Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.011
Filter
1.
ACS Synth Biol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991172

ABSTRACT

DNA shuffling is a powerful technique for generating synthetic DNA via recombination of homologous parental sequences. Resulting chimeras are often incorporated into complex libraries for functionality screenings that identify novel variants with improved characteristics. To survey shuffling efficiency, subsequences of chimeras can be computationally assigned to their corresponding parental counterpart, yielding insight into frequency of recombination events, diversity of shuffling libraries and actual composition of final variants. Whereas tools for parental assignment exist, they do not provide direct visualization of the results, making the analysis time-consuming and cumbersome. Here we present ShuffleAnalyzer, a comprehensive, user-friendly, Python-based analysis tool that directly generates graphical outputs of parental assignments and is freely available under a BSD-3 license (https://github.com/joerg-swg/ShuffleAnalyzer/releases). Besides DNA shuffling, peptide insertions can be simultaneously analyzed and visualized, which makes ShuffleAnalyzer a highly valuable tool for integrated approaches often used in synthetic biology, such as AAV capsid engineering in gene therapy applications.

2.
BMC Bioinformatics ; 25(1): 228, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956506

ABSTRACT

BACKGROUND: Fungi play a key role in several important ecological functions, ranging from organic matter decomposition to symbiotic associations with plants. Moreover, fungi naturally inhabit the human body and can be beneficial when administered as probiotics. In mycology, the internal transcribed spacer (ITS) region was adopted as the universal marker for classifying fungi. Hence, an accurate and robust method for ITS classification is not only desired for the purpose of better diversity estimation, but it can also help us gain a deeper insight into the dynamics of environmental communities and ultimately comprehend whether the abundance of certain species correlate with health and disease. Although many methods have been proposed for taxonomic classification, to the best of our knowledge, none of them fully explore the taxonomic tree hierarchy when building their models. This in turn, leads to lower generalization power and higher risk of committing classification errors. RESULTS: Here we introduce HiTaC, a robust hierarchical machine learning model for accurate ITS classification, which requires a small amount of data for training and can handle imbalanced datasets. HiTaC was thoroughly evaluated with the established TAXXI benchmark and could correctly classify fungal ITS sequences of varying lengths and a range of identity differences between the training and test data. HiTaC outperforms state-of-the-art methods when trained over noisy data, consistently achieving higher F1-score and sensitivity across different taxonomic ranks, improving sensitivity by 6.9 percentage points over top methods in the most noisy dataset available on TAXXI. CONCLUSIONS: HiTaC is publicly available at the Python package index, BIOCONDA and Docker Hub. It is released under the new BSD license, allowing free use in academia and industry. Source code and documentation, which includes installation and usage instructions, are available at https://gitlab.com/dacs-hpi/hitac .


Subject(s)
Fungi , Machine Learning , Fungi/genetics , Fungi/classification , DNA, Ribosomal Spacer/genetics , Software
3.
Front Artif Intell ; 7: 1297347, 2024.
Article in English | MEDLINE | ID: mdl-38957453

ABSTRACT

Addressing the increasing demand for accessible sign language learning tools, this paper introduces an innovative Machine Learning-Driven Web Application dedicated to Sign Language Learning. This web application represents a significant advancement in sign language education. Unlike traditional approaches, the application's unique methodology involves assigning users different words to spell. Users are tasked with signing each letter of the word, earning a point upon correctly signing the entire word. The paper delves into the development, features, and the machine learning framework underlying the application. Developed using HTML, CSS, JavaScript, and Flask, the web application seamlessly accesses the user's webcam for a live video feed, displaying the model's predictions on-screen to facilitate interactive practice sessions. The primary aim is to provide a learning platform for those who are not familiar with sign language, offering them the opportunity to acquire this essential skill and fostering inclusivity in the digital age.

4.
ArXiv ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38947916

ABSTRACT

In this paper, a set of Python methods is described that can be used to compute the frequency response of an arbitrary biochemical network given any input and output. Models can be provided in standard SBML or Antimony format. The code takes into account any conserved moieties so that this software can be used to also study signaling networks where moiety cycles are common. A utility method is also provided to make it easy to plot standard Bode plots from the generated results. The code also takes into account the possibility that the phase shift could exceed 180 degrees which can result in ugly discontinues in the Bode plot. In the paper, some of the theory behind the method is provided as well as some commentary on the code and several illustrative examples to show the code in operation. Illustrative examples include linear reaction chains of varying lengths and the effect of negative feedback on the frequency response. Software License: MIT Open Source. Availability: The code is available from https://github.com/sys-bio/frequencyResponse.

5.
Article in English | MEDLINE | ID: mdl-38985802

ABSTRACT

Successful therapeutic delivery of siRNA with polymeric nanoparticles seems to be a promising but not vastly understood and complicated goal to achieve. Despite years of research, no polymer-based delivery system has been approved for clinical use. Polymers, as a delivery system, exhibit considerable complexity and variability, making their consistent production a challenging endeavor. However, a better understanding of the polymerization process of polymer excipients may improve the reproducibility and material quality for more efficient use in drug products. Here, we present a combination of Design of Experiment and Python-scripted data science to establish a prediction model, from which important parameters can be extracted that influence the synthesis results of polybeta-amino esters (PBAEs), a common type of polymer used preclinically for nucleic acid delivery. We synthesized a library of 27 polymers, each one at different temperatures with different reaction times and educt ratios using an orthogonal central composite (CCO-) design. This design allowed a detailed characterization of factor importance and interactions using a very limited number of experiments. We characterized the polymers by analyzing the resulting composition by 1H-NMR and the size distribution by GPC measurements. To further understand the complex mechanism of block polymerization in a one-pot synthesis, we developed a Python script that helps us to understand possible step-growth steps. We successfully developed and validated a predictive response surface and gathered a deeper understanding of the synthesis of polyspermine-based amphiphilic PBAEs.

6.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(3): 281-284, 2024 May 30.
Article in Chinese | MEDLINE | ID: mdl-38863094

ABSTRACT

In magnetic resonance examination, the interaction between implants and the radio frequency (RF) fields induces heating in human tissue and may cause tissue damage. To assess the RF-induced heating of implants, three steps should be executed, including electromagnetic model construction, electromagnetic model validation, and virtual human body simulations. The crucial step of assessing RF-induced heating involves the construction of a test environment for electromagnetic model validation. In this study, a hardware environment, comprised of a RF generation system, electromagnetic field measurement system, and a robotic arm positioning system, was established. Furthermore, an automated control software environment was developed using a Python-based software development platform to enable the creation of a high-precision automated integrated test environment. The results indicate that the electric field generated in this test environment aligns well with the simulated electric field, making it suitable for assessing the RF-induced heating effects of implants.


Subject(s)
Electromagnetic Fields , Hot Temperature , Prostheses and Implants , Radio Waves , Software , Humans , Magnetic Resonance Imaging
7.
JMIR Biomed Eng ; 9: e56246, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38875677

ABSTRACT

BACKGROUND: Vocal biomarkers, derived from acoustic analysis of vocal characteristics, offer noninvasive avenues for medical screening, diagnostics, and monitoring. Previous research demonstrated the feasibility of predicting type 2 diabetes mellitus through acoustic analysis of smartphone-recorded speech. Building upon this work, this study explores the impact of audio data compression on acoustic vocal biomarker development, which is critical for broader applicability in health care. OBJECTIVE: The objective of this research is to analyze how common audio compression algorithms (MP3, M4A, and WMA) applied by 3 different conversion tools at 2 bitrates affect features crucial for vocal biomarker detection. METHODS: The impact of audio data compression on acoustic vocal biomarker development was investigated using uncompressed voice samples converted into MP3, M4A, and WMA formats at 2 bitrates (320 and 128 kbps) with MediaHuman (MH) Audio Converter, WonderShare (WS) UniConverter, and Fast Forward Moving Picture Experts Group (FFmpeg). The data set comprised recordings from 505 participants, totaling 17,298 audio files, collected using a smartphone. Participants recorded a fixed English sentence up to 6 times daily for up to 14 days. Feature extraction, including pitch, jitter, intensity, and Mel-frequency cepstral coefficients (MFCCs), was conducted using Python and Parselmouth. The Wilcoxon signed rank test and the Bonferroni correction for multiple comparisons were used for statistical analysis. RESULTS: In this study, 36,970 audio files were initially recorded from 505 participants, with 17,298 recordings meeting the fixed sentence criteria after screening. Differences between the audio conversion software, MH, WS, and FFmpeg, were notable, impacting compression outcomes such as constant or variable bitrates. Analysis encompassed diverse data compression formats and a wide array of voice features and MFCCs. Wilcoxon signed rank tests yielded P values, with those below the Bonferroni-corrected significance level indicating significant alterations due to compression. The results indicated feature-specific impacts of compression across formats and bitrates. MH-converted files exhibited greater resilience compared to WS-converted files. Bitrate also influenced feature stability, with 38 cases affected uniquely by a single bitrate. Notably, voice features showed greater stability than MFCCs across conversion methods. CONCLUSIONS: Compression effects were found to be feature specific, with MH and FFmpeg showing greater resilience. Some features were consistently affected, emphasizing the importance of understanding feature resilience for diagnostic applications. Considering the implementation of vocal biomarkers in health care, finding features that remain consistent through compression for data storage or transmission purposes is valuable. Focused on specific features and formats, future research could broaden the scope to include diverse features, real-time compression algorithms, and various recording methods. This study enhances our understanding of audio compression's influence on voice features and MFCCs, providing insights for developing applications across fields. The research underscores the significance of feature stability in working with compressed audio data, laying a foundation for informed voice data use in evolving technological landscapes.

8.
Biotechnol Prog ; : e3490, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888043

ABSTRACT

Microscopy image analysis plays a crucial role in understanding cellular behavior and uncovering important insights in various biological and medical research domains. Tracking cells within the time-lapse microscopy images is a fundamental technique that enables the study of cell dynamics, interactions, and migration. While manual cell tracking is possible, it is time-consuming and prone to subjective biases that impact results. In order to solve this issue, we sought to create an automated software solution, named cell analyzer, which is able to track cells within microscopy images with minimal input required from the user. The program of cell analyzer was written in Python utilizing the open source computer vision (OpenCV) library and featured a graphical user interface that makes it easy for users to access. The functions of all codes were verified through closeness, area, centroid, contrast, variance, and cell tracking test. Cell analyzer primarily utilizes image preprocessing and edge detection techniques to isolate cell boundaries for detection and analysis. It uniquely recorded the area, displacement, speed, size, and direction of detected cell objects and visualized the data collected automatically for fast analysis. Our cell analyzer provides an easy-to-use tool through a graphical user interface for tracking cell motion and analyzing quantitative cell images.

9.
Sci Rep ; 14(1): 13251, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858458

ABSTRACT

Cervical cancer stands as a prevalent gynaecologic malignancy affecting women globally, often linked to persistent human papillomavirus infection. Biomarkers associated with cervical cancer, including VEGF-A, VEGF-B, VEGF-C, VEGF-D, and VEGF-E, show upregulation and are linked to angiogenesis and lymphangiogenesis. This research aims to employ in-silico methods to target tyrosine kinase receptor proteins-VEGFR-1, VEGFR-2, and VEGFR-3, and identify novel inhibitors for Vascular Endothelial Growth Factors receptors (VEGFRs). A comprehensive literary study was conducted which identified 26 established inhibitors for VEGFR-1, VEGFR-2, and VEGFR-3 receptor proteins. Compounds with high-affinity scores, including PubChem ID-25102847, 369976, and 208908 were chosen from pre-existing compounds for creating Deep Learning-based models. RD-Kit, a Deep learning algorithm, was used to generate 43 million compounds for VEGFR-1, VEGFR-2, and VEGFR-3 targets. Molecular docking studies were conducted on the top 10 molecules for each target to validate the receptor-ligand binding affinity. The results of Molecular Docking indicated that PubChem IDs-71465,645 and 11152946 exhibited strong affinity, designating them as the most efficient molecules. To further investigate their potential, a Molecular Dynamics Simulation was performed to assess conformational stability, and a pharmacophore analysis was also conducted for indoctrinating interactions.


Subject(s)
Deep Learning , Molecular Docking Simulation , Uterine Cervical Neoplasms , Vascular Endothelial Growth Factor Receptor-1 , Vascular Endothelial Growth Factor Receptor-2 , Vascular Endothelial Growth Factor Receptor-3 , Humans , Vascular Endothelial Growth Factor Receptor-3/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-3/metabolism , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/virology , Female , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-1/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry
10.
J Biomed Opt ; 29(6): 066006, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38846677

ABSTRACT

Significance: Photoacoustic computed tomography (PACT) is a promising non-invasive imaging technique for both life science and clinical implementations. To achieve fast imaging speed, modern PACT systems have equipped arrays that have hundreds to thousands of ultrasound transducer (UST) elements, and the element number continues to increase. However, large number of UST elements with parallel data acquisition could generate a massive data size, making it very challenging to realize fast image reconstruction. Although several research groups have developed GPU-accelerated method for PACT, there lacks an explicit and feasible step-by-step description of GPU-based algorithms for various hardware platforms. Aim: In this study, we propose a comprehensive framework for developing GPU-accelerated PACT image reconstruction (GPU-accelerated photoacoustic computed tomography), to help the research community to grasp this advanced image reconstruction method. Approach: We leverage widely accessible open-source parallel computing tools, including Python multiprocessing-based parallelism, Taichi Lang for Python, CUDA, and possible other backends. We demonstrate that our framework promotes significant performance of PACT reconstruction, enabling faster analysis and real-time applications. Besides, we also described how to realize parallel computing on various hardware configurations, including multicore CPU, single GPU, and multiple GPUs platform. Results: Notably, our framework can achieve an effective rate of ∼ 871 times when reconstructing extremely large-scale three-dimensional PACT images on a dual-GPU platform compared to a 24-core workstation CPU. In this paper, we share example codes via GitHub. Conclusions: Our approach allows for easy adoption and adaptation by the research community, fostering implementations of PACT for both life science and medicine.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Phantoms, Imaging , Photoacoustic Techniques , Photoacoustic Techniques/methods , Photoacoustic Techniques/instrumentation , Image Processing, Computer-Assisted/methods , Animals , Computer Graphics , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/instrumentation , Humans
11.
Heliyon ; 10(11): e31484, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38828339

ABSTRACT

Recently, biofuels with higher alcohol content have become a promising alternative to diesel fuel. These fuels are appealing because they are sustainable, renewable, and possess attractive fuel properties. This study uses a split injection strategy to analyze the performance and emissions of a CRDI diesel engine fueled by 1-heptanol. The work involved testing different fuel blends, ranging from 10 % to 30 %, while maintaining a constant engine speed of 1500 rpm and varying the operating load between 0 kg and 12 kg in 4 kg increments. During the second stage, the CRITIC-TOPSIS method determines the objective weights and rankings of various criteria and alternatives. A Python approach based on machine learning was used to ensure the CRITIC-TOPSIS results were accurate. Seven criteria were evaluated to maximize BTE while minimizing BSFC, NOx, smoke opacity, HC, CO, and CO2. The experimental results showed a slight drop of 2.98 % in BTE and an increase of about 13.33 % in BSFC. NOx and smoke opacity were reduced by 7.13%-4.53 %, while there was a 12.12 % increase in HC, 6.45 % higher CO, and a 5.5 % increase in CO2 at full load. Adding 1-heptanol to diesel and using a split injection strategy significantly reduced NOx and smoke opacity. The final ranking and best blend are determined using CRITIC-TOPSIS and Python algorithms to estimate performance and emissions criteria. At a load of 4 kg, D100 ranks first with a relative closeness value of 0.642, while at a pack of 8 kg, the blend HP20D80 ranks first with a relative closeness value of 0.633. According to the rankings, the HP20D80 blend is the best option for achieving optimal performance and reduced emissions in CRDI diesel engines. A research paper has presented a unique approach to multiple criteria decision-making (MCDM) validated using a Python algorithm. This method can assist decision-makers in making better-informed choices when faced with MCDM problems that involve various criteria and alternatives.

12.
PeerJ ; 12: e17504, 2024.
Article in English | MEDLINE | ID: mdl-38912043

ABSTRACT

Background: The development of serodiagnostic tests and vaccines for COVID-19 depends on the identification of epitopes from the SARS-CoV-2 genome. An epitope is the specific part of an antigen that is recognized by the immune system and can elicit an immune response. However, when the genetic variants contained in epitopes are used to develop rapid antigen tests (Ag-RDTs) and DNA or RNA vaccines, test sensitivity and vaccine efficacy can be low. Methods: Here, we developed a "variant on epitope (VOE)" software, a new Python script for identifying variants located on an epitope. Variant analysis and sensitivity calculation for seven recommended epitopes were processed by VOE. Variants in 1,011 Omicron SRA reads from two variant databases (BCFtools and SARS-CoV-2-Freebayes) were processed by VOE. Results: A variant with HIGH or MODERATE impact was found on all epitopes from both variant databases except the epitopes KLNDLCFTNV, RVQPTES, LKPFERD, and ITLCFTLKRK on the S gene and ORF7a gene. All epitope variants from the BCFtools and SARS-CoV-2 Freebayes variant databases showed about 100% sensitivity except epitopes APGQTGK and DSKVGGNYN on the S gene, which showed respective sensitivities of 28.4866% and 6.8249%, and 87.7349% and 71.1177%. Conclusions: Therefore, the epitopes KLNDLCFTNV, RVQPTES, LKPFERD, and ITLCFTLKRK may be useful for the development of an epitope-based peptide vaccine and GGDGKMKD on the N gene may be useful for the development of serodiagnostic tests. Moreover, VOE can also be used to analyze other epitopes, and a new variant database for VOE may be further established when a new variant of SARS-CoV-2 emerges.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/diagnosis , COVID-19/immunology , COVID-19 Vaccines/immunology , Epitopes/immunology , Epitopes/genetics , Software , Sensitivity and Specificity
13.
J Nucl Med ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906555

ABSTRACT

Explaining the decisions made by a radiomic model is of significant interest, as it can provide valuable insights into the information learned by complex models and foster trust in well-performing ones, thereby facilitating their clinical adoption. Promising radiomic approaches that aggregate information from multiple regions within an image currently lack suitable explanation tools that could identify the regions that most significantly influence their decisions. Here we present a model- and modality-agnostic tool (RadShap, https://github.com/ncaptier/radshap), based on Shapley values, that explains the predictions of multiregion radiomic models by highlighting the contribution of each individual region. Methods: The explanation tool leverages Shapley values to distribute the aggregative radiomic model's output among all the regions of interest of an image, highlighting their individual contribution. RadShap was validated using a retrospective cohort of 130 patients with advanced non-small cell lung cancer undergoing first-line immunotherapy. Their baseline PET scans were used to build 1,000 synthetic tasks to evaluate the degree of alignment between the tool's explanations and our data generation process. RadShap's potential was then illustrated through 2 real case studies by aggregating information from all segmented tumors: the prediction of the progression-free survival of the non-small cell lung cancer patients and the classification of the histologic tumor subtype. Results: RadShap demonstrated strong alignment with the ground truth, with a median frequency of 94% for consistently explained predictions in the synthetic tasks. In both real-case studies, the aggregative models yielded superior performance to the single-lesion models (average [±SD] time-dependent area under the receiver operating characteristic curve was 0.66 ± 0.02 for the aggregative survival model vs. 0.55 ± 0.04 for the primary tumor survival model). The tool's explanations provided relevant insights into the behavior of the aggregative models, highlighting that for the classification of the histologic subtype, the aggregative model used information beyond the biopsy site to correctly classify patients who were initially misclassified by a model focusing only on the biopsied tumor. Conclusion: RadShap aligned with ground truth explanations and provided valuable insights into radiomic models' behaviors. It is implemented as a user-friendly Python package with documentation and tutorials, facilitating its smooth integration into radiomic pipelines.

14.
Plant Methods ; 20(1): 95, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898527

ABSTRACT

BACKGROUND: Lentil (Lens culinaris Medik.) is a globally-significant agricultural crop used to feed millions of people. Lentils have been cultivated in the Australian states of Victoria and South Australia for several decades, but efforts are now being made to expand their cultivation into Western Australia and New South Wales. Plant architecture plays a pivotal role in adaptation, leading to improved and stable yields especially in new expansion regions. Image-based high-throughput phenomics technologies provide opportunities for an improved understanding of plant development, architecture, and trait genetics. This paper describes a novel method for mapping and quantifying individual branch structures on immature glasshouse-grown lentil plants grown using a LemnaTec Scanalyser 3D high-throughput phenomics platform, which collected side-view RGB images at regular intervals under controlled photographic conditions throughout the experiment. A queue and distance-based algorithm that analysed morphological skeletons generated from images of lentil plants was developed in Python. This code was incorporated into an image analysis pipeline using open-source software (PlantCV) to measure the number, angle, and length of individual branches on lentil plants. RESULTS: Branching structures could be accurately identified and quantified in immature plants, which is sufficient for calculating early vigour traits, however the accuracy declined as the plants matured. Absolute accuracy for branch counts was 77.9% for plants at 22 days after sowing (DAS), 57.9% at 29 DAS and 51.9% at 36 DAS. Allowing for an error of ± 1 branch, the associated accuracies for the same time periods were 97.6%, 90.8% and 79.2% respectively. Occlusion in more mature plants made the mapping of branches less accurate, but the information collected could still be useful for trait estimation. For branch length calculations, the amount of variance explained by linear mixed-effects models was 82% for geodesic length and 87% for Euclidean branch lengths. Within these models, both the mean geodesic and Euclidean distance measurements of branches were found to be significantly affected by genotype, DAS and their interaction. Two informative metrices were derived from the calculations of branch angle; 'splay' is a measure of how far a branch angle deviates from being fully upright whilst 'angle-difference' is the difference between the smallest and largest recorded branch angle on each plant. The amount of variance explained by linear mixed-effects models was 38% for splay and 50% for angle difference. These lower R2 values are likely due to the inherent difficulties in measuring these parameters, nevertheless both splay and angle difference were found to be significantly affected by cultivar, DAS and their interaction. When 276 diverse lentil genotypes with varying degrees of salt tolerance were grown in a glasshouse-based experiment where a portion were subjected to a salt treatment, the branching algorithm was able to distinguish between salt-treated and untreated lentil lines based on differences in branch counts. Likewise, the mean geodesic and Euclidean distance measurements of branches were both found to be significantly affected by cultivar, DAS and salt treatment. The amount of variance explained by the linear mixed-effects models was 57.8% for geodesic branch length and 46.5% for Euclidean branch length. CONCLUSION: The methodology enabled the accurate quantification of the number, angle, and length of individual branches on glasshouse-grown lentil plants. This methodology could be applied to other dicotyledonous species.

15.
J Med Phys ; 49(1): 41-48, 2024.
Article in English | MEDLINE | ID: mdl-38828072

ABSTRACT

Purpose: Errors in the identification of true patients in a health-care facility may result in the wrong dose or dosage being given to the wrong patient at the wrong site during radiotherapy sessions, radiopharmaceutical administration, radiological scans, etc. The aim of this article is to reduce the error in the identification of correct patients by implementation of the Python deep learning-based real-time patient identification program. Materials and Methods: The authors utilized and installed Anaconda Prompt (miniconda 3), Python (version 3.9.12), and Visual Studio Code (version 1.71.0) for the design of the patient identification program. In the field of view, the area of interest is merely face detection. The overall performance of the developed program is accomplished over three steps, namely image data collection, data transfer, and data analysis, respectively. The patient identification tool was developed using the OpenCV library for face recognition. Results: This program provides real-time patient identification information, together with the other preset parameters such as disease site, with a precision of 0.92%, recall rate of 0.80%, and specificity of 0.90%. Furthermore, the accuracy of the program was found to be 0.84%. The output of the in-house developed program as "Unknown" is provided if a patient's relative or an unknown person is found in restricted region. Interpretation and Conclusions: This Python-based program is beneficial for confirming the patient's identity, without manual interventions, just before therapy, administering medications, and starting other medical procedures, among other things, to prevent unintended medical and health-related complications that may arise as a result of misidentification.

16.
J Am Soc Cytopathol ; 13(4): 309-318, 2024.
Article in English | MEDLINE | ID: mdl-38702208

ABSTRACT

INTRODUCTION: Effective feedback on cytology performance relies on navigating complex laboratory information system data, which is prone to errors and lacks flexibility. As a comprehensive solution, we used the Python programming language to create a dashboard application for screening and diagnostic quality metrics. MATERIALS AND METHODS: Data from the 5-year period (2018-2022) were accessed. Versatile open-source Python libraries (user developed program code packages) were used from the first step of LIS data cleaning through the creation of the application. To evaluate performance, we selected 3 gynecologic metrics: the ASC/LSIL ratio, the ASC-US/ASC-H ratio, and the proportion of cytologic abnormalities in comparison to the total number of cases (abnormal rate). We also evaluated the referral rate of cytologists/cytotechnologists (CTs) and the ratio of thyroid AUS interpretations by cytopathologists (CPs). These were formed into colored graphs that showcase individual results in established, color-coded laboratory "goal," "borderline," and "attention" zones based on published reference benchmarks. A representation of the results distribution for the entire laboratory was also developed. RESULTS: We successfully created a web-based test application that presents interactive dashboards with different interfaces for the CT, CP, and laboratory management (https://drkvcsstvn-dashboards.hf.space/app). The user can choose to view the desired quality metric, year, and the anonymized CT or CP, with an additional automatically generated written report of results. CONCLUSIONS: Python programming proved to be an effective toolkit to ensure high-level data processing in a modular and reproducible way to create a personalized, laboratory specific cytology dashboard.


Subject(s)
Programming Languages , Quality Assurance, Health Care , Humans , Female , Cytodiagnosis/methods , Cytodiagnosis/standards , Software , Cytology
17.
J Colloid Interface Sci ; 670: 626-634, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38781653

ABSTRACT

On-site quantitative analysis of pesticide residues is crucial for monitoring environmental quality and ensuring food safety. Herein, we have developed a reliable hydrogel portable kit using NaYbF4@NaYF4: Yb, Tm upconversion nanoparticles (UCNPs) combined with MnO2 nanoflakes. This portable kit is integrated with a smartphone reader and Python-assisted analysis platform to enable sample-to-result analysis for chlorpyrifos. The novel UCNPs maximizes energy donation to MnO2 acceptor by employing 100 % of activator Yb3+ in the nucleus for NIR excitation energy collection and confining emitter Tm3+ to the surface layer to shorten energy transfer distance. Under NIR excitation, efficient quenching of upconversion blue-violet emission by MnO2 nanoflakes occurs, and the quenched emission is recovered with acetylcholinesterase-mediated reactions. This process allows for the determination of chlorpyrifos by inhibiting enzymatic activity. The UCNPs/MnO2 were embedded to fabricate a hydrogel portable kit, the blue-violet emission images captured by smartphone were converted into corresponding gray values by Python-assisted superiority chart algorithm which achieves a real-time rapid quantitative analysis of chlorpyrifos with a detection limit of 0.17 ng mL-1. At the same time, pseudo-color images were also added by Python in "one run" to distinguish images clearly. This sensor detection with Python-assisted analysis platform provides a new perspective on pesticide monitoring and broadens the application prospects in bioanalysis.

18.
Sci Rep ; 14(1): 12264, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806587

ABSTRACT

This article explores the structural properties of eleven distinct chemical graphs that represent sulfonamide drugs using topological indices by developing python algorithm. To find significant relationships between the topological characteristics of these networks and the characteristics of the associated sulfonamide drugs. We use quantitative structure-property relationship (QSPR) approaches. In order to model and forecast these correlations and provide insights into the structure-activity relationships that are essential for drug design and optimization, linear regression is a vital tool. A thorough framework for comprehending the molecular characteristics and behavior of sulfonamide drugs is provided by the combination of topological indices, graph theory and statistical models which advances the field of pharmaceutical research and development.


Subject(s)
Algorithms , Quantitative Structure-Activity Relationship , Sulfonamides , Sulfonamides/chemistry , Models, Theoretical , Drug Design
19.
Front Genet ; 15: 1352443, 2024.
Article in English | MEDLINE | ID: mdl-38721473

ABSTRACT

SVhawkeye is a novel visualization software created to rapidly extract essential structural information from third-generation sequencing data, such as data generated by PacBio or Oxford Nanopore Technologies. Its primary focus is on visualizing various structural variations commonly encountered in whole-genome sequencing (WGS) experiments, including deletions, insertions, duplications, inversions, and translocations. Additionally, SVhawkeye has the capability to display isoform structures obtained from iso-seq data and provides interval depth visualization for deducing local copy number variation (CNV). One noteworthy feature of SVhawkeye is its capacity to genotype structural variations, a critical function that enhances the accuracy of structural variant genotyping. SVhawkeye is an open-source software developed using Python and R languages, and it is freely accessible on GitHub (https://github.com/yywan0913/SVhawkeye).

20.
J Mass Spectrom ; 59(6): e5040, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38736147

ABSTRACT

In addition to providing critical knowledge of the accurate mass of ions, ion mobility-mass spectrometry (IM-MS) delivers complementary data relating to the conformation and size of ions in the form of an ion mobility spectrum and derived parameters, namely, the ion's mobility (K) and the IM-derived collision cross section (CCS). However, the maximum amount of information obtained in IM-MS measurements is not currently transferred into analytical databases including the full mobility spectra (CCS distributions) as well as capturing of additional ion species (e.g., adducts) into the same compound entry. We introduce CCSfind, a new tool for building comprehensive databases from experimental IM-MS measurements of small molecules. CCSfind allows predicted ion species to be chosen for input chemical formulae, which are then targeted by CCSfind after parsing open source mzML input files to provide a unified set of results within a single data processing step. CCSfind can handle both chromatographically separated isomers and IM separation of isomeric ions (e.g., "protomers" or conformers of the same ion species) with simple user control over the output for new database entries in SQL format. Files of up to 1 GB can be processed in less than 2 min on a desktop computer with 32 GB RAM with computational time scaling linearly with the size of the input mzML file or the number of input molecular formulae. Results are manually reviewed, annotated with experimental settings, before committing the database where the full dataset can be retrieved.

SELECTION OF CITATIONS
SEARCH DETAIL