Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
1.
Noncoding RNA Res ; 9(4): 1324-1332, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39104712

ABSTRACT

Circulating plasma miRNAs have emerged as potential early predictors of glucometabolic disorders. However, their biomarker potential remains unvalidated in populations with diverse genetic backgrounds, races, and ethnicities. This study aims to validate the biomarker potential of plasma miR-9, miR-29a, miR-192, and miR-375 for early detection of prediabetes and type 2 diabetes mellitus (T2DM) in Nepali populations that represent distinct genetic backgrounds, races, and ethnicities. A total of 46 adults, categorized into healthy controls (n = 25), prediabetes (n = 9), and T2DM (n = 12) groups, were enrolled. Baseline sociodemographic, anthropometric, and clinical characteristics were collected. Fold change in plasma expression of all four miRNAs was quantified using RT-qPCR against the RNU6B reference gene. Their biomarker potential was determined by receiver operating characteristic (ROC) curve analysis. Multivariate discriminant function and hierarchical cluster analyses were used to evaluate the effectiveness of the miRNA panel in reclassifying study participants who were initially categorized according to their glucose tolerance status. Plasma expression of all four miRNAs was significantly upregulated in T2DM patients compared to normoglycemic controls. Furthermore, the expression of only miR-29a and miR-375 was upregulated in T2DM patients than in prediabetic individuals. Notably, only miR-192 expression was significantly upregulated in prediabetic individuals than in the normoglycemic controls. The miRNA expression profiles had the potential of reclassifying the participants into three original groups with an accuracy of 69.6 %. ROC curve analysis identified miR-192 as the predictor for both prediabetes and T2DM, while miR-9, miR-29a, miR-192, and miR-375 were predictive only for T2DM. The specific set of miRNA combinations significantly improved their predictive accuracy. This study validates the early predictive biomarker potential of plasma miR-9, miR-29a, miR-192, and miR-375 also in the Nepali population and paves the way for future translational studies to validate their utility in clinical laboratories.

2.
Biochem Biophys Rep ; 39: 101785, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39104838

ABSTRACT

Myriocin is an inhibitor of serine palmitoyltransferase involved in the initial biosynthetic step for sphingolipids, and causes potent growth inhibition in eukaryotic cells. In budding yeast, Rsb1, Rta1, Pug1, and Ylr046c are known as the Lipid-Translocating Exporter (LTE) family and believed to contribute to export of various cytotoxic lipophilic compounds. It was reported that Rsb1 is a transporter responsible for export of intracellularly accumulated long-chain bases, which alleviate the cytotoxicity. In this study, it was found that LTE family genes are involved in determination of myriocin sensitivity in yeast. Analyses of effects of deletion and overexpression of LTE family genes suggested that all LTEs contribute to suppression of cytotoxicity of myriocin. It was confirmed that RSB1 overexpression suppressed reduction in complex sphingolipid levels caused by myriocin treatment, possibly exporting myriocin to outside of the cell. These results suggested that LTE family genes function as a defense mechanism against myriocin.

3.
Plant Biotechnol J ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145425

ABSTRACT

Corn leaf aphids (Rhopalosiphum maidis) are highly destructive pests of maize (Zea mays) that threaten growth and seed yield, but resources for aphid resistance are scarce. Here, we identified an aphid-resistant maize mutant, resistance to aphids 1 (rta1), which is allelic to LIGULELESS1 (LG1). We confirmed LG1's role in aphid resistance using the independent allele lg1-2, allelism tests and LG1 overexpression lines. LG1 interacts with, and increases the stability of ZINC-FINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM (ZIM1), a central component of the jasmonic acid (JA) signalling pathway, by disturbing its interaction with the F-box protein CORONATINE INSENSITIVE 1a (COI1a). Natural variation in the LG1 promoter was associated with aphid resistance among inbred lines. Moreover, a loss-of-function mutant in the LG1-related gene SPL8 in the dicot Arabidopsis thaliana conferred aphid resistance. This study revealed the aphid resistance mechanism of lg1, providing a theoretical basis and germplasm for breeding aphid-resistant crops.

4.
J Virol ; : e0078824, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975769

ABSTRACT

The cellular Notch signal transduction pathway is intimately associated with infections by Kaposi's sarcoma-associated herpesvirus (KSHV) and other gamma-herpesviruses. RBP-Jk, the cellular DNA binding component of the canonical Notch pathway, is the key Notch downstream effector protein in virus-infected and uninfected animal cells. Reactivation of KSHV from latency requires the viral lytic switch protein, Rta, to form complexes with RBP-Jk on numerous sites within the viral DNA. Constitutive Notch activity is essential for KSHV pathophysiology in models of Kaposi's sarcoma (KS) and Primary Effusion Lymphoma (PEL), and we demonstrate that Notch1 is also constitutively active in infected Vero cells. Although the KSHV genome contains >100 RBP-Jk DNA motifs, we show that none of the four isoforms of activated Notch can productively reactivate the virus from latency in a highly quantitative trans-complementing reporter virus system. Nevertheless, Notch contributed positively to reactivation because broad inhibition of Notch1-4 with gamma-secretase inhibitor (GSI) or expression of dominant negative mastermind-like1 (dnMAML1) coactivators severely reduced production of infectious KSHV from Vero cells. Reduction of KSHV production is associated with gene-specific reduction of viral transcription in both Vero and PEL cells. Specific inhibition of Notch1 by siRNA partially reduces the production of infectious KSHV, and NICD1 forms promoter-specific complexes with viral DNA during reactivation. We conclude that constitutive Notch activity is required for the robust production of infectious KSHV, and our results implicate activated Notch1 as a pro-viral member of a MAML1/RBP-Jk/DNA complex during viral reactivation. IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) manipulates the host cell oncogenic Notch signaling pathway for viral reactivation from latency and cell pathogenesis. KSHV reactivation requires that the viral protein Rta functionally interacts with RBP-Jk, the DNA-binding component of the Notch pathway, and with promoter DNA to drive transcription of productive cycle genes. We show that the Notch pathway is constitutively active during KSHV reactivation and is essential for robust production of infectious virus progeny. Inhibiting Notch during reactivation reduces the expression of specific viral genes yet does not affect the growth of the host cells. Although Notch cannot reactivate KSHV alone, the requisite expression of Rta reveals a previously unappreciated role for Notch in reactivation. We propose that activated Notch cooperates with Rta in a promoter-specific manner that is partially programmed by Rta's ability to redistribute RBP-Jk DNA binding to the virus during reactivation.

5.
Cell Transplant ; 33: 9636897241264979, 2024.
Article in English | MEDLINE | ID: mdl-39076100

ABSTRACT

In recent years, the interest in cell transplantation therapy using human dental pulp cells (DPCs) has been increasing. However, significant differences exist in the individual cellular characteristics of human DPC clones and in their therapeutic efficacy in rodent models of spinal cord injury (SCI); moreover, the cellular properties associated with their therapeutic efficacy for SCI remain unclear. Here, using DPC clones from seven different donors, we found that most of the clones were highly resistant to H2O2 cytotoxicity if, after transplantation, they significantly improved the locomotor function of rats with complete SCI. Therefore, we examined the effects of the basic fibroblast growth factor 2 (FGF2) and bardoxolone methyl (RTA402), which is a nuclear factor erythroid 2-related factor 2 (Nrf2) chemical activator, on the total antioxidant capacity (TAC) and the resistance to H2O2 cytotoxicity. FGF2 treatment enhanced the resistance of a subset of clones to H2O2 cytotoxicity. Regardless of FGF2 priming, RTA402 markedly enhanced the resistance of many DPC clones to H2O2 cytotoxicity, concomitant with the upregulation of heme oxygenase-1 (HO-1) and NAD(P)H-quinone dehydrogenase 1 (NQO1). With the exception of a subset of clones, the TAC was not increased by either FGF2 priming or RTA402 treatment alone, whereas it was significantly upregulated by both treatments in each clone, or among all seven DPC clones together. Thus, the TAC and resistance to H2O2 cytotoxicity were, to some extent, independently regulated and were strongly enhanced by both FGF2 priming and RTA402 treatment. Moreover, even a DPC clone that originally exhibited no therapeutic effect on SCI improved the locomotor function of mice with SCI after transplantation under both treatment regimens. Thus, combined with FGF2, RTA402 may increase the number of transplanted DPCs that migrate into and secrete neurotrophic factors at the lesion epicenter, where reactive oxygen species are produced at a high level.


Subject(s)
Antioxidants , Dental Pulp , Fibroblast Growth Factor 2 , NF-E2-Related Factor 2 , Spinal Cord Injuries , Dental Pulp/metabolism , Dental Pulp/cytology , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 2/metabolism , NF-E2-Related Factor 2/metabolism , Animals , Humans , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/drug therapy , Rats , Antioxidants/pharmacology , Antioxidants/therapeutic use , Hydrogen Peroxide , Male , Rats, Sprague-Dawley , Heme Oxygenase-1/metabolism , Mice
6.
mSphere ; 9(7): e0027024, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38860767

ABSTRACT

Zinc cluster transcription factors (ZCFs) are a family of transcription regulators that are almost exclusively found in the fungal kingdom. Activating mutations in the ZCFs Mrr1, Tac1, and Upc2 frequently cause acquired resistance to the widely used antifungal drug fluconazole in the pathogenic yeast Candida albicans. Similar to a hyperactive Tac1, a constitutively active form of the ZCF Znc1 causes increased fluconazole resistance by upregulating the multidrug efflux pump-encoding gene CDR1. Hyperactive forms of both Tac1 and Znc1 also cause overexpression of RTA3, which encodes a seven-transmembrane receptor protein involved in the regulation of asymmetric lipid distribution in the plasma membrane. RTA3 expression is also upregulated by miltefosine, an antiparasitic drug that is active against fungal pathogens and considered for treatment of invasive candidiasis, and rta3Δ mutants are hypersensitive to miltefosine. We found that activated forms of both Tac1 and Znc1 confer increased miltefosine resistance, which was dependent on RTA3 whereas CDR1 was dispensable. Intriguingly, the induction of RTA3 expression by miltefosine depended on Znc1, but not Tac1, in contrast to the known Tac1-dependent RTA3 upregulation by fluphenazine. In line with this observation, znc1Δ mutants were hypersensitive to miltefosine, whereas tac1Δ mutants showed wild-type tolerance. Forced expression of RTA3 reverted the hypersensitivity of znc1Δ mutants, demonstrating that the hypersensitivity was caused by the inability of the mutants to upregulate RTA3 in response to the drug. These findings establish Znc1 as a key regulator of miltefosine-induced RTA3 expression that is important for wild-type miltefosine tolerance. IMPORTANCE: Transcription factors are central regulators of gene expression, and knowledge about which transcription factor regulates specific genes in response to a certain signal is important to understand the behavior of organisms. In the pathogenic yeast Candida albicans, the RTA3 gene is required for wild-type tolerance of miltefosine, an antiparasitic drug that is considered for treatment of invasive candidiasis. Activated forms of the transcription factors Tac1 and Znc1 cause constitutive overexpression of RTA3 and thereby increased miltefosine resistance, but only Tac1 mediates upregulation of RTA3 in response to the known inducer fluphenazine. RTA3 expression is also induced by miltefosine, and we found that this response depends on Znc1, whereas Tac1 is dispensable. Consequently, znc1Δ mutants were hypersensitive to miltefosine, whereas tac1Δ mutants showed wild-type tolerance. These findings demonstrate that Znc1 is the key regulator of RTA3 expression in response to miltefosine that is important for wild-type miltefosine tolerance.


Subject(s)
Antifungal Agents , Candida albicans , Drug Resistance, Fungal , Fungal Proteins , Gene Expression Regulation, Fungal , Phosphorylcholine , Transcription Factors , Candida albicans/drug effects , Candida albicans/genetics , Drug Resistance, Fungal/genetics , Antifungal Agents/pharmacology , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Toxicon ; 247: 107810, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38880255

ABSTRACT

Spider-derived peptides with insecticidal, antimicrobial and/or cytolytic activities, also known as spider venom antimicrobial peptides (AMPs), can be found in the venoms of RTA-clade spiders. They show translational potential as therapeutic leads. A set of 52 AMPs has been described in the Chinese wolf spider (Lycosa shansia), and many have been shown to exhibit antibacterial effects. Here we explored the potential to enhance their antimicrobial activity using bioengineering. We generated a panel of artificial derivatives of an A-family peptide and screened their activity against selected microbial pathogens, vertebrate cells and insects. In several cases, we increased the antimicrobial activity of the derivatives while retaining the low cytotoxicity of the parental molecule. Furthermore, we injected the peptides into adult Drosophila suzukii and found no evidence of insecticidal effects, confirming the low levels of toxicity. Our data therefore suggest that spider venom linear peptides naturally defend the venom gland against microbial colonization and can be modified into more potent antimicrobial agents that could help to battle infectious diseases in the future.


Subject(s)
Spider Venoms , Spiders , Animals , Spider Venoms/chemistry , Spider Venoms/pharmacology , Spider Venoms/toxicity , Drosophila/drug effects , Antimicrobial Peptides/pharmacology , Anti-Infective Agents/pharmacology , Insecticides/pharmacology , Humans
8.
Cureus ; 16(5): e60267, 2024 May.
Article in English | MEDLINE | ID: mdl-38872639

ABSTRACT

The absence of any organ of the facial region causes an asymmetrical appearance. This asymmetrical appearance can cause social dilemmas for the patient. The maxillofacial technician, the prosthodontist, and the patient must work closely together to fabricate an epithesis. On the implants, a superstructure is first constructed. Most of it is made up of rings and a bar that joins the implants. The firm acrylic resin base of the epithesis is equipped with clips that serve as the epithesis's retention mechanism. The actual epithesis is made of silicone rubber. The epithesis has to be shaped and colored with extreme caution. An appropriate substitute is an auricular prosthesis that is implant-retained. Microtia, deformity, malformation, and loss of the external ear, either partially or completely, can result from a variety of inherited genetic conditions. To evaluate the symmetry of both ears, artificial intelligence (AI) software is used. An Instagram lens Gridset by crystalwavesxx was used to correct and verify the bilateral symmetry of the patient. This case report primarily focuses on the fabrication of implant-supported auricular prostheses using AI.

9.
J Virol ; 98(6): e0000524, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38717113

ABSTRACT

TRIM32 is often aberrantly expressed in many types of cancers. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with several human malignancies, including Kaposi's sarcoma and primary effusion lymphomas (PELs). Increasing evidence has demonstrated the crucial role of KSHV lytic replication in viral tumorigenesis. However, the role of TRIM32 in herpesvirus lytic replication remains unclear. Here, we reveal that the expression of TRIM32 is upregulated by KSHV in latency, and reactivation of KSHV lytic replication leads to the inhibition of TRIM32 in PEL cells. Strikingly, RTA, the master regulator of lytic replication, interacts with TRIM32 and dramatically promotes TRIM32 for degradation via the proteasome systems. Inhibition of TRIM32 induces cell apoptosis and in turn inhibits the proliferation and colony formation of KSHV-infected PEL cells and facilitates the reactivation of KSHV lytic replication and virion production. Thus, our data imply that the degradation of TRIM32 is vital for the lytic activation of KSHV and is a potential therapeutic target for KSHV-associated cancers. IMPORTANCE: TRIM32 is associated with many cancers and viral infections; however, the role of TRIM32 in viral oncogenesis remains largely unknown. In this study, we found that the expression of TRIM32 is elevated by Kaposi's sarcoma-associated herpesvirus (KSHV) in latency, and RTA (the master regulator of lytic replication) induces TRIM32 for proteasome degradation upon viral lytic reactivation. This finding provides a potential therapeutic target for KSHV-associated cancers.


Subject(s)
Herpesvirus 8, Human , Immediate-Early Proteins , Proteolysis , Trans-Activators , Transcription Factors , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Virus Activation , Virus Replication , Humans , Apoptosis , Cell Line , Herpesvirus 8, Human/growth & development , Herpesvirus 8, Human/metabolism , Herpesvirus 8, Human/pathogenicity , Herpesvirus 8, Human/physiology , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Lymphoma, Primary Effusion/virology , Lymphoma, Primary Effusion/metabolism , Proteasome Endopeptidase Complex/metabolism , Sarcoma, Kaposi/virology , Sarcoma, Kaposi/metabolism , Trans-Activators/metabolism , Trans-Activators/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Virus Latency
10.
J Virol ; 98(6): e0017924, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38695538

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma-herpesvirus family and is a well-known human oncogenic virus. In infected cells, the viral genome of 165 kbp is circular DNA wrapped in chromatin. The tight control of gene expression is critical for latency, the transition into the lytic phase, and the development of viral-associated malignancies. Distal cis-regulatory elements, such as enhancers and silencers, can regulate gene expression in a position- and orientation-independent manner. Open chromatin is another characteristic feature of enhancers. To systematically search for enhancers, we cloned all the open chromatin regions in the KSHV genome downstream of the luciferase gene and tested their enhancer activity in infected and uninfected cells. A silencer was detected upstream of the latency-associated nuclear antigen promoter. Two constitutive enhancers were identified in the K12p-OriLyt-R and ORF29 Intron regions, where ORF29 Intron is a tissue-specific enhancer. The following promoters: OriLyt-L, PANp, ALTp, and the terminal repeats (TRs) acted as lytically induced enhancers. The expression of the replication and transcription activator (RTA), the master regulator of the lytic cycle, was sufficient to induce the activity of lytic enhancers in uninfected cells. We propose that the TRs that span about 24 kbp region serve as a "viral super-enhancer" that integrates the repressive effect of the latency-associated nuclear antigen (LANA) with the activating effect of RTA. Utilizing CRISPR activation and interference techniques, we determined the connections between these enhancers and their regulated genes. The silencer and enhancers described here provide an additional layer to the complex gene regulation of herpesviruses.IMPORTANCEIn this study, we performed a systematic functional assay to identify cis-regulatory elements within the genome of the oncogenic herpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV). Similar to other herpesviruses, KSHV presents both latent and lytic phases. Therefore, our assays were performed in uninfected cells, during latent infection, and under lytic conditions. We identified two constitutive enhancers, one of which seems to be a tissue-specific enhancer. In addition, four lytically induced enhancers, which are all responsive to the replication and transcription activator (RTA), were identified. Furthermore, a silencer was identified between the major latency promoter and the lytic gene locus. Utilizing CRISPR activation and interference techniques, we determined the connections between these enhancers and their regulated genes. The terminal repeats, spanning a region of about 24 kbp, seem like a "viral super-enhancer" that integrates the repressive effect of the latency-associated nuclear antigen (LANA) with the activating effect of RTA to regulate latency to lytic transition.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation, Viral , Genome, Viral , Herpesvirus 8, Human , Promoter Regions, Genetic , Virus Activation , Virus Latency , Humans , Antigens, Viral/genetics , Antigens, Viral/metabolism , Chromatin/metabolism , Chromatin/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Viral/genetics , Genome, Viral/genetics , HEK293 Cells , Herpesvirus 8, Human/genetics , Immediate-Early Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Terminal Repeat Sequences/genetics , Trans-Activators/metabolism , Virus Activation/genetics , Virus Latency/genetics
11.
BMC Vet Res ; 20(1): 180, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715028

ABSTRACT

BACKGROUND: Infectious bovine rhinotracheitis (IBR), caused by Bovine alphaherpesvirus-1 (BoAHV-1), is an acute, highly contagious disease primarily characterized by respiratory tract lesions in infected cattle. Due to its severe pathological damage and extensive transmission, it results in significant economic losses in the cattle industry. Accurate detection of BoAHV-1 is of paramount importance. In this study, we developed a real-time fluorescent quantitative PCR detection method for detecting BoAHV-1 infections. Utilizing this method, we tested clinical samples and successfully identified and isolated a strain of BoAHV-1.1 from positive samples. Subsequently, we conducted a genetic evolution analysis on the isolate strain's gC, TK, gG, gD, and gE genes. RESULTS: The study developed a real-time quantitative PCR detection method using SYBR Green II, achieving a detection limit of 7.8 × 101 DNA copies/µL. Specificity and repeatability analyses demonstrated no cross-reactivity with other related pathogens, highlighting excellent repeatability. Using this method, 15 out of 86 clinical nasal swab samples from cattle were found to be positive (17.44%), which was higher than the results obtained from conventional PCR detection (13.95%, 12/86). The homology analysis and phylogenetic tree analysis of the gC, TK, gG, gD, and gE genes of the isolated strain indicate that the JL5 strain shares high homology with the BoAHV-1.1 reference strains. Amino acid sequence analysis revealed that gC, gE, and gG each had two amino acid mutations, while the TK gene had one synonymous mutation and one H to Y mutation, with no amino acid mutations observed in the gD gene. Phylogenetic tree analysis indicated that the JL5 strain belongs to the BoAHV-1.1 genotype and is closely related to American strains such as C33, C14, and C28. CONCLUSIONS: The established real-time fluorescent quantitative PCR detection method exhibits good repeatability, specificity, and sensitivity. Furthermore, genetic evolution analysis of the isolated BoAHV-1 JL-5 strain indicates that it belongs to the BoAHV-1.1 subtype. These findings provide a foundation and data for the detection, prevention, and control Infectious Bovine Rhinotracheitis.


Subject(s)
Alphaherpesvirinae , Infectious Bovine Rhinotracheitis , Real-Time Polymerase Chain Reaction , Infectious Bovine Rhinotracheitis/virology , Animals , Cattle , Alphaherpesvirinae/classification , Alphaherpesvirinae/genetics , Alphaherpesvirinae/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Sensitivity and Specificity , Specimen Handling/veterinary , Phylogeny
12.
Viral Immunol ; 37(2): 115-123, 2024 03.
Article in English | MEDLINE | ID: mdl-38498796

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a specific human malignancy with unique geographic distribution and genetic backgrounds. Although early treatment with radio-chemotherapy has been proven effective for NPC therapy, its therapeutic efficacy substantially diminishes in the late stages of this malignancy. In the tumor microenvironment of NPC, PD-L1 has been demonstrated as a critical factor in impairing T cell activation. As an etiological role for NPC development, it is found that Epstein-Barr virus (EBV) latent proteins upregulated PD-L1 expression. However, whether EBV lytic protein affects PD-L1 expression remains unclear. In this study, through monitoring the mRNA expression pattern of lytic genes and PD-L1 in EBV-positive NPC cell line NA, EBV immediately-early gene BRLF1(Rta) was found to have the potential for PD-L1 activation. Furthermore, we identified that Rta expression enhanced PD-L1 expression in mRNA and protein levels through quantitative real-time polymerase chain reaction and western blotting analysis. The luciferase reporter assay revealed that Rta expression enhanced PD-L1 promoter activity. We also demonstrated that Rta-induced PD-L1 expressions could impair interleukin 2 secretion of T cells, and this mechanism may be through ERK activation. These results displayed the importance of EBV Rta in PD-L1 expression in NPC and may give an alternative target for NPC therapy.


Subject(s)
Epstein-Barr Virus Infections , Immediate-Early Proteins , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/genetics , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , B7-H1 Antigen/genetics , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , RNA, Messenger/genetics , Tumor Microenvironment , Trans-Activators/genetics , Trans-Activators/metabolism , Trans-Activators/pharmacology , Immediate-Early Proteins/genetics
13.
Cureus ; 16(2): e54182, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38496199

ABSTRACT

An 18-year-old male subject was referred to our MRI scanning center, by an orthopedic surgeon, for a swelling over the plantar region of the foot. He had been in a motor vehicle accident a few weeks back, with no evidence of fracture at the time of injury. In subsequent weeks, he developed a swelling over his foot. MRI showed the presence of a fluid intensity lesion in the subdermal and dermal layers of his foot. Unguarded motor vehicle accidents often tend to cause severe injuries. Sometimes, they even need operative management since a motor vehicle collision is a high-impact accident. One of the pathologies caused by a high impact force is the Morel-Lavallée lesion or a closed type of degloving injury. A Morel-Lavallee lesion also needs operative intervention if major vascular channels are involved in the degloving. However, if the major vessels supplying the region of degloving are intact, open surgery may not be needed. In such cases, incision and drainage along with serial wound dressing may be attempted. The primary risk in closed degloving is recurrent or subsequent tissue necrosis. Close and watchful monitoring is needed to anticipate and prevent these. Closed degloving injuries or Morel-Lavallée lesions have been commonly described in the thigh and pelvis region. Here, we describe a case that developed in the dermal and fascial layers of the foot and was managed conservatively. The epidermal layer showed regeneration, and the patient did not need subsequent amputation.

14.
J Virol ; 98(2): e0156723, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38197631

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family, which can cause human malignancies including Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's diseases. KSHV typically maintains a persistent latent infection within the host. However, after exposure to intracellular or extracellular stimuli, KSHV lytic replication can be reactivated. The reactivation process of KSHV triggers the innate immune response to limit viral replication. Here, we found that the transcriptional regulator RUNX3 is transcriptionally upregulated by the NF-κB signaling pathway in KSHV-infected SLK cells and B cells during KSHV reactivation. Notably, knockdown of RUNX3 significantly promotes viral lytic replication as well as the gene transcription of KSHV. Consistent with this finding, overexpression of RUNX3 impairs viral lytic replication. Mechanistically, RUNX3 binds to the KSHV genome and limits viral replication through transcriptional repression, which is related to its DNA- and ATP-binding ability. However, KSHV has also evolved corresponding strategies to antagonize this inhibition by using the viral protein RTA to target RUNX3 for ubiquitination and proteasomal degradation. Altogether, our study suggests that RUNX3, a novel host-restriction factor of KSHV that represses the transcription of viral genes, may serve as a potential target to restrict KSHV transmission and disease development.IMPORTANCEThe reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latent infection to lytic replication is important for persistent viral infection and tumorigenicity. However, reactivation is a complex event, and the regulatory mechanisms of this process are not fully elucidated. Our study revealed that the host RUNX3 is upregulated by the NF-κB signaling pathway during KSHV reactivation, which can repress the transcription of KSHV genes. At the late stage of lytic replication, KSHV utilizes a mechanism involving RTA to degrade RUNX3, thus evading host inhibition. This finding helps elucidate the regulatory mechanism of the KSHV life cycle and may provide new clues for the development of therapeutic strategies for KSHV-associated diseases.


Subject(s)
Core Binding Factor Alpha 3 Subunit , Herpesvirus 8, Human , Latent Infection , Humans , Cell Line, Tumor , Gene Expression Regulation, Viral , Genome, Viral , Herpesvirus 8, Human/physiology , NF-kappa B/metabolism , Virus Activation , Virus Latency , Virus Replication , Core Binding Factor Alpha 3 Subunit/metabolism
15.
Mol Neurobiol ; 61(3): 1714-1725, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37773082

ABSTRACT

Neuropathic pain following nerve injury is a complex condition, which often puts a negative impact on life and remains a sustained problem. To make pain management better is of great significance and unmet need. RTA 408 (Omaveloxone) is a traditional Asian medicine with a valid anti-inflammatory property. Thus, we aim to investigate the therapeutic effect of RTA-408 on mechanical allodynia in chronic constriction injury (CCI) rats as well as the underlying mechanisms. Neuropathic pain was induced by using CCI of the rats' sciatic nerve (SN) and the behavior testing was measured by calibrated forceps testing. Activation of Nrf-2, the phosphorylation of nuclear factor-κB (NF-κB), and the inflammatory response were assessed by western blots. The number of apoptotic neurons and degree of glial cell reaction were examined by immunofluorescence assay. RTA-408 exerts an analgesic effect on CCI rats. RTA-408 reduces neuronal apoptosis and glial cell activation by increasing Nrf-2 expression and decreasing the inflammatory response (TNF-α/ p-NF-κB/ TSLP/ STAT5). These data suggest that RTA-408 is a candidate with potential to reduce nociceptive hypersensitivity after CCI by targeting TSLP/STAT5 signaling.


Subject(s)
NF-kappa B , Neuralgia , Triterpenes , Rats , Animals , NF-kappa B/metabolism , Constriction , STAT5 Transcription Factor/metabolism , Nociception , Rats, Sprague-Dawley , Neuralgia/complications , Neuralgia/drug therapy , Neuralgia/metabolism , Sciatic Nerve/metabolism , Hyperalgesia/complications , Hyperalgesia/drug therapy , Hyperalgesia/metabolism
16.
Am J Physiol Cell Physiol ; 326(2): C331-C347, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38047307

ABSTRACT

Diabetic cardiomyopathy (dCM) is a major complication of diabetes; however, specific treatments for dCM are currently lacking. RTA 408, a semisynthetic triterpenoid, has shown therapeutic potential against various diseases by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. We established in vitro and in vivo models using high glucose toxicity and db/db mice, respectively, to simulate dCM. Our results demonstrated that RTA 408 activated Nrf2 and alleviated various dCM-related cardiac dysfunctions, both in vivo and in vitro. Additionally, it was found that silencing the Nrf2 gene eliminated the cardioprotective effect of RTA 408. RTA 408 ameliorated oxidative stress in dCM mice and high glucose-exposed H9C2 cells by activating Nrf2, inhibiting mitochondrial fission, exerting anti-inflammatory effects through the Nrf2/NF-κB axis, and ultimately suppressing apoptosis, thereby providing cardiac protection against dCM. These findings provide valuable insights for potential dCM treatments.NEW & NOTEWORTHY We demonstrated first that the nuclear factor erythroid 2-related factor 2 (Nrf2) activator RTA 408 has a protective effect against diabetic cardiomyopathy. We found that RTA 408 could stimulate the nuclear entry of Nrf2 protein, regulate the mitochondrial fission-fusion balance, and redistribute p65, which significantly alleviated the oxidative stress level in cardiomyocytes, thereby reducing apoptosis and inflammation, and protecting the systolic and diastolic functions of the heart.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Triterpenes , Mice , Animals , NF-kappa B/genetics , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Mitochondrial Dynamics , Oxidative Stress , Inflammation/metabolism , Triterpenes/metabolism , Triterpenes/pharmacology , Triterpenes/therapeutic use , Myocytes, Cardiac/metabolism , Glucose/metabolism , Diabetes Mellitus/metabolism
17.
CEN Case Rep ; 13(2): 93-97, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37415038

ABSTRACT

A 11-year-old girl was referred to the pediatric nephrology services of our hospital for evaluation of vitamin-D-refractory rickets. She was born to second-degree consanguineous parents. On examination, she had wrist widening and bilateral genu varum. She had normal anion gap metabolic acidosis, hypokalemia, and hyperchloremia. The fractional excretion of bicarbonate was 3% and the urine anion gap was positive. She also had hypercalciuria, but no phosphaturia, glucosuria or aminoaciduria. In view of a family history of an elder sister having rigidity with cognitive and speech impairment, an ophthalmic evaluation by slit lamp examination was performed in the index case that revealed bilateral Kayser-Fleischer rings. Serum ceruloplasmin was low and 24-h urine copper was elevated in the index case. Whole exome sequencing unveiled a novel pathogenic variant in exon 2 of the ATP7B gene (chr13: c.470del; Depth: 142x) (homozygous) that resulted in a frameshift and premature truncation of the protein, 15 amino acids downstream to codon 157 (p. Cys157LeufsTer15; NM_000053.4) confirming Wilson disease. There were no mutations in the ATP6V0A4, ATP6V1B1, SLC4A1, FOXI1, WDR72 genes or other genes that are known to cause distal RTA. Therapy with D-penicillamine and zinc supplements was initiated. A low dose of 2.5 mEq/kg/day of potassium citrate supplementation normalized the serum bicarbonate levels. This case was notable for the absence of hepatic or neurological involvement at admission. Wilson disease is well known to cause proximal renal tubular acidosis and Fanconi syndrome, with relatively lesser involvement of the distal renal tubules in the literature. However, isolated distal renal tubular involvement as presenting manifestation of Wilson disease (without hepatic or neurological involvement) is rare and can lead to diagnostic confusion.


Subject(s)
Acidosis, Renal Tubular , Hepatolenticular Degeneration , Vacuolar Proton-Translocating ATPases , Aged , Child , Female , Humans , Acidosis, Renal Tubular/etiology , Acidosis, Renal Tubular/genetics , Bicarbonates/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Hepatolenticular Degeneration/complications , Hepatolenticular Degeneration/diagnosis , Mutation , Potassium Citrate/therapeutic use , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
18.
Ophthalmic Genet ; : 1-6, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37997707

ABSTRACT

BACKGROUND: Fanconi's syndrome (FS) is characterized by type-2 renal tubular acidosis, short stature, and renal rickets, along with glycosuria, aminoaciduria, hypophosphaturia, and urinary bicarbonate wasting. The genetic form of FS has been linked to HNF4A variants. Although additional clinical features such as hearing impairment have recently been associated with HNF4A-linked FS, its ocular manifestation has not been described. MATERIAL AND METHODS: Presenting a case of a 5-year-old male child with bilateral progressive corneal opacification and the presence of bilateral greyish-white deposits in the interpalpebral region since infancy. A next-generation sequencing (NGS)-based genetic testing was performed for the child followed by parental genetic testing for the identified variant. Furthermore, relevant works of literature were reviewed related to this condition. RESULTS: Detailed corneal findings showed a bilateral band-shaped keratopathy (BSK) in the patient. Physical and systemic findings showed signs consistent with FS. Sequencing analysis revealed a novel heterozygous c.635C>T, (p.Pro212Leu) variant in the HNF4A gene in the proband and mother, while the father had a normal genotype. CONCLUSIONS: Our case highlights the occurrence of BSK in an exceptionally rare manifestation of hereditary FS linked to HNF4A gene variant. The variant exists both in proband and asymptomatic mother. Therefore, the variable penetrance which is known to exist in HNF4A is acknowledged in this context. This report suggests the first documented instance establishing a plausible connection between BSK and HNF4A-associated FS, characterized by the variable penetrance attributed to the HNF4A gene.

19.
J Virol ; 97(11): e0138923, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37888983

ABSTRACT

IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-causing human herpesvirus that establishes a persistent infection in humans. The lytic viral cycle plays a crucial part in lifelong infection as it is involved in the viral dissemination. The master regulator of the KSHV lytic replication cycle is the viral replication and transcription activator (RTA) protein, which is necessary and sufficient to push the virus from latency into the lytic phase. Thus, the identification of host factors utilized by RTA for controlling the lytic cycle can help to find novel targets that could be used for the development of antiviral therapies against KSHV. Using a proteomics approach, we have identified a novel interaction between RTA and the cellular E3 ubiquitin ligase complex RNF20/40, which we have shown to be necessary for promoting RTA-induced KSHV lytic cycle.


Subject(s)
Herpesvirus 8, Human , Host Microbial Interactions , Immediate-Early Proteins , Ubiquitin-Protein Ligases , Viral Proteins , Virus Activation , Virus Latency , Virus Replication , Humans , Herpesvirus 8, Human/growth & development , Herpesvirus 8, Human/physiology , Immediate-Early Proteins/metabolism , Protein Binding , Proteomics , Trans-Activators/metabolism , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/metabolism
20.
Toxicol Res ; 39(4): 625-636, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37779592

ABSTRACT

Porphyromonas gingivalis (P. gingivalis), a key pathogen in periodontal diseases, is also associated with hyperglycemia-associated systemic diseases, including diabetes mellitus (DM). Gingipains are the most important endotoxins of P. gingivalis, and in vivo studies using gingipains are scarce. Zebrafish (Danio rerio) is a vertebrate with high physiological and genetic homology with humans that has multiple co-orthologs for human genes, including inflammation-related proteins. The aim of our study was to determine the effects of gingipain in a hyperglycemia-induced zebrafish model by evaluating inflammation, oxidant-antioxidant status, and the cholinergic system. Adult zebrafish were grouped into the control group (C), hyperglycemia-induced group subjected to 15 days of overfeeding (OF), gingipain-injected group (GP), and gingipain-injected hyperglycemic group (OF + GP). At the end of 15 days, an oral glucose tolerance test (OGTT) was performed, and fasting blood glucose (FBG) levels were measured. Lipid peroxidation (LPO), nitric oxide (NO), glutathione (GSH), glutathione S-transferase, catalase, acetylcholinesterase (AChE), alkaline phosphatase (ALP), and sialic acid (SA) levels were determined spectrophotometrically in the hepatopancreas. The expression levels of tnf-⍺, il-1ß, ins, crp, and the acute phase protein YKL-40 analogs chia.5 and chia.6 were evaluated by RT‒PCR. After two weeks of overfeeding, significantly increased weight gain, FBG, and OGTT confirmed that the zebrafish were hyperglycemic. Increased oxidative stress, inflammation, and AChE and ALP activities were observed in both the overfeeding and GP groups. Amplification of inflammation and oxidative stress was evident in the OF + GP group through increased expression of crp, il-1ß, chia.5, and chia.6 and increased LPO and NO levels. Our results support the role of gingipains in the increased inflammatory response in hyperglycemia-associated diseases.

SELECTION OF CITATIONS
SEARCH DETAIL