixotrophy independently originated at least five times, and three shifts from mixotrophy to mycoheterotrophy independently occurred. The five mixotrophic lineages possess all plastid genes or lost partial/all ndh genes, whereas each of the three mycoheterotroph lineages has a highly reduced plastome: one lost part of its ndh genes and a few photosynthesis-related genes, and the other two lost almost all ndh, photosynthesis-related, rpo, and atp genes. These three mycoheterotrophic lineages originated at about 26.40 Ma, 25.84 Ma, and 9.22 Ma, respectively. Diplandrorchis had presumably a wide range in the Pliocene and migrated southward in the Pleistocene. CONCLUSIONS: The Pleistocene climatic fluctuations and the resultant migration resulted in the Loess Plateau-Changbai Mountains disjunction of Diplandrorchis. In the evolution of mycoheterotrophic lineages, the loss of plastid-encoded genes and plastome degradation are staged and irreversible, constraining mycoheterotrophs to inhabit understories with low light levels. Accordingly, the rise of local forests might have promoted the origin of conditions in which mycoheterotrophy is advantageous.


Subject(s)
Genome, Plastid , Orchidaceae , Orchidaceae/genetics , Phylogeny , Genome, Plastid/genetics , Heterotrophic Processes/genetics , Photosynthesis/genetics , Evolution, Molecular
5.
Front Genet ; 11: 597, 2020.
Article in English | MEDLINE | ID: mdl-32612639

ABSTRACT

Most species of Santalales (the sandalwood order) are hemiparasites, including both facultative and obligate hemiparasites. Despite its rich diversity, only a small fraction of the species in the sandalwood order have sequenced plastomes. The evolution of parasitism-associated plastome reduction in Santalales remains under-studied. Here, we report the complete plastomes of three facultative hemiparasites (Pyrularia edulis, Cervantesiaceae; Osyris wightiana, and Santalum album, Santalaceae), and two obligate hemiparasites (Viscum liquidambaricolum and Viscum ovalifolium, Viscaceae). Coupled with publicly available data, we investigated the dynamics of plastome degradation in Santalales hemiparasites. Our results indicate that these hemiparasites can be characterized by various degrees of plastome downsizing, structural rearrangement, and gene loss. The loss or pseudogenization of ndh genes was commonly observed in Santalales hemiparasites, which may be correlated to the lifestyle shift from photoautotroph to hemiparasitism. However, the obligate hemiparasites did not exhibit a consistently higher level of gene loss or pseudogenization compared to facultative hemiparasites, which suggests that the degree of plastome reduction is not correlated with the trophic level facultative or obligate hemiparasitism. Instead, closely related taxa tend to possess highly similar plastome size, structure, and gene content. This implies the parasitism-associated plastome degradation in Santalales may evolve in a lineage-specific manner.

6.
Curr Genet ; 63(2): 331-341, 2017 May.
Article in English | MEDLINE | ID: mdl-27553633

ABSTRACT

Euglena gracilis growth with antibacterial agents leads to bleaching, permanent plastid gene loss. Colorless Euglena (Astasia) longa resembles a bleached E. gracilis. To evaluate the role of bleaching in E. longa evolution, the effect of streptomycin, a plastid protein synthesis inhibitor, and ofloxacin, a plastid DNA gyrase inhibitor, on E. gracilis and E. longa growth and plastid DNA content were compared. E. gracilis growth was unaffected by streptomycin and ofloxacin. Quantitative PCR analyses revealed a time dependent loss of plastid genes in E. gracilis demonstrating that bleaching agents produce plastid gene deletions without affecting cell growth. Streptomycin and ofloxacin inhibited E. longa growth indicating that it requires plastid genes to survive. This suggests that evolutionary divergence of E. longa from E. gracilis was triggered by the loss of a cytoplasmic metabolic activity also occurring in the plastid. Plastid metabolism has become obligatory for E. longa cell growth. A process termed "intermittent bleaching", short term exposure to subsaturating concentrations of reversible bleaching agents followed by growth in the absence of a bleaching agent, is proposed as the molecular mechanism for E. longa plastid genome reduction. Various non-photosynthetic lineages could have independently arisen from their photosynthetic ancestors via a similar process.


Subject(s)
Euglena gracilis/genetics , Euglena longa/genetics , Genome, Plastid/genetics , Plastids/genetics , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Chloroplast Proteins/genetics , DNA, Chloroplast/genetics , Euglena gracilis/growth & development , Euglena longa/growth & development , Gene Deletion , Gene Dosage , Genes, Chloroplast/genetics , Mutagenesis/drug effects , Ofloxacin/pharmacology , Sequence Homology, Amino Acid , Species Specificity , Streptomycin/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL