Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mol Hum Reprod ; 30(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38870534

ABSTRACT

Acephalic spermatozoa syndrome (ASS) is a severe teratospermia with decaudated, decapitated, and malformed sperm, resulting in male infertility. Nuclear envelope protein SUN5 localizes to the junction between the sperm head and tail. Mutations in the SUN5 gene have been identified most frequently (33-47%) in ASS cases, and its molecular mechanism of action is yet to be explored. In the present study, we generated Sun5 knockout mice, which presented the phenotype of ASS. Nuclear membrane protein LaminB1 and cytoskeletal GTPases Septin12 and Septin2 were identified as potential partners for interacting with SUN5 by immunoprecipitation-mass spectrometry in mouse testis. Further studies demonstrated that SUN5 connected the nucleus by interacting with LaminB1 and connected the proximal centriole by interacting with Septin12. The binding between SUN5 and Septin12 promoted their aggregation together in the sperm neck. The disruption of the LaminB1/SUN5/Septin12 complex by Sun5 deficiency caused separation of the Septin12-proximal centriole from the nucleus, leading to the breakage of the head-to-tail junction. Collectively, these data provide new insights into the pathogenesis of ASS caused by SUN5 deficiency.


Subject(s)
Membrane Proteins , Mice, Knockout , Nuclear Envelope , Septins , Sperm Head , Sperm Tail , Animals , Humans , Male , Mice , Infertility, Male/metabolism , Infertility, Male/genetics , Lamin Type B/metabolism , Lamin Type B/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Nuclear Envelope/metabolism , Septins/metabolism , Septins/genetics , Sperm Head/metabolism , Sperm Head/pathology , Sperm Tail/metabolism , Spermatozoa/metabolism , Teratozoospermia/metabolism , Teratozoospermia/genetics
2.
Front Cell Dev Biol ; 10: 850052, 2022.
Article in English | MEDLINE | ID: mdl-35547809

ABSTRACT

The SEPTIN12 gene has been associated with male infertility. Male Septin12 +/- chimera mice were infertile, supporting the prevailing view that SEPTIN12 haploinsufficiency causes male infertility. In this study, we identified a heterozygous mutation on SEPTIN12, c.72C>A (p.Cys24Ter) in the male partner of a patient couple, who had a previous fertilization failure (FF) after intracytoplasmic sperm injection (ICSI) and became pregnant after ICSI together with artificial oocyte activation (AOA). To investigate the role of SEPTIN12 in FF and oocyte activation, we constructed Septin12 knockout mice. Surprisingly, Septin12 -/- male mice, but not Septin12 +/- male mice, are infertile, and have reduced sperm counts and abnormal sperm morphology. Importantly, AOA treatment enhances the 2-cell embryo rate of ICSI embryos injected with Septin12 -/- sperm, indicating that FF caused by male Septin12 deficiency is overcome by AOA. Mechanistically, loss of PLCζ around the acrosome might be the reason for FF of Septin12 -/- sperm. Taken together, our data indicated that homozygous knockout of Septin12, but not Septin12 haploinsufficiency, leads to male infertility and FF.

3.
Mol Biol Rep ; 48(5): 4073-4081, 2021 May.
Article in English | MEDLINE | ID: mdl-34057684

ABSTRACT

Teratozoospermia is a condition related to poor morphologically normal sperm count below the lower reference limit, which could hinder natural conception. Single nucleotide polymorphisms (SNPs) in the genes involved in sperm production and testicular function are proved to be risk factors, resulting in decreased sperm parameters and defects in sperm morphology. c.474 G > A polymorphism in the SEPTIN12 gene which is one of the testis-specific genes creates a novel splice variant and the resulting truncated protein was previously found to be more prevalent in infertile men. We aimed to investigate the association of SEPTIN12 c.474 G > A polymorphism with male infertility in teratozoospermia patients. Forty-eight teratozoospermic patients, diagnosed according to Kruger's criteria and 164 fertile controls who fathered at least 1 child within 3 years without assisted reproductive technologies were included into our prospective randomized controlled study. PCR-RFLP method was used for genotyping. Although no statistical difference was found between teratozoospermic patients and fertile controls in terms of genotype distributions, significance was identified between the genotypes of all and non-smoking teratozoopermic patients in terms of neck defects. SEPTIN12 c.474 G > A polymorphism was shown to be associated with sperm neck defects in teratozoospermic patients using the dominant statistical model. Smoking was identified as a risk factor for the sperm morphology defects in teratozoospermic A allele carriers.


Subject(s)
Infertility, Male/genetics , Septins/genetics , Teratozoospermia/genetics , Adult , Humans , Male , Polymorphism, Single Nucleotide/genetics , Prospective Studies , Random Allocation , Risk Factors , Septins/metabolism , Spermatozoa/metabolism , Teratozoospermia/metabolism , Testis/metabolism , Turkey
4.
Biochimie ; 158: 1-9, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30513371

ABSTRACT

SEPTIN12 (SEPT12) is a testis-enriched gene that is downregulated in the testis of infertile men with severe spermatogenic defects. While SEPT12 is involved in spermatogenic failure and sperm motility disorder, SEPT12 transcriptional regulation is still unknown. Here we report the promoter region of SEPT12 as a 245 bp segment upstream of the transcription start site. One androgen receptor (AR) and two estrogen receptor α (ERα) binding sites in this region were initially identified by bioinformatics prediction and confirmed by chromatin immunoprecipitation assay. Truncated ERα or AR binding sites decreased the promoter activity, which indicated that the ERα and AR are essential for the SEPT12 promoter. On the other hand, the promoter activity was enhanced by the treatment with 17ß-estradiol (E2) and 5α-dihydrotestosterone (5α-DHT). Thus, one androgen and two estrogen hormone responsive elements located in the promoter of SEPT12 gene can regulate SEPT12 expression. Two single nucleotide polymorphisms (SNPs), rs759992 T > C and rs3827527 C > T, were observed in the SEPT12 gene promoter region and were able to decrease the promoter activity. In conclusion, the current work identified the promoter of the human SEPT12 gene and provided key evidence about its transcriptional regulation via E2 and 5α-DHT. Since SEPT12 has an important role in spermatogenesis, SEPT12 expression analysis can be developed as a potential tool for the assessment of environmental or food pollution by hormones or for the evaluation of the risk of endocrine-disrupting chemicals (EDCs) in general.


Subject(s)
Estrogen Receptor alpha/metabolism , Infertility, Male , Polymorphism, Single Nucleotide , Receptors, Androgen/metabolism , Response Elements , Septins , Testis/metabolism , Adult , Estrogen Receptor alpha/genetics , Humans , Infertility, Male/genetics , Infertility, Male/metabolism , Infertility, Male/pathology , Male , Receptors, Androgen/genetics , Septins/biosynthesis , Septins/genetics , Sperm Motility , Spermatogenesis/genetics , Testis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL