Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.207
Filter
1.
Brain ; 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39391934

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat mutation in the Huntingtin (HTT) gene. The mutation impacts neuronal protein homeostasis and cortical/striatal circuitry. SUMOylation is a post-translational modification with broad cellular effects including via modification of synaptic proteins. Here, we used an optimised SUMO protein-enrichment and mass spectrometry method to identify the protein SUMOylation/SUMO interaction proteome in the context of HD using R6/2 transgenic and non-transgenic (NT) mice. Significant changes in enrichment of SUMOylated and SUMO-interacting proteins were observed, including those involved in presynaptic function, cytomatrix at the active zone scaffolding, cytoskeleton organization, and glutamatergic signaling. Mitochondrial and RNA-binding proteins also showed altered enrichment. Modified SUMO-associated pathways in HD tissue include clathrin-mediated endocytosis signaling, synaptogenesis signaling, synaptic long-term potentiation, and SNARE signaling. To evaluate how modulation of SUMOylation might influence functional measures of neuronal activity in HD cells in vitro, we utilised primary neuronal cultures from R6/2 and NT mice. A receptor internalization assay for the metabotropic glutamate receptor 7 (mGLUR7), a SUMO enriched protein in the mass spec, showed decreased internalization in R6/2 neurons compared to NT. siRNA-mediated knockdown of the E3 SUMO ligase Protein Inhibitor of Activated STAT1 (Pias1), which can SUMO modify mGLUR7, prevented this HD phenotype. In addition, microelectrode array analysis of primary neuronal cultures indicated early hyperactivity in HD cells, while later timepoints demonstrated deficits in several measurements of neuronal activity within cortical neurons. HD phenotypes were rescued at selected timepoints following knockdown of Pias1. Collectively, our results provide a mouse brain SUMOome resource and show that significant alterations occur within the post-translational landscape of SUMO-protein interactions of synaptic proteins in HD mice, suggesting that targeting of synaptic SUMO networks may provide a proteostatic systems-based therapeutic approach for HD and other neurological. Disorders.

2.
New Phytol ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39367623

ABSTRACT

To identify efficient salt-tolerant genes is beneficial for coping with the penalty of salt stress on crop yield. Reversible conjugation (sumoylation and desumoylation) of Small Ubiquitin-Like Modifier (SUMO) is a crucial kind of protein modifications, but its roles in the response to salt and other abiotic stress are not well addressed. Here, we identify salt-tolerant SUMO protease gene TaDSU for desumoylation from wheat, and analyze its mechanism in salt tolerance and evaluate its role in yield in saline-alkaline fields. TaDSU overexpression enhances salt tolerance of wheat. TaDSU overexpressors have lower Na+ but higher K+ contents and consequently higher K+ : Na+ ratios than the wild-type under salt stress. TaDSU interacts with transcriptional factor MYC2, reduces the sumoylation level of SUMO1-conjugated MYC2, and promotes its transcription activity. MYC2 binds to the promoter of TaDSU and elevates its expression. TaDSU overexpression enhances grain yield of wheat in the saline soil without growth penalty in the normal field. Especially, TaDSU ectopic expression also enhances salt tolerance of Arabidopsis thaliana, showing this SUMO protease allele has the inter-species role in the adaptation to salt stress. Thus, TaDSU is an efficient candidate gene for molecular breeding of salt-tolerant crops.

3.
Cells ; 13(19)2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39404369

ABSTRACT

Telomeres, the ends of eukaryotic linear chromosomes, are composed of repeated DNA sequences and specialized proteins, with the conserved telomeric Cdc13/CTC1-Stn1-Ten1 (CST) complex providing chromosome stability via telomere end protection and the regulation of telomerase accessibility. In this study, SIZ1, coding for a SUMO E3 ligase, and TOP2 (a SUMO target for Siz1 and Siz2) were isolated as extragenic suppressors of Saccharomyces cerevisiae CST temperature-sensitive mutants. ten1-sz, stn1-sz and cdc13-sz mutants were isolated next due to being sensitive to intracellular Siz1 dosage. In parallel, strong negative genetic interactions between mutants of CST and septins were identified, with septins being noticeably sumoylated through the action of Siz1. The temperature-sensitive arrest in these new mutants of CST was dependent on the G2/M Mad2-mediated and Bub2-mediated spindle checkpoints as well as on the G2/M Mec1-mediated DNA damage checkpoint. Our data suggest the existence of yet unknown functions of the telomeric Cdc13-Stn1-Ten1 complex associated with mitotic spindle positioning and/or assembly that could be further elucidated by studying these new ten1-sz, stn1-sz and cdc13-sz mutants.


Subject(s)
Cell Cycle Proteins , DNA Damage , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Spindle Apparatus , Telomere-Binding Proteins , Telomere , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Telomere/metabolism , Telomere/genetics , Telomere-Binding Proteins/metabolism , Telomere-Binding Proteins/genetics , Spindle Apparatus/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mutation/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics
4.
Front Cell Infect Microbiol ; 14: 1484241, 2024.
Article in English | MEDLINE | ID: mdl-39397864

ABSTRACT

Various viral proteins are post-translationally modified by SUMO-conjugation during the human adenovirus (HAdV) replication cycle. This modification leads to diverse consequences for target proteins as it influences their intracellular localization or cell transformation capabilities. SUMOylated HAdV proteins include the multifunctional oncoprotein E1B-55K. Our previous research, along with that of others, has demonstrated a substantial influence of yet another adenoviral oncoprotein, E4orf6, on E1B-55K SUMOylation levels. Protein SUMOylation can be reversed by cellular sentrin/SUMO-specific proteases (SENPs). In this study, we investigated the interaction of E1B-55K with cellular SENPs to understand deSUMOylation activities and their consequences for cell transformation mediated by this adenoviral oncoprotein. We show that E1B-55K interacts with and is deSUMOylated by SENP 1, independently of E4orf6. Consistent with these results, we found that SENP 1 prevents E1A/E1B-dependent focus formation in rodent cells. We anticipate these findings to be the groundwork for future studies on adenovirus-host interactions, the mechanisms that underlie E1B-55K SUMOylation, as well as the role of this major adenoviral oncoprotein in HAdV-mediated cell transformation.


Subject(s)
Adenovirus E1B Proteins , Adenoviruses, Human , Cysteine Endopeptidases , Sumoylation , Adenoviruses, Human/physiology , Adenoviruses, Human/metabolism , Adenoviruses, Human/genetics , Humans , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Animals , Adenovirus E1B Proteins/metabolism , Adenovirus E1B Proteins/genetics , Cell Transformation, Viral , Host-Pathogen Interactions , Cell Line , HEK293 Cells , Protein Processing, Post-Translational , Mice
5.
Acta Physiol (Oxf) ; : e14240, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39404508

ABSTRACT

Fibrosis is characterized by excessive extracellular matrix (ECM) deposition resulting from dysregulated wound healing and connective tissue repair mechanisms. Excessive accumulation of ECM leads to fibrous tissue formation, impairing organ function and driving the progression of various fibrotic diseases. Recently, the role of small ubiquitin-like modifiers (SUMO) in fibrotic diseases has attracted significant attention. SUMO-mediated SUMOylation, a highly conserved posttranslational modification, participates in a variety of biological processes, including nuclear-cytosolic transport, cell cycle progression, DNA damage repair, and cellular metabolism. Conversely, SUMO-specific proteases cleave the isopeptide bond of SUMO conjugates, thereby regulating the deSUMOylation process. Mounting evidence indicates that SUMOylation and deSUMOylation regulate the functions of several proteins, such as Smad3, NF-κB, and promyelocytic leukemia protein, which are implicated in fibrotic diseases like liver fibrosis, myocardial fibrosis, and pulmonary fibrosis. This review summarizes the role of SUMO in fibrosis-related pathways and explores its pathological relevance in various fibrotic diseases. All evidence suggest that the SUMO pathway is important targets for the development of treatments for fibrotic diseases.

6.
Sci Rep ; 14(1): 22213, 2024 09 27.
Article in English | MEDLINE | ID: mdl-39333232

ABSTRACT

Smt3, as a small ubiquitin-like modifier (SUMO), play an essential role in the regulation of protein SUMOylation, and thus this process can affect various important biological functions. Here, we investigated the roles of MrSmt3 (yeast SUMO/Smt3 homologs) in the entomopathogenic fungus Metarhizium robertsii. Our results of subcellular localization assays demonstrated that MrSmt3 was present in the cytoplasm and nucleus, whereas MrSmt3 was largely localized in the nucleus during oxidative stress. Importantly, disruption of MrSmt3 significantly decreased the level of protein SUMOylation under heat stress. Deletion of MrSmt3 led to a significant decrease in conidial production, and increased sensitivity to various stresses, including heat, oxidative, and cell wall-disturbing agents. However, bioassays of direct injection and topical inoculation demonstrated that deletion of MrSmt3 did not affect fungal virulence. Furthermore, RNA-seq analysis identified 1,484 differentially expressed genes (DEGs) of the WT and ΔMrSmt3 during conidiation, including 971 down-regulated DEGs and 513 up-regulated DEGs, and further analysis showed that the expression level of several classical conidiation-associated genes, such as transcription factor AbaA (MAA_00694), transcription factor bZIP (MAA_00888) and transcription factor Ste12 (MAA_10450), was down-regulated in the ΔMrSmt3 mutant. Specifically, the major downregulated DEGs were mainly associated with a variety of metabolic regulatory processes including metabolic process, organic substance metabolic process and primary metabolic process. Collectively, our findings highlight the important roles of the SUMO gene MrSmt3 in modulating SUMOylation, conidiation and stress response in M. robertsii.


Subject(s)
Fungal Proteins , Gene Expression Regulation, Fungal , Metarhizium , Spores, Fungal , Sumoylation , Metarhizium/genetics , Metarhizium/metabolism , Metarhizium/physiology , Spores, Fungal/metabolism , Spores, Fungal/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Stress, Physiological/genetics , Oxidative Stress , Virulence/genetics , Animals
7.
Trends Biochem Sci ; 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39343712

ABSTRACT

Ubiquitin (Ub) and ubiquitin-like (UbL) modifications are critical regulators of multiple cellular processes in eukaryotes. These modifications are dynamically controlled by proteases that balance conjugation and deconjugation. In eukaryotes, these proteases include deubiquitinases (DUBs), mostly belonging to the CA-clan of cysteine proteases, and ubiquitin-like proteases (ULPs), belonging to the CE-clan proteases. Intriguingly, infectious bacteria exploit the CE-clan protease fold to generate deubiquitinating activities to disarm the immune system and degradation defenses of the host during infection. In this review, we explore the substrate preferences encoded within the CE-clan proteases and the structural determinants in the protease fold behind its selectivity, in particular those from infectious bacteria and viruses. Understanding this protease family provides crucial insights into the molecular mechanisms underlying infection and transmission of pathogenic organisms.

8.
Iran J Basic Med Sci ; 27(10): 1260-1267, 2024.
Article in English | MEDLINE | ID: mdl-39229582

ABSTRACT

Objectives: Expression of miR-188-5p changes upon experiencing cerebral I/R injury. SENP3 is a predicted target of miR-188-5p. The study aimed to examine the potential mechanism underlying the miR-188-5p mediated enhancement of SUMO2/3 conjugation via targeting SENP3 and alleviation against cerebral I/R injury. Materials and Methods: Focal cerebral I/R was established in Sprague-Dawley rats using the MCAO model. The expression of miR-188-5p was modulated through intracerebroventricular (ICV) administration of its mimics or inhibitors. The expression of miR-188-5p, SENP3, and SUMO2/3 was detected using RT-qPCR or western blot analysis. Dual luciferase reporter assays were conducted to demonstrate the targeting effect of miR-188-5p on SENP3 in N2a cells. HE staining and TUNEL staining were performed to evaluate neurocellular morphological changes and detect neurocellular apoptosis, respectively. The extent of neurological deficits was evaluated using mNSS. TTC staining was used to evaluate the infarct area. Results: In the cerebral ischemic penumbra, the expression of miR-188-5p declined and SENP3 levels increased following I/R. Dual luciferase reporter assays confirmed that miR-188-5p directly acted on SENP3 in N2a cells. As a self-protective mechanism, SUMO2/3 conjugation increased after reperfusion. After ICV administration of miR-188-5p inhibitor, the expression of miR-188-5p was down-regulated, the expression of SENP3 was up-regulated, the SUMO2/3 conjugation decreased, and cerebral I/R injury was exacerbated. However, ICV administration of small hairpin RNA targeting SENP3 partially reversed the effects of the miR-188-5p inhibitor. Conclusion: MiR-188-5p mitigated cerebral I/R injury by down-regulating SENP3 expression and consequently enhancing SUMO2/3 conjugation in rats.

9.
Nucleus ; 15(1): 2398450, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39287196

ABSTRACT

Sumoylation, a process in which SUMO (small ubiquitin like modifier) is conjugated to target proteins, emerges as a post-translational modification that mediates protein-protein interactions, protein complex assembly, and localization of target proteins. The coordinated actions of SUMO ligases, proteases, and SUMO-targeted ubiquitin ligases determine the net result of sumoylation. It is well established that sumoylation can somewhat promiscuously target proteins in groups as well as selectively target individual proteins. Through changing protein dynamics, sumoylation orchestrates multi-step processes in chromatin biology. Sumoylation influences various steps of mitosis, DNA replication, DNA damage repair, and pathways protecting chromosome integrity. This review highlights examples of SUMO-regulated nuclear processes to provide mechanistic views of sumoylation in DNA metabolism.


Subject(s)
DNA , Small Ubiquitin-Related Modifier Proteins , Sumoylation , Humans , DNA/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Animals , DNA Repair , DNA Replication , DNA Damage , Chromatin/metabolism
10.
Int J Biochem Cell Biol ; 176: 106668, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39321569

ABSTRACT

Systolic and diastolic functions are coordinated in the heart by myofilament proteins that influence force of contraction and calcium sensitivity. Fine control of these processes is afforded by a variety of post-translation modifications that occur on specific proteins at different times during each heartbeat. Cardiac myosin binding protein-C is a sarcomeric accessory protein whose function is to interact transiently with actin, tropomyosin and myosin. Previously many different types of post-translational modification have been shown to influence the action of myosin binding protein-C and we present the first report that the protein can be modified covalently by the small ubiquitin like modifier protein tag. Analysis by mass spectrometry suggests that there are multiple modification sites on myosin binding protein-C for this tag and single point mutations did not serve to abolish the covalent addition of the small ubiquitin like modifier protein. Functionally, our data from both model human embryonic kidney cells and transfected neonatal cardiac myocytes suggests that the modification reduces phosphorylation of the filament protein on serine 282. In cardiac myocytes, the hypo-phosphorylation coincided with a significantly slower relaxation response following isoprenaline induced contraction. We hypothesise that this novel modification of myosin binding protein-C represents a new level of control that acts to alter the relaxation kinetics of cardiac myocytes.

11.
Int Rev Immunol ; : 1-13, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39323222

ABSTRACT

This study aimed to explore the critical role of FUNDC1 on epithelial cells in model of asthma. Patients with asthma and normal healthy volunteers were obtained from our hospital. The serum of FUNDC1 mRNA expression was down-regulated in patients with asthma. Meanwhile, the serum of FUNDC1 mRNA expression was positive correlation with IgE and anti-HDM IgE protein. FUNDC1 expression in lung tissue of mice model was decreased in mice model of asthma. Sh-FUNDC1 enhanced asthma in mice model of asthma. FUNDC1 up-regulation reduced IL-4, IL-5, IL-10 and IL-13 activity levels in vitro model of asthma.FUNDC1 down-regulation promoted IL-4, IL-5, IL-10 and IL-13 activity levels in vitro model of asthma. FUNDC1 reduced ferroptosis of epithelial cells in model of asthma through the inhibition of mitochondrial damage. FUNDC1 induced FBXL2 and AR protein expression in model of asthma. FUNDC1 interlinked with FBXL2 is modified by SUMO1 at K136. FBXL2, ASN-205, GLN-204, ARG-235, and GLN-237 form hydrogen bonds with FUNDC1's ASP-15, ASP-16, GLU-25, and ARG-29, with lengths of 2.3, 3.1, 2.9, 2.3, and 2.9 Å, respectively. The induction of FBXL2 reduced the effects of Sh-FUNDC1 on asthma in mice model of asthma. The inhibition of AR reduced the effects of Sh-FUNDC1 on asthma in mice model of asthma Overall, FUNDC1 prevents ferroptosis of airway epithelial cells of asthma through FBXL2/AR/GPX4 signaling pathway of SUMO1 at K136. FUNDC1 might benefit the treatment of asthma or other pulmonary disease.


FUNDC1 prevents ferroptosis of airway epithelial cells of asthma through FBXL2/AR/GPX4 signaling pathway of SUMO1 at K136. FUNDC1 might benefit the treatment of asthma or other pulmonary disease.

12.
Biochem Biophys Rep ; 39: 101800, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39286522

ABSTRACT

Tau is a microtubule-associated protein that contributes to cytoskeletal stabilization. Aggregation of tau proteins is associated with neurodegenerative disorders such as Alzheimer's disease. Several types of posttranslational modifications that alter the physical properties of tau proteins have been identified. SUMOylation is a reversible modification of lysine residues by a small ubiquitin-like modifier (SUMO). In this study, we examined the enzymes that regulate the SUMOylation and deSUMOylation of tau in an alternatively spliced form, 0N4R-tau. Among SUMO E3 ligases, we found protein inhibitor of activated STAT (PIAS)xα and PIASxß increase the levels of SUMOylated tau. The deSUMOylation enzymes sentrin-specific protease (SENP)1 and SENP2 reduced the levels of SUMO-conjugated tau. SUMO1 modification increased the level of phosphorylated tau, which was suppressed in the presence of SENP1. Furthermore, we examined the effect of tripartite motif (TRIM)11, which was recently identified as an E3 ligase for SUMO2 modification of tau. We found that TRIM11 increased the modification of both 2N4R- and 0N4R-tau by SUMO1, which was attenuated by mutation of the target lysine residue to arginine. These findings suggest that the expression and activity of SUMOylation regulatory proteins modulate the physical properties of tau proteins and may contribute to the onset and/or progression of tau-associated neurodegenerative disorders.

13.
Biomedicines ; 12(8)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39200165

ABSTRACT

Orofacial clefts (OFCs) are the second most common birth defect worldwide. The etiology of OFCs involves complex interactions between genetics and environment. Advances in genomic technologies have identified gene variants associated with OFCs. This study aimed to investigate whether selected SNPs in the MYH9, MTHFR, MAFB, and SUMO1 genes influence the occurrence of non-syndromic OFCs in the Polish population. The study included 209 individuals with non-syndromic OFCs and 418 healthy controls. Saliva and umbilical cord blood samples were collected for DNA extraction. Four SNPs in the MYH9, MTHFR, MAFB, and SUMO1 genes were genotyped using real-time PCR-based TaqMan assays. Statistical analysis was performed using logistic regression to assess the association between SNPs and OFCs. A significant association was found between the rs7078 CC polymorphism and OFCs (OR = 3.22, CI 1.68-6.17, p < 0.001). No significant associations were identified for the rs1081131, rs13041247, and rs3769817 polymorphisms. The research indicates that the rs7078 polymorphism significantly influences the occurrence of orofacial cleft palate in the Polish population, whereas the rs3769817, rs1801131, and rs13041247 SNPs do not show such a correlation.

14.
Scand J Immunol ; : e13401, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39155774

ABSTRACT

This study aimed to explore the molecular mechanism of neuronal cell adhesion molecule (NrCAM) by regulating Th17 cell differentiation in the pathogenesis of Graves' disease (GD). Naïve CD4+ T cells were isolated from peripheral blood mononuclear cells of GD patients and healthy control (HC) subjects. During the differentiation of CD4+ T cells into Th17 cells, NrCAM level in GD group was improved. Interference with NrCAM in CD4+ T cells of GD patients decreased the percentage of Th17 cells. NrCAM overexpression in CD4+ T cells of HC subjects increased the percentage of Th17 cells and upregulated p-IκBα, p50, p65, c-Rel protein expressions, and NF-κB inhibitor BAY11-7082 partially reversed NrCAM effect. NrCAM overexpression promoted the degradation of IκBα, and overexpression of small ubiquitin-related modifier 1 (SUMO-1) inhibited IκBα degradation. NrCAM overexpression reduced IκBα binding to SUMO-1. During Th17 cell differentiation in HC group, NrCAM overexpression increased IL-21 levels and secretion, and IL-21 neutralizing antibody reversed this effect. IL-21 level was decreased after p65 interference in CD4+ T cells of HC subjects. p65 interacts with IL-21 promoter region. In conclusion, NrCAM binds to SUMO-1 and increases phosphorylation of IκBα, leading to activation of NF-κB pathway, which promotes Th17 cell differentiation.

15.
Biol Direct ; 19(1): 74, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39183358

ABSTRACT

BACKGROUND: Excavation of key molecules can help identify therapeutic targets and improve the prognosis of pancreatic cancer. This study evaluated the roles of SUMO3 in cell viability, glycolysis, gemcitabine (GEM) sensitivity, and the antitumor activity of butyric acid (BA) in pancreatic cancer. METHODS: The mRNA and protein levels of SUMO3 were detected by qRT-PCR, Western blot, and immunohistochemical assay. SUMO3 was silenced or overexpressed in pancreatic cancer cells with or without Wnt/ß-catenin pathway inhibitor, glycolysis inhibitor, GEM, or BA treatment. Cell viability was measured using the Cell Counting Kit-8 assay. Glycolysis was measured by determining the extracellular acidification rate, ATP level, and lactate content. Apoptosis was measured by flow cytometry, and TUNEL staining was used to examine in vitro and in vivo sensitivity to GEM chemotherapy. Luciferase reporter and chromatin immunoprecipitation assays were conducted to detect the binding of the SUMO3 promoter and NF-κB p65. RESULTS: SUMO3 was increased and associated with poor survival in pancreatic cancer. SUMO3 knockdown decreased cell viability and glycolysis in vitro and inhibited tumor growth in vivo. SUMO3 overexpression increased cell viability and glycolysis in vitro through the ß-catenin pathway. SUMO3 knockdown increased GEM sensitivity, whereas SUMO3 overexpression decreased GEM sensitivity and inhibited the antitumor activity of BA. BA promoted histone acetylation and p-IκBα expression to inhibit NF-κB p65-mediated SUMO3 transcription. CONCLUSION: SUMO3 acted as an active molecule in cell survival and growth by enhancing glycolysis in response to either GEM or BA. The mechanism was related to the constitutive IκBα/NF-κB/SUMO3/ß-catenin signaling pathway.


Subject(s)
Butyric Acid , Cell Survival , Deoxycytidine , Gemcitabine , Glycolysis , Pancreatic Neoplasms , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Humans , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Glycolysis/drug effects , Butyric Acid/pharmacology , Cell Survival/drug effects , Cell Line, Tumor , Animals , Mice , Mice, Nude , Antineoplastic Agents/pharmacology , Apoptosis/drug effects
16.
J Transl Med ; 22(1): 762, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143486

ABSTRACT

BACKGROUND: Personalized disease models are crucial for evaluating how diseased cells respond to treatments, especially in case of innovative biological therapeutics. Extracellular vesicles (EVs), nanosized vesicles released by cells for intercellular communication, have gained therapeutic interest due to their ability to reprogram target cells. We here utilized urinary podocytes obtained from children affected by steroid-resistant nephrotic syndrome with characterized genetic mutations as a model to test the therapeutic potential of EVs derived from kidney progenitor cells (nKPCs). METHODS: EVs were isolated from nKPCs derived from the urine of a preterm neonate. Three lines of urinary podocytes obtained from nephrotic patients' urine and a line of Alport syndrome patient podocytes were characterized and used to assess albumin permeability in response to nKPC-EVs or various drugs. RNA sequencing was conducted to identify commonly modulated pathways after nKPC-EV treatment. siRNA transfection was used to demonstrate the involvement of SUMO1 and SENP2 in the modulation of permeability. RESULTS: Treatment with the nKPC-EVs significantly reduced permeability across all the steroid-resistant patients-derived and Alport syndrome-derived podocytes. At variance, podocytes appeared unresponsive to standard pharmacological treatments, with the exception of one line, in alignment with the patient's clinical response at 48 months. By RNA sequencing, only two genes were commonly upregulated in nKPC-EV-treated genetically altered podocytes: small ubiquitin-related modifier 1 (SUMO1) and Sentrin-specific protease 2 (SENP2). SUMO1 and SENP2 downregulation increased podocyte permeability confirming the role of the SUMOylation pathway. CONCLUSIONS: nKPCs emerge as a promising non-invasive source of EVs with potential therapeutic effects on podocytes with genetic dysfunction, through modulation of SUMOylation, an important pathway for the stability of podocyte slit diaphragm proteins. Our findings also suggest the feasibility of developing a non-invasive in vitro model for screening regenerative compounds on patient-derived podocytes.


Subject(s)
Extracellular Vesicles , Nephrotic Syndrome , Podocytes , Podocytes/metabolism , Podocytes/drug effects , Podocytes/pathology , Humans , Nephrotic Syndrome/pathology , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/metabolism , Extracellular Vesicles/metabolism , Drug Evaluation, Preclinical , Models, Biological , Stem Cells/metabolism , Steroids/pharmacology , Kidney/pathology , Kidney/metabolism , Drug Resistance , Infant, Newborn , Male
17.
Genes Dev ; 38(13-14): 614-630, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39038850

ABSTRACT

The alternative lengthening of telomeres (ALT) pathway maintains telomere length in a significant fraction of cancers that are associated with poor clinical outcomes. A better understanding of ALT mechanisms is therefore necessary for developing new treatment strategies for ALT cancers. SUMO modification of telomere proteins contributes to the formation of ALT telomere-associated PML bodies (APBs), in which telomeres are clustered and DNA repair proteins are enriched to promote homology-directed telomere DNA synthesis in ALT. However, it is still unknown whether-and if so, how-SUMO supports ALT beyond APB formation. Here, we show that SUMO condensates that contain DNA repair proteins enable telomere maintenance in the absence of APBs. In PML knockout ALT cell lines that lack APBs, we found that SUMOylation is required for manifesting ALT features independent of PML and APBs. Chemically induced telomere targeting of SUMO produces condensate formation and ALT features in PML-null cells. This effect requires both SUMOylation and interactions between SUMO and SUMO interaction motifs (SIMs). Mechanistically, SUMO-induced effects are associated with the accumulation of DNA repair proteins, including Rad52, Rad51AP1, RPA, and BLM, at telomeres. Furthermore, Rad52 can undergo phase separation, enrich SUMO at telomeres, and promote telomere DNA synthesis in collaboration with the BLM helicase in a SUMO-dependent manner. Collectively, our findings suggest that SUMO condensate formation promotes collaboration among DNA repair factors to support ALT telomere maintenance without PML. Given the promising effects of SUMOylation inhibitors in cancer treatment, our findings suggest their potential use in perturbing telomere maintenance in ALT cancer cells.


Subject(s)
DNA Repair , Promyelocytic Leukemia Protein , Sumoylation , Telomere Homeostasis , Telomere , Humans , Promyelocytic Leukemia Protein/metabolism , Promyelocytic Leukemia Protein/genetics , Telomere/metabolism , Cell Line, Tumor , SUMO-1 Protein/metabolism , SUMO-1 Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Cell Line , Small Ubiquitin-Related Modifier Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics
18.
Adv Exp Med Biol ; 1459: 3-29, 2024.
Article in English | MEDLINE | ID: mdl-39017837

ABSTRACT

MYB is a master regulator and pioneer factor highly expressed in hematopoietic progenitor cells (HPCs) where it contributes to the reprogramming processes operating during hematopoietic development. MYB plays a complex role being involved in several lineages of the hematopoietic system. At the molecular level, the MYB gene is subject to intricate regulation at many levels through several enhancer and promoter elements, through transcriptional elongation control, as well as post-transcriptional regulation. The protein is modulated by post-translational modifications (PTMs) such as SUMOylation restricting the expression of its downstream targets. Together with a range of interaction partners, cooperating transcription factors (TFs) and epigenetic regulators, MYB orchestrates a fine-tuned symphony of genes expressed during various stages of haematopoiesis. At the same time, the complex MYB system is vulnerable, being a target for unbalanced control and cancer development.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells , Proto-Oncogene Proteins c-myb , Humans , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Proto-Oncogene Proteins c-myb/metabolism , Proto-Oncogene Proteins c-myb/genetics , Animals , Protein Processing, Post-Translational , Epigenesis, Genetic , Gene Expression Regulation
19.
Biochem Pharmacol ; 227: 116425, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004233

ABSTRACT

Hemorrhagic shock (HS), a leading cause of preventable death, is characterized by severe blood loss and inadequate tissue perfusion. Reoxygenation of ischemic tissues exacerbates organ damage through ischemia-reperfusion injury. SUMOylation has been shown to protect neurons after stroke and is upregulated in response to cellular stress. However, the role of SUMOylation in organ protection after HS is unknown. This study aimed to investigate SUMOylation-mediated organ protection following HS. Male Wistar rats were subjected to HS (blood pressure of 40 ± 2 mmHg, for 90 min) followed by reperfusion. Blood, kidney, and liver samples were collected at various time points after reperfusion to assess organ damage and investigate the profile of SUMO1 and SUMO2/3 conjugation. In addition, human kidney cells (HK-2), treated with the SUMOylation inhibitor TAK-981 or overexpressing SUMO proteins, were subjected to oxygen and glucose deprivation to investigate the role of SUMOylation in hypoxia/reoxygenation injury. The animals presented progressive multiorgan dysfunction, except for the renal system, which showed improvement over time. Compared to the liver, the kidneys displayed distinct patterns in terms of oxidative stress, apoptosis activation, and tissue damage. The global level of SUMO2/3 in renal tissue was also distinct, suggesting a differential role. Pharmacological inhibition of SUMOylation reduced cell viability after hypoxia-reoxygenation damage, while overexpression of SUMO1 or SUMO2 protected the cells. These findings suggest that SUMOylation might play a critical role in cellular protection during ischemia-reperfusion injury in the kidneys, a role not observed in the liver. This difference potentially explains the renal resilience observed in HS animals when compared to other systems.


Subject(s)
Rats, Wistar , Shock, Hemorrhagic , Sumoylation , Animals , Male , Shock, Hemorrhagic/metabolism , Sumoylation/drug effects , Sumoylation/physiology , Rats , Humans , Kidney/metabolism , Kidney/pathology , Kidney/drug effects , Reperfusion Injury/metabolism , Cell Line
20.
Cell Mol Life Sci ; 81(1): 283, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963422

ABSTRACT

Protein SUMOylation is a prevalent stress-response posttranslational modification crucial for maintaining cellular homeostasis. Herein, we report that protein SUMOylation modulates cellular signaling mediated by cAMP, an ancient and universal stress-response second messenger. We identify K561 as a primary SUMOylation site in exchange protein directly activated by cAMP (EPAC1) via site-specific mapping of SUMOylation using mass spectrometry. Sequence and site-directed mutagenesis analyses reveal that a functional SUMO-interacting motif in EPAC1 is required for the binding of SUMO-conjugating enzyme UBC9, formation of EPAC1 nuclear condensate, and EPAC1 cellular SUMOylation. Heat shock-induced SUMO modification of EPAC1 promotes Rap1/2 activation in a cAMP-independent manner. Structural modeling and molecular dynamics simulation studies demonstrate that SUMO substituent on K561 of EPAC1 promotes Rap1 interaction by increasing the buried surface area between the SUMOylated receptor and its effector. Our studies identify a functional SUMOylation site in EPAC1 and unveil a novel mechanism in which SUMOylation of EPAC1 leads to its autonomous activation. The findings of SUMOylation-mediated activation of EPAC1 not only provide new insights into our understanding of cellular regulation of EPAC1 but also will open up a new field of experimentation concerning the cross-talk between cAMP/EPAC1 signaling and protein SUMOylation, two major cellular stress response pathways, during cellular homeostasis.


Subject(s)
Cyclic AMP , Guanine Nucleotide Exchange Factors , Sumoylation , Ubiquitin-Conjugating Enzymes , rap1 GTP-Binding Proteins , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/chemistry , Humans , Cyclic AMP/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , rap1 GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/genetics , HEK293 Cells , Molecular Dynamics Simulation , Shelterin Complex/metabolism , Signal Transduction , Telomere-Binding Proteins/metabolism , rap GTP-Binding Proteins/metabolism , rap GTP-Binding Proteins/genetics , Heat-Shock Response , Amino Acid Sequence , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL