Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters








Database
Language
Publication year range
1.
Virus Genes ; 60(4): 412-422, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38727968

ABSTRACT

Viral promoters can be used to drive heterologous gene expression in transgenic plants. As part of our quest to look for new promoters, we have explored, for the first time, the promoters of okra enation leaf curl virus (OELCuV), a begomovirus infecting okra (Abelmoschus esculentus). The Rep and CP promoters of OELCuV fused with the gfp reporter gene, were expressed transiently in the natural host okra and the laboratory host cotton and Nicotiana benthamiana. The expression levels of the promoters were quantified through confocal laser scanning microscopy and GFP assay in N. benthamiana and okra. The results indicated that the Rep promoter was more active than the CP promoter, whose activity was similar to that of CaMV 35S promoter. Additionally, the Rep and CP promoters showed increase of expression, probably due to transactivation, when assayed following inoculation of OELCuV and betasatellite DNAs in cotton plants. A moderate increase in promoter activity in N. benthamiana was also seen, when assayed following the inoculation of the heterologous begomovirus Sri Lankan cassava mosaic virus.


Subject(s)
Abelmoschus , Begomovirus , Gossypium , Nicotiana , Promoter Regions, Genetic , Nicotiana/virology , Nicotiana/genetics , Begomovirus/genetics , Abelmoschus/virology , Abelmoschus/genetics , Gossypium/virology , Gossypium/genetics , Plants, Genetically Modified/virology , Plant Diseases/virology , Green Fluorescent Proteins/genetics , Genes, Reporter , Gene Expression
2.
Microb Pathog ; 192: 106718, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815777

ABSTRACT

Sri Lankan cassava mosaic virus (SLCMV) is a major cause for mosaic infections in cassava leaves, resulting in significant economic losses in southern India. SLCMV leads to growth retardation, leaf curl, and chlorosis in the host, with rapid transmission through whitefly insect vectors. Detecting SLCMV promptly is crucial, and the study introduces a novel and efficient colorimetric Loop-mediated isothermal amplification (LAMP) assay for successful detection in 60 min. Three primer sets were designed to target the conserved region of the SLCMV genome, specifically the coat protein gene, making the assay highly specific. The LAMP assay offers rapid and sensitive detection, completing within 60 min in a temperature-controlled water bath or thermal cycler. Compared to PCR techniques, it demonstrates 100 times superior sensitivity. The visual inspection of LAMP tube results using a nucleic acid dye and observing ladder-like pattern bands in a 2 % agarose gel confirms the presence of SLCMV. The assay is specific to SLCMV, showing no false positives or contaminations when tested against other virus. The standardized SLCMV LAMP assay proves technically efficient, providing a rapid, specific, simple, and low-cost solution, streamlining the detection and management of SLCMV.


Subject(s)
Begomovirus , Colorimetry , DNA Primers , Manihot , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Plant Diseases , Sensitivity and Specificity , Manihot/virology , Nucleic Acid Amplification Techniques/methods , India , Colorimetry/methods , Plant Diseases/virology , DNA Primers/genetics , Molecular Diagnostic Techniques/methods , Begomovirus/genetics , Begomovirus/isolation & purification , Plant Leaves/virology , Capsid Proteins/genetics
3.
Insect Sci ; 31(3): 707-719, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38369384

ABSTRACT

Sri Lankan cassava mosaic virus (SLCMV) is a prominent causative agent of cassava mosaic disease in Asia and relies on the whitefly Bemisia tabaci cryptic complex for its transmission. However, the molecular mechanisms involved in SLCMV transmission by B. tabaci have yet to be understood. In this study, we identified an aminopeptidase N-like protein (BtAPN) in B. tabaci Asia II 1, an efficient vector of SLCMV, which is involved in the SLCMV transmission process. Through the use of glutathione S-transferase pull-down assay and LC-MS/MS analysis, we demonstrated the interaction between BtAPN and the coat protein (CP) of SLCMV. This interaction was further confirmed in vitro, and we observed an induction of BtAPN gene expression following SLCMV infection. By interfering with the function of BtAPN, the quantities of SLCMV were significantly reduced in various parts of B. tabaci Asia II 1, including the whole body, midgut, hemolymph, and primary salivary gland. Furthermore, we discovered that BtAPN is conserved in B. tabaci Middle East-Asia Minor 1 (MEAM1) and interacts with the CP of tomato yellow leaf curl virus (TYLCV), a begomovirus known to cause severe damage to tomato production. Blocking BtAPN with antibody led to a significant reduction in the quantities of TYLCV in whitefly whole body and organs/tissues. These results demonstrate that BtAPN plays a generic role in interacting with the CP of begomoviruses and positively regulates their acquisition by the whitefly.


Subject(s)
Begomovirus , Hemiptera , Insect Vectors , Animals , Hemiptera/virology , Hemiptera/genetics , Hemiptera/enzymology , Begomovirus/physiology , Insect Vectors/virology , CD13 Antigens/metabolism , CD13 Antigens/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Plant Diseases/virology
4.
Virology ; 581: 71-80, 2023 04.
Article in English | MEDLINE | ID: mdl-36921478

ABSTRACT

BACKGROUND: Rice tungro bacilliform virus (RTBV) is a double stranded DNA containing virus which causes the devastating tungro disease of rice in association with an RNA virus, rice tungro spherical virus. RNA silencing is an evolutionarily conserved antiviral defence pathway in plants as well as in several classes of higher organisms. Many viruses, in turn, encode proteins which are termed Viral Suppressor of RNA Silencing (VSR) because they downregulate or suppress RNA silencing. RESULTS: Using an RNA silencing suppressor assay we show that RTBV protease (PRT) acts as a mild VSR. A truncated version of PRT gene abolished the silencing suppression activity. We also show in planta interaction of PRT with the SGS3 protein of Solanum tuberosum and Arabidopsis thaliana using bimolecular fluorescence complementation assay (BIFC). Transient expression of PRT in Nicotiana benthamiana caused an increased accumulation of the begomovirus Sri Lankan cassava mosaic virus (SLCMV) DNA-A, which indicated a virulence function imparted on an unrelated virus. CONCLUSION: The finding supports the idea that PRT acts as suppressor of RNA silencing and this action may be mediated by its interaction with SGS3.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oryza , Tungrovirus , RNA Interference , Plant Proteins/genetics , Plant Proteins/metabolism , Tungrovirus/genetics , Peptide Hydrolases/metabolism , Endopeptidases/genetics , Plant Diseases , Arabidopsis Proteins/genetics
5.
J Virol Methods ; 299: 114336, 2022 01.
Article in English | MEDLINE | ID: mdl-34656701

ABSTRACT

Recently, the widespread occurrence of Sri Lankan cassava mosaic virus (SLCMV), genus Begomovirus, family Geminiviridae, which causes a mosaic disease in cassava (Manihot esculenta Crantz) in South-East Asia have, become a serious economic issue. Since cassava is propagated through vegetative cuttings, a rapid virus diagnostic method is crucial for generating virus-free planting materials. In this study, a loop-mediated isothermal amplification (LAMP) assay using six primers was developed and validated for the rapid detection of SLCMV in cassava leaves. This SLCMV assay had a detection sensitivity that was up to 10,000 times higher than that of the conventional polymerase chain reaction assay and can detect the virus from symptomless stem cutting, which is a potential long-distance spreader of the virus. Furthermore, a practical LAMP protocol using stable dried reagents from a commercial kit was established so that the assay could be performed in the field by incubating the reactions in water at 60-65 °C instead of using a thermal cycler. The primer sequences and the LAMP protocol described here should be useful for the rapid and sensitive on-site detection of SLCMV.


Subject(s)
Begomovirus , Manihot , Begomovirus/genetics , Indicators and Reagents , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Plant Diseases
6.
Cells ; 10(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-34359870

ABSTRACT

Begomoviruses cause substantial losses to agricultural production, especially in tropical and subtropical regions, and are exclusively transmitted by members of the whitefly Bemisia tabaci species complex. However, the molecular mechanisms underlying the transmission of begomoviruses by their whitefly vector are not clear. In this study, we found that B. tabaci vesicle-associated membrane protein 2 (BtVAMP2) interacts with the coat protein (CP) of tomato yellow leaf curl virus (TYLCV), an emergent begomovirus that seriously impacts tomato production globally. After infection with TYLCV, the transcription of BtVAMP2 was increased. When the BtVAMP2 protein was blocked by feeding with a specific BtVAMP2 antibody, the quantity of TYLCV in B. tabaci whole body was significantly reduced. BtVAMP2 was found to be conserved among the B. tabaci species complex and also interacts with the CP of Sri Lankan cassava mosaic virus (SLCMV). When feeding with BtVAMP2 antibody, the acquisition quantity of SLCMV in whitefly whole body was also decreased significantly. Overall, our results demonstrate that BtVAMP2 interacts with the CP of begomoviruses and promotes their acquisition by whitefly.


Subject(s)
Begomovirus/physiology , Hemiptera/metabolism , Hemiptera/virology , Insect Proteins/metabolism , Vesicle-Associated Membrane Protein 2/metabolism , Amino Acid Sequence , Animals , Antibodies, Viral/metabolism , Capsid Proteins/metabolism , Insect Proteins/chemistry , Protein Binding , Transcription, Genetic , Vesicle-Associated Membrane Protein 2/chemistry
7.
Virol J ; 18(1): 100, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006310

ABSTRACT

BACKGROUND: Cassava mosaic disease (CMD) is one of the most devastating viral diseases for cassava production in Africa and Asia. Accurate yet affordable diagnostics are one of the fundamental tools supporting successful CMD management, especially in developing countries. This study aimed to develop an antibody-based immunoassay for the detection of Sri Lankan cassava mosaic virus (SLCMV), the only cassava mosaic begomovirus currently causing CMD outbreaks in Southeast Asia (SEA). METHODS: Monoclonal antibodies (MAbs) against the recombinant coat protein of SLCMV were generated using hybridoma technology. MAbs were characterized and used to develop a triple antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA) for SLCMV detection in cassava leaves and stems. Assay specificity, sensitivity and efficiency for SLCMV detection was investigated and compared to those of a commercial ELISA test kit and PCR, the gold standard. RESULTS: A TAS-ELISA for SLCMV detection was successfully developed using the newly established MAb 29B3 and an in-house polyclonal antibody (PAb) against begomoviruses, PAb PK. The assay was able to detect SLCMV in leaves, green bark from cassava stem tips, and young leaf sprouts from stem cuttings of SLCMV-infected cassava plants without cross-reactivity to those derived from healthy cassava controls. Sensitivity comparison using serial dilutions of SLCMV-infected cassava sap extracts revealed that the assay was 256-fold more sensitive than a commercial TAS-ELISA kit and 64-fold less sensitive than PCR using previously published SLCMV-specific primers. In terms of DNA content, our assay demonstrated a limit of detection of 2.21 to 4.08 × 106 virus copies as determined by quantitative real-time PCR (qPCR). When applied to field samples (n = 490), the TAS-ELISA showed high accuracy (99.6%), specificity (100%), and sensitivity (98.2%) relative to the results obtained by the reference PCR. SLCMV infecting chaya (Cnidoscolus aconitifolius) and coral plant (Jatropha multifida) was also reported for the first time in SEA. CONCLUSIONS: Our findings suggest that the TAS-ELISA for SLCMV detection developed in this study can serve as an attractive tool for efficient, inexpensive and high-throughput detection of SLCMV and can be applied to CMD screening of cassava stem cuttings, large-scale surveillance, and screening for resistance.


Subject(s)
Begomovirus , Enzyme-Linked Immunosorbent Assay , Manihot , Plant Diseases/virology , Antibodies, Monoclonal , Begomovirus/isolation & purification , Manihot/virology
8.
Viruses ; 8(10)2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27690084

ABSTRACT

The major threat for cassava cultivation on the Indian subcontinent is cassava mosaic disease (CMD) caused by cassava mosaic geminiviruses which are bipartite begomoviruses with DNA A and DNA B components. Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV) cause CMD in India. Two isolates of SLCMV infected the cassava cultivar Sengutchi in the fields near Malappuram and Thiruvananthapuram cities of Kerala State, India. The Malappuram isolate was persistent when maintained in the Madurai Kamaraj University (MKU, Madurai, Tamil Nadu, India) greenhouse, whereas the Thiruvananthapuram isolate did not persist. The recovered cassava plants with the non-persistent SLCMV, which were maintained vegetative in quarantine in the University of Basel (Basel, Switzerland) greenhouse, displayed re-emergence of CMD after a six-month period. Interestingly, these plants did not carry SLCMV but carried ICMV. It is interpreted that the field-collected, SLCMV-infected cassava plants were co-infected with low levels of ICMV. The loss of SLCMV in recovered cassava plants, under greenhouse conditions, then facilitated the re-emergence of ICMV. The partial dimer clones of the persistent and non-persistent isolates of SLCMV and the re-emerged isolate of ICMV were infective in Nicotiana benthamiana upon agroinoculation. Studies on pseudo-recombination between SLCMV and ICMV in N. benthamiana provided evidence for trans-replication of ICMV DNA B by SLCMV DNA A.

9.
Viruses ; 7(5): 2641-53, 2015 May 22.
Article in English | MEDLINE | ID: mdl-26008704

ABSTRACT

Cassava mosaic disease is a major constraint to cassava cultivation worldwide. In India, the disease is caused by Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV). The Agrobacterium Ti plasmid virulence gene virE2, encoding a nuclear-localized, single-stranded DNA binding protein, was introduced into Nicotiana benthamiana to develop tolerance against SLCMV. Leaf discs of transgenic N. benthamiana plants, harboring the virE2 gene, complemented a virE2 mutation in A. tumefaciens and produced tumours. Three tested virE2 transgenic plants displayed reduction in disease symptoms upon agroinoculation with SLCMV DNA A and DNA B partial dimers. A pronounced reduction in viral DNA accumulation was observed in all three virE2 transgenic plants. Thus, virE2 is an effective candidate gene to develop tolerance against the cassava mosaic disease and possibly other DNA virus diseases.


Subject(s)
Agrobacterium tumefaciens/genetics , Bacterial Proteins/metabolism , Begomovirus/drug effects , DNA-Binding Proteins/metabolism , Ion Channels/metabolism , Nicotiana/virology , Plant Diseases/virology , Plant Tumor-Inducing Plasmids , Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , India , Ion Channels/genetics , Plant Diseases/prevention & control , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL