Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Int J Mol Sci ; 23(13)2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35806107

ABSTRACT

Centipedes are one of the most ancient and successful living venomous animals. They have evolved spooky venoms to deter predators or hunt prey, and are widely distributed throughout the world besides Antarctica. Neurotoxins are the most important virulence factor affecting the function of the nervous system. Ion channels and receptors expressed in the nervous system, including NaV, KV, CaV, and TRP families, are the major targets of peptide neurotoxins. Insight into the mechanism of neurotoxins acting on ion channels contributes to our understanding of the function of both channels and centipede venoms. Meanwhile, the novel structure and selective activities give them the enormous potential to be modified and exploited as research tools and biological drugs. Here, we review the centipede venom peptides that act on ion channels.


Subject(s)
Arthropod Venoms , Arthropods , Animals , Arthropod Venoms/chemistry , Arthropods/chemistry , Chilopoda , Ion Channels , Neurotoxins/pharmacology , Peptides/chemistry , Peptides/pharmacology
2.
J Pept Sci ; 28(3): e3368, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34514664

ABSTRACT

Coupling reagents play crucial roles in the iterative construction of amide bonds for the synthesis of peptides and peptide-based derivatives. The novel DIC/Oxyma condensation system featured with the low risk of explosion displayed remarkable abilities to inhibit racemization, along with efficient coupling efficiency in both manual and automated syntheses. Nevertheless, an ideal reaction molar ratio in DIC/Oxyma condensation system and the moderate reaction temperature by manual synthesis remain to be further investigated. Herein, the synthetic efficiencies of different reaction ratios between DIC and Oxyma under moderate reaction temperature were systematically evaluated. The robustness and efficiency of DIC/Oxyma condensation system are validated by the rapid synthesis of linear centipede toxin RhTx. Different folding strategies were applied for the construction of disulfide bridges in RhTx, which was further confirmed in assays of circular dichroism and patch-clamp electrophysiology evaluation. This work establishes the DIC/Oxyma-based accelerated synthesis of peptides under moderate condensation conditions, which is especially useful for the manual synthesis of peptides. Besides, the strategy presented here provides robust technical supports for the large-scale synthesis and oxidative folding of RhTx.


Subject(s)
Chilopoda , Oxidative Stress , Amino Acid Sequence , Animals , Pregnadienes
SELECTION OF CITATIONS
SEARCH DETAIL