Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Sci Rep ; 14(1): 21332, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39266713

ABSTRACT

Sex identification in avian species is essential for biodiversity conservation and ecological studies. However, the sex of nearly half of the birds could not be identified based on their external appearance. It is difficult to visually identify sex to monitor the ecology and conservation of wild populations. In this study, we designed primer pairs for large white pelican using recombinase-based isothermal amplification combined with a lateral flow dipstick (RAA-LFD) assay for chromo-helicase-DNA binding protein (CHD) genes mapped to W chromosomes and an ultra-conserved element (UCE) located on chromosome 6, respectively. Our result showed that the raaW4-RAA-LFD can detect up to 0.1 ng of genomic DNA (gDNA) templates of female pelicans in 30 min at 39 ℃ and accurately distinguish female from male without any cross reactivity. RaaUCE2-RAA-LFD can amplify both male and female pelicans with a detection limit of 25 pg. To further evaluate the assay, 15 white pelicans of unknown sex were tested using the RAA-LFD assay and conventional polymerase chain reaction (PCR). The results of the raaW4-RAA-LFD assay were consistent with those of the conventional PCR. The developed RAA-LFD assay is equipped with field-deployable instruments and offers a field platform for rapid and reliable sex identification in pelicans.


Subject(s)
Birds , Nucleic Acid Amplification Techniques , Recombinases , Sex Determination Analysis , Animals , Female , Male , Sex Determination Analysis/methods , Nucleic Acid Amplification Techniques/methods , Birds/genetics , Recombinases/metabolism , Recombinases/genetics
2.
Animals (Basel) ; 14(17)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39272386

ABSTRACT

The continued evolution of H3 subtype avian influenza virus (AIV)-which crosses the interspecific barrier to infect humans-and the potential risk of genetic recombination with other subtypes pose serious threats to the poultry industry and human health. Therefore, rapid and accurate detection of H3 virus is highly important for preventing its spread. In this study, a method based on real-time reverse transcription recombinase-aided isothermal amplification (RT-RAA) was successfully developed for the rapid detection of H3 AIV. Specific primers and probes were designed to target the hemagglutinin (HA) gene of H3 AIV, ensuring highly specific detection of H3 AIV without cross-reactivity with other important avian respiratory viruses. The results showed that the detection limit of the RT-RAA fluorescence reading method was 224 copies/response within the 95% confidence interval, while the detection limit of the RT-RAA visualization method was 1527 copies/response within the same confidence interval. In addition, 68 clinical samples were examined and the results were compared with those of real-time quantitative PCR (RT-qPCR). The results showed that the real-time fluorescence RT-RAA and RT-qPCR results were completely consistent, and the kappa value reached 1, indicating excellent correlation. For visual detection, the sensitivity was 91.43%, the specificity was 100%, and the kappa value was 0.91, which also indicated good correlation. In addition, the amplified products of RT-RAA can be visualized with a portable blue light instrument, which enables rapid detection of H3 AIV even in resource-constrained environments. The H3 AIV RT-RAA rapid detection method established in this study can meet the requirements of basic laboratories and provide a valuable reference for the early diagnosis of H3 AIV.

3.
Microb Pathog ; 195: 106885, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39182857

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV) and transmissible gastroenteritis virus (TGEV) are three clinically common coronaviruses causing diarrhea in pigs, with indistinguishable clinical signs and pathological changes. Rapid, portable and reliable differential diagnosis of these three pathogens is crucial for the prompt implementation of appropriate control measures. In this study, we developed a triplex nucleic acid assay that combines reverse transcription recombinase-aided amplification (RT-RAA) with lateral flow assay (LFA) by targeting the most conserved genomic region in the ORF1b genes of PEDV, PDCoV and TGEV. The entire detection process of the triplex RT-RAA-LFA assay included 10-min nucleic acid amplification at 42 °C and 5-min visual LFA readout at room temperature. The assay could specifically differentiate PEDV, PDCoV and TGEV without cross-reaction with any other major swine pathogens. Sensitivity analysis showed that the triplex RT-RAA-LFA assay was able to detect the viral RNA extracted from the spiked fecal samples with the minimum of 1 × 100 TCID50 PEDV, 1 × 104 TCID50 PDCoV, and 1 × 102 TCID50 TGEV per reaction, respectively. Further analysis showed that the 95 % detection limit (LOD) of triplex RT-RAA-LFA for PEDV, PDCoV, and TGEV were 22, 478, and 205 copies of recombinant plasmids per reaction, respectively. The diagnostic performance of triplex RT-RAA-LFA was compared with that of PEDV, PDCoV and TGEV respective commercial real-time RT-PCR kits by testing 114 clinical rectal swab samples in parallel. The total diagnostic coincidence rates of triplex RT-RAA-LFA with real-time RT-PCR kits of PEDV, PDCoV and TGEV were 100 %, 99.1 % and 99.1 %, respectively, and their Kappa values were 1.00, 0.958 and 0.936, respectively. Collectively, the RT-RAA-LFA assay is a powerful tool for the rapid, portable, visual, and synchronous differential diagnosis of PEDV, PDCoV, and TGEV.

4.
Int J Biol Macromol ; 275(Pt 2): 133720, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38987000

ABSTRACT

Tick-borne encephalitis virus (TBEV), a zoonotic pathogen, can cause severe neurological complications and fatal outcomes in humans. Early diagnosis of TBEV infection is crucial for clinical practice. Although serological assays are frequently employed for detection, the lack of antibodies in the early stages of infection and the cross-reactivity of antibodies limit their efficacy. Conventional molecular diagnostic methods such as RT-qPCR can achieve early and accurate identification but require specialized instrumentation and professionals, hindering their application in resource-limited areas. Our study developed a rapid and visual TBEV molecular detection method by combining RT-recombinase-aided amplification, the CRISPR/Cas13a system, and lateral flow dipsticks. The diagnostic sensitivity of this method is 50 CFU/ml, with no cross-reactivity with a variety of viruses. The detection can be carried out within 1 h at a temperature between 37 and 42 °C, and the results can be visually determined without the need for complex instruments and professionals. Subsequently, this assay was used to analyze clinical samples from 15 patients suspected of TBEV infection and 10 healthy volunteers, and its sensitivity and specificity reached 100 %, which was consistent with the results of RT-qPCR. These results indicate that this new method can be a promising point-of-care test for the diagnosis of tick-borne encephalitis.


Subject(s)
CRISPR-Cas Systems , Encephalitis Viruses, Tick-Borne , Recombinases , Encephalitis Viruses, Tick-Borne/genetics , Humans , Recombinases/metabolism , Nucleic Acid Amplification Techniques/methods , Encephalitis, Tick-Borne/diagnosis , Encephalitis, Tick-Borne/virology , Encephalitis, Tick-Borne/blood , Sensitivity and Specificity , RNA, Viral/genetics , Molecular Diagnostic Techniques/methods
5.
Clin Chim Acta ; 562: 119855, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38981565

ABSTRACT

BACKGROUND AND AIMS: Bladder cancer (BCa) is a highly aggressive malignancy of the urinary system. Timely detection is imperative for enhancing BCa patient prognosis. MATERIALS AND METHODS: This study introduces a novel approach for detecting long non-coding RNA (lncRNA) Mitochondrial RNA Processing Endoribonuclease (RMRP) in urine exosomes from BCa patients using the reverse transcription recombinase-aided amplification (RT-RAA) and clustered regularly interspaced short palindromic repeats and associated Cas12a proteins (CRISPR/Cas12a) technique. Various statistical methods were used to evaluate its diagnostic value for BCa. RESULTS: The specificity of urine exosomal RMRP detection for BCa diagnosis was enhanced by using RT-RAA combined with CRISPR/Cas12a. The testing process duration was reduced to 30 min, which supports rapid detection. Moreover, this approach allows the identification of target signals in real-time using blue light, facilitating immediate detection. In clinical sample analysis, this methodology exhibited a high level of diagnostic efficacy. This was evidenced by larger area under the curve values with receiver operating characteristic curve analysis compared with using traditional RT-qPCR methods, indicating superior diagnostic accuracy and sensitivity. Furthermore, the combined analysis of RMRP expression in urine exosomes detected by RT-RAA-CRISPR/Cas12a and NMP-22 expression may further enhance diagnostic accuracy. CONCLUSIONS: The RT-RAA-CRISPR/Cas12a technology is a swift, sensitive, and uncomplicated method for nucleic acid detection. Because of its convenient and non-invasive sampling approach, user-friendly operation, and reproducibility, this technology is very promising for automated detection and holds favorable application possibilities within clinical environments.


Subject(s)
CRISPR-Cas Systems , Exosomes , RNA, Long Noncoding , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/urine , Urinary Bladder Neoplasms/genetics , RNA, Long Noncoding/urine , RNA, Long Noncoding/genetics , Exosomes/genetics , CRISPR-Cas Systems/genetics , Male , Middle Aged , Female , Aged
6.
J Virol Methods ; 329: 114971, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38876255

ABSTRACT

Peste des petis ruminants (PPR) is an acute, highly contagious fatal disease affecting both domestic and wild small ruminants, caused by Morbillivirus caprinae (also known as peste des petis ruminants virus (PPRV)). Herein, a rapid method based on recombinase aided amplification-clustered regularly interspaced short palindromic repeats-Cas12a (RAA-CRISPR Cas12a) to detect PPRV was developed. CRISPR RNAs and RAA primers for PPRV-N (nucleocapsid) and PPRV-M (matrix) fragments were designed. The reaction system was constructed following screening and optimization. Detection could be completed within in 50 minutes at 37°C. Detection of gradient dilutions of plasmids carrying of PPRV N and M gene fragments indicated a minimum limit of detection of 10 copies/µL. There were no cross-reactions with related viruses and all tested lineages of PPRV were detected successfully. The method also showed good repeatability. The detection of clinical samples (previously detected using reverse transcription polymerase chain reaction (RT-PCR)) indicated good consistency between the RAA-CRISPR Cas12a method and RT-PCR. Thus, the RAA-CRISPR Cas12a method for rapid PPRV diagnosis has strong specificity, high sensitivity, and stable repeatability. Moreover, the results can be observed visually under blue or UV light or using lateral flow strips without complex instruments.


Subject(s)
CRISPR-Cas Systems , Goats , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Sensitivity and Specificity , Peste-des-petits-ruminants virus/genetics , Peste-des-petits-ruminants virus/isolation & purification , Animals , Peste-des-Petits-Ruminants/diagnosis , Peste-des-Petits-Ruminants/virology , Nucleocapsid Proteins/genetics , Viral Matrix Proteins/genetics , Goat Diseases/diagnosis , Goat Diseases/virology , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , Sheep , Bacterial Proteins , Endodeoxyribonucleases , CRISPR-Associated Proteins
7.
Foods ; 13(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731750

ABSTRACT

Salmonella is a common foodborne pathogen that can cause food poisoning, posing a serious threat to human health. Therefore, quickly, sensitively, and accurately detecting Salmonella is crucial to ensuring food safety. For the Salmonella hilA gene, we designed Recombinase-aided amplification (RAA) primers and dsDNA-specific nuclease (DNase) probes. The ideal primer and probe combination was found when conditions were optimized. Under UV light, a visual Salmonella detection technique (RAA-dsDNase) was developed. Additionally, the RAA-dsDNase was modified to further reduce pollution hazards and simplify operations. One-pot RAA-dsDNase-UV or one-pot RAA-dsDNase-LFD was developed as a Salmonella detection method, using UV or a lateral flow dipstick (LFD) for result observation. Among them, one-pot RAA-dsDNase and one-pot RAA-dsDNase-LFD had detection times of 50 min and 60 min, respectively, for detecting Salmonella genomic DNA. One-pot RAA-dsDNase-UV had a detection limit of 101 copies/µL and 101 CFU/mL, while one-pot RAA-dsDNase-LFD had a sensitivity of 102 copies/µL and 102 CFU/mL. One-pot RAA-dsDNase-UV and one-pot RAA-dsDNase-LFD assays may identify 17 specific Salmonella serovars witho ut causing a cross-reaction with the remaining 8 bacteria, which include E. coli. Furthermore, Salmonella in tissue and milk samples has been reliably detected using both approaches. Overall, the detection method developed in this study can quickly, sensitively, and accurately detect Salmonella, and it is expected to become an important detection tool for the prevention and control of Salmonella in the future.

8.
J Agric Food Chem ; 72(15): 8831-8839, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38575365

ABSTRACT

Here, we present a method for Salmonella detection using clustered regularly interspaced short palindromic repeats associated with the CRISPR-associated protein 12a-hybridization chain reaction (CRISPR/Cas12a-HCR) system combined with polymerase chain reaction/recombinase-assisted amplification (PCR/RAA) technology. The approach relies on the Salmonella invA gene as a biorecognition element and its amplification through PCR and RAA. In the presence of the target gene, Cas12a, guided by crRNA, recognizes and cleaves the amplification product, initiating the HCR. Fluorescently labeled single-stranded DNA (ssDNA) H1 and H2 were introduced, and the Salmonella concentration was determined based on the fluorescence intensity from the triggered HCR. Both assays demonstrate high specificity, sensitivity, simplicity, and rapidity. The detection range was 2 × 101-2 × 109 CFU/mL, with an LOD of 20 CFU/mL, and the entire process enabled specific and rapid Salmonella detection within 85-105 min. Field-incurred spiked recovery tests were conducted in mutton and beef samples using both assays, demonstrating satisfactory recovery and accuracy in animal-derived foods. By combining CRISPR/Cas12a with hybridization chain reaction technology, this study presents a rapid and sensitive Salmonella detection method that is crucial for identifying pathogenic bacteria and monitoring food safety.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Animals , Cattle , Coloring Agents , DNA, Single-Stranded , Recombinases , Salmonella/genetics , Polymerase Chain Reaction
9.
Front Microbiol ; 15: 1405235, 2024.
Article in English | MEDLINE | ID: mdl-38628863

ABSTRACT

[This corrects the article DOI: 10.3389/fmicb.2024.1334387.].

10.
J Clin Lab Anal ; 38(9): e25038, 2024 May.
Article in English | MEDLINE | ID: mdl-38590133

ABSTRACT

OBJECTIVE: This study aimed to establish a highly sensitive and rapid single-tube, two-stage, multiplex recombinase-aided qPCR (mRAP) assay to specifically detect the khe, blaKPC-2, and blaNDM-1 genes in Klebsiella pneumoniae. METHODS: mRAP was carried out in a qPCR instrument within 1 h. The analytical sensitivities of mRAP for khe, blaKPC-2, and blaNDM-1 genes were tested using recombinant plasmids and dilutions of reference strains. A total of 137 clinical isolates and 86 sputum samples were used to validate the clinical performance of mRAP. RESULTS: mRAP achieved the sensitivities of 10, 8, and 14 copies/reaction for khe, blaKPC-2, and blaNDM-1 genes, respectively, superior to qPCR. The Kappa value of qPCR and mRAP for detecting khe, blaKPC-2, and blaNDM-1 genes was 1, 0.855, and 1, respectively (p < 0.05). CONCLUSION: mRAP is a rapid and highly sensitive assay for potential clinical identification of khe, blaKPC-2, and blaNDM-1 genes in K. pneumoniae.


Subject(s)
Klebsiella pneumoniae , Multiplex Polymerase Chain Reaction , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , beta-Lactamases/genetics , Humans , Multiplex Polymerase Chain Reaction/methods , Klebsiella Infections/microbiology , Klebsiella Infections/diagnosis , Sensitivity and Specificity , Real-Time Polymerase Chain Reaction/methods , Bacterial Proteins/genetics , Recombinases/genetics , Recombinases/metabolism
11.
Microorganisms ; 12(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674721

ABSTRACT

Streptococcus equi subspecies equi (S. equi) is the causative pathogen of strangles in horses, donkeys, and other equine animals. Strangles has spread globally and causes significant losses to the horse industry. In response to the urgent need for effective disease control, this study introduces a novel nucleic acid diagnostic method known as a real-time recombinase-assisted amplification (RAA) assay, developed based on the eqbE gene, for the rapid detection of S. equi nucleic acid. The real-time RAA method employs specifically designed probes and primers targeting the eqbE gene, enhancing the overall specificity and sensitivity of the detection. After efficiency optimization, this real-time RAA method can detect 10 or more copies of nucleic acid within 20 min. The method demonstrates high specificity for S. equi and does not cross-react with other clinically relevant pathogens. Real-time RAA diagnostic performance was evaluated using 98 nasal swab samples collected from horses and compared with the real-time PCR detection method. Results revealed that 64 and 65 samples tested positive for S. equi using real-time RAA and real-time PCR, respectively. The overall agreement between the two assays was 96.94% (95/98), with a kappa value of 0.931 (p < 0.001). Further linear regression analysis indicated a significant correlation in the detection results between the two methods (R2 = 0.9012, p < 0.0001), suggesting that the real-time RAA assay exhibits a detection performance comparable to that of real-time PCR. In conclusion, the real-time RAA assay developed here serves as a highly specific and reliable diagnostic tool for the detection of S. equi in equine samples, offering a potential alternative to real-time PCR methods. In conclusion, the real-time RAA nucleic acid diagnostic method, based on the eqbE gene, offers rapid and accurate diagnosis of S. equi, with the added advantage of minimal equipment requirements, thus contributing to the efficient detection of strangles in horses.

12.
Front Immunol ; 15: 1345532, 2024.
Article in English | MEDLINE | ID: mdl-38524136

ABSTRACT

Introduction: Staphylococcus aureus (S. aureus) is a prominent pathogen responsible for both hospital-acquired and community-acquired infections. Among its arsenal of virulence factors, Panton-Valentine Leucocidin (PVL) is closely associated with severe diseases such as profound skin infections and necrotizing pneumonia. Patients infected with pvl-positive S. aureus often exhibit more severe symptoms and carry a substantially higher mortality risk. Therefore, it is crucial to promptly and accurately detect pvl-positive S. aureus before initiating protective measures and providing effective antibacterial treatment. Methods: In this study, we propose a precise identification and highly sensitive detection method for pvl-positive S. aureus based on recombinase-assisted amplification and the CRISPR-ERASE strip which we previously developed. Results: The results revealed that this method achieved a detection limit of 1 copy/µL for pvl-positive plasmids within 1 hour. The method successfully identified all 25 pvl-positive and 51 pvl-negative strains among the tested 76 isolated S. aureus samples, demonstrating its concordance with qPCR. Discussion: These results show that the CRISPR-ERASE detection method for pvl-positive S. aureus has the advantages of high sensitivity and specificity, this method combines the characteristics of recombinase-assisted amplification at room temperature and the advantages of ERASE test strip visualization, which can greatly reduce the dependence on professional laboratories. It is more suitable for on-site detection than PCR and qPCR, thereby providing important value for rapid on-site detection of pvl.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/genetics , Virulence/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Staphylococcal Infections/microbiology , Leukocidins/genetics , Recombinases/genetics
13.
Fish Shellfish Immunol ; 148: 109517, 2024 May.
Article in English | MEDLINE | ID: mdl-38513916

ABSTRACT

Largemouth bass ranavirus (LMBV) is an epidemic disease that seriously jeopardizes the culture of largemouth bass(Micropterus salmoides), and it has a very high incidence in largemouth bass. Once an outbreak occurs, it may directly lead to the failure of the culture, resulting in substantial economic losses, but there is no effective vaccine or special effective drug yet. Consequently, it is important to establish an accurate, sensitive, convenient and specific detection approach for preventing LMBV infection. The recombinant enzyme-assisted amplification (RAA) technology was used in combination with clustered regularly interspaced short palindromic repeats (CRISPR), and associated protein 13a (CRISPR/Cas13a) to detect LMBV. We designed RAA primers and CRISPR RNA (crRNA) that targeted the conserved region in the LMBV main capsid protein (MCP) gene, amplified sample nucleic acids using the RAA technology, performed CRISPR/Cas13a fluorescence detection and evaluated the sensitivity and specificity of the established method with qPCR as a control method. This technique was able to determine the results by collecting fluorescence signals, visualizing fluorescence by UV excitation and combining with lateral flow strips (LFS). The sensitivity and specificity of the established method were consistent with the qPCR method. Besides, it was performed at a constant temperature of 37 °C and the sensitivity of the reaction system was 3.1 × 101 copies/µL, with no cross-reactivity with other common aquatic pathogens. Further, the positive detection rate of the proposed method in 32 clinical samples was consistent with that of qPCR. In conclusion, our established RAA-CRISPR/Cas13 method for detecting LMBV is sensitive, simple and specific, which is applicable in the rapid on-site detection and epidemiological monitoring of LMBV.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Ranavirus , Animals , Capsid Proteins
14.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542449

ABSTRACT

Listeria monocytogenes (L. monocytogenes) is a food-borne pathogenic bacteria that frequently contaminates animal-derived food and low-temperature preserved food. Listeriosis caused by its infection has a high mortality rate and poses a serious threat to human health. Therefore, it is crucial to establish a sensitive, rapid and easy-to-operate technique. In this study, a Recombinase Aided Amplification (RAA) assisted CRISPR/Cas12a (RAA-CRISPR/Cas12a) fluorescence platform was established for highly sensitive nucleic acid detection of L. monocytogenes. The established RAA-CRISPR/Cas12a showed high sensitivity and high specificity, with the sensitivity of 350 CFU/mL and 5.4 × 10-3 ng/µL for pure bacterial solution and genomic DNA, and good specificity for 5 strains of Listeria spp. and 14 strains of other common pathogenic bacteria. L. monocytogenes could be detected at an initial concentration of 2.3 CFU/25g within 2 h of enriching the beef in the food matrix, and this method could be applied to food samples that were easily contaminated with L. monocytogenes The results of RAA-CRISPR/Cas12a could be observed in 5 min, while the amplification was completed in 20-30 min. The speed and sensitivity of RAA-CRISPR/Cas12a were significantly higher than that of the national standard method. In conclusion, the RAA-CRISPR/Cas12a system established in this study has new application potential in the diagnosis of food-borne pathogens.


Subject(s)
Listeria monocytogenes , Animals , Cattle , Humans , Listeria monocytogenes/genetics , CRISPR-Cas Systems , Food Microbiology , Nucleic Acid Amplification Techniques/methods , Recombinases/genetics , DNA
15.
Front Microbiol ; 15: 1334387, 2024.
Article in English | MEDLINE | ID: mdl-38389528

ABSTRACT

Introduction: Norovirus (NoV) is one of the most important agents responsible for viral acute gastroenteritis, among which GII.4 NoV is the predominant strain worldwide, and GII.17 NoV surpassed GII.4 in some epidemic seasons. Rapid and accurate gene recognition is essential for a timely response to NoV outbreaks. Methods: In the present study, the highly conserved regions of GII.4 and GII.17 NoVs were identified in the junction of open reading frame (ORF) 1 and ORF2 and then amplified by isothermal recombinase-aided amplification (RAA), followed by the cleavage of CRISPR-Cas13a with screened CRISPR RNAs (crRNAs) and RAA primers. The entire detection procedure could be completed within 40 min using a thermostat, and the results could be read out by the naked eye under a portable blue light transilluminator. Discussion: The assay showed a high sensitivity of 97.96% and a high specificity of 100.0%. It offered a low limit of detection (LOD) of 2.5×100 copies/reaction and a coincidence rate of 96.75% in 71 clinical fecal samples. Overall, rapid and inexpensive detection of GII.4/GII.17 NoVs was established, which makes it possible to be used in areas with limited resources, particularly in low-income countries. Furthermore, it will contribute to assessing transmission risks and implementing control measures for GII.4/GII.17 NoVs, making healthcare more accessible worldwide.

16.
J Med Virol ; 96(2): e29469, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38376919

ABSTRACT

The mpox outbreak has subdued with fewer reported cases at the present in high-income countries. It is known that mpox virus (MPXV) infection has been epidemic for more than 50 years in African countries. The ancestral MPXV strain has changed into multiple clades, indicating the ongoing evolution of MPXV, which reflects the historical neglect of mpox in Africa, especially after smallpox eradication, and bestows the danger of more severe mpox epidemics in the future. It is thus imperative to continue the development of mpox diagnostics and treatments so we can be prepared in the event of a new mpox epidemic. In this study, we have developed an MPXV detection tool that leverages the recombinase-aid amplification assay by integrating lateral flow strips (RAA-LF) and one-step sample DNA preparation, with visible readout, no need of laboratory instrument, and ready for field deployment. The detection limit reaches 10 copies per reaction. The performance of our RAA-FL assay in diagnosing mpox clinical samples is on par with that of the quantitative polymerase chain reaction (PCR) assay. Taken together, we have developed a point-of-care RAA-LF method of high accuracy and sensitivity, readily deployable for field detection of MPXV. This diagnostic tool is expected to improve and accelerate field- and self-diagnosis, allow timely isolation and treatment, reduce the spread of MPXV, thus effectively mitigate MPXV outbreak in the future.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Humans , Africa , Biological Assay , Disease Outbreaks
17.
Biosensors (Basel) ; 14(2)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38392016

ABSTRACT

Ribonucleic acid (RNA) viruses are one of the major classes of pathogens that cause human diseases. The conventional method to detect RNA viruses is real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), but it has some limitations. It is expensive and time-consuming, with infrastructure and trained personnel requirements. Its high throughput requires sophisticated automation and large-scale infrastructure. Isothermal amplification methods have been explored as an alternative to address these challenges. These methods are rapid, user-friendly, low-cost, can be performed in less specialized settings, and are highly accurate for detecting RNA viruses. Microfluidic technology provides an ideal platform for performing virus diagnostic tests, including sample preparation, immunoassays, and nucleic acid-based assays. Among these techniques, nucleic acid isothermal amplification methods have been widely integrated with microfluidic platforms for RNA virus detection owing to their simplicity, sensitivity, selectivity, and short analysis time. This review summarizes some common isothermal amplification methods for RNA viruses. It also describes commercialized devices and kits that use isothermal amplification techniques for SARS-CoV-2 detection. Furthermore, the most recent applications of isothermal amplification-based microfluidic platforms for RNA virus detection are discussed in this article.


Subject(s)
Nucleic Acids , Viruses , Humans , Viruses/genetics , Nucleic Acid Amplification Techniques/methods , Reverse Transcription , SARS-CoV-2/genetics , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods
18.
Diagnostics (Basel) ; 14(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38337754

ABSTRACT

We aimed to evaluate retrospectively associated anomalies and outcome in prenatal aortic arch anomalies (AAAs). We included ninety patients with aberrant right subclavian artery (ARSA), right aortic arch (RAA) with mirror image branching (RAA-mirror) or aberrant left subclavian artery (RAA-ALSA) and double aortic arch (DAA) between 2011 and 2020. In total, 19/90 (21.1%) had chromosomal anomalies, the highest rate being within the ARSA subgroup (17/46, 37%). All (13/13) of the RAA-mirror subgroup, 10/27 (37.0%) of RAA-ALSA, 13/46 (28.3%) of ARSA and 0/4 within the DAA subgroup had additional intracardiac anomaly. The rate of extracardiac anomalies was 30.7% in RAA-mirror, 28.3% in ARSA, 25.0% in DAA and 22.2% in the RAA-ALSA subgroup. A total of 42/90 (46.7%) had isolated AAAs: three (7.1%) with chromosomal anomalies, all trisomy 21 (3/26, 11.5%) within the ARSA subgroup. Out of 90, 19 (21.1%) were lost to follow-up (FU). Two (2.2%) intrauterine deaths occurred, and six (6.7%) with chromosomal anomalies terminated their pregnancy. In total, 63 (70.0%) were liveborn, 3/63 (4.8%) with severe comorbidity had compassionate care and 3/60 (5.0%) were lost to FU. The survival rate in the intention-to-treat cohort was 53/57 (93%). Forty-one (77.4%) presented with vascular ring/sling, two (4.9%) with RAA-ALSA developed symptoms and one (2.4%) needed an operation. We conclude that intervention due to vascular ring is rarely necessary. NIPT could be useful in isolated ARSA cases without higher a priori risk for trisomy 21 and after exclusion of other anomalies.

19.
Food Chem ; 443: 138507, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38277932

ABSTRACT

Rapid, accurate, and sensitive analytical methods for the detection of food fraud are now an urgent requirement in the global food industry to ensure food quality. In response to this demand, a centrifugal integrated purification-CRISPR array for meat adulteration (CIPAM) was established. In detail, CIPAM system combines microneedles for DNA extraction and RAA-CRISPR/Cas12a integrated into a centrifugal microfluidic chip for the detection of meat adulteration. The RAA-CRISPR/Cas12a reaction reagents were pre-embedded into the different reaction chambers on the microfluidic chip to achieve the streamline of operations, markedly simplifying the detection process. The whole reaction was completed within 30 min with a detection limit of 0.1 % (w/w) in pig, chicken, duck, and lamb products. Referring to the results of the standard method, CIPAM system achieved 100 % accuracy. The automatic multiplex detection process implemented in the developed CIPAM system met the needs of food regulatory authorities.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Meat , Animals , Sheep , Swine/genetics , Meat/analysis , Food Quality , Nucleic Acid Amplification Techniques/methods
20.
Talanta ; 271: 125616, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38277969

ABSTRACT

Rapid, sensitive and specific methods are crucial for nucleic acid detection. CRISPR/Cas12b has recently been widely used in nucleic acid detection. However, due to its thermophagic property, DNA isothermal recombinase-aided amplification (RAA) and subsequent CRISPR/Cas12b detection require two separate reactions, which is cumbersome and inconvenient and may cause aerosol pollution. In this study, we propose an RAA-CRISPR/Cas12b one-pot detection assay (Rcod) for Bordetella pertussis detection without additional amplification product transfer steps. The time from sample processing to response time was less than 30 min using nucleic acid extraction-free method, and the sensitivity reached 0.2 copies/µL. In this system, Alicyclobacillus acidoterrestris Cas12b protein (AacCas12b) exhibited strong and specific trans-cleavage activity at a constant temperature of 37 °C, while the cis-cleavage activity was weak. This characteristic reduces the interference of AacCas12b with nucleic acids in the system. Compared with real-time PCR, our Rcod system detected B. pertussis in 221 clinical samples with a sensitivity and specificity of 97.96 % and 99.19 %, respectively, with nucleic acid extraction-free method. The rapid, sensitive and specific Rcod system provides ideas for the establishment of CRISPR-based one-step nucleic acid detection and may aid the development of reliable point-of-care nucleic acid tests. IMPORTANCE: Pertussis is an acute respiratory infection caused by B. pertussis that is highly contagious and potentially fatal, and early diagnosis is essential for the treatment of whooping cough. In this study, we found that AacCas12b has high and strongly specific trans-cleavage activity at lower temperatures. A RAA-CRISPR/Cas12b one-step detection platform (Rcod) without interference with amplification was developed. In addition, the combination of Rcod and nucleic acid extraction-free method can quickly and accurately detect the qualitative detection of B. pertussis, and the detection results are visualized, which makes the pathogen nucleic acid detection and analysis process simpler, and provides a new method for the rapid clinical diagnosis of B. pertussis.


Subject(s)
Nucleic Acids , Whooping Cough , Humans , CRISPR-Cas Systems , Recombinases/metabolism , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL