Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 265: 115530, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37774543

ABSTRACT

Toxic elements, such as Cd and Pb are of primary concern for soil quality and food security owing to their high toxicity and potential for bioaccumulation. Knowledge of the spatial variability of Cd and Pb in soil-rice systems across the landscape and identification of their driving factors are prerequisites for developing appropriate management strategies to remediate or regulate these hazardous contaminants. Considering the role of rice (Oryza sativa) as a dietary staple in China, this study aimed to examine the distribution patterns and drivers of Cd and Pb in tropical soil-rice systems across Hainan Island. To achieve this goal, 229 pairs of representative paddy soil and rice samples combined with a set of environmental covariates at the island scale were systematically analyzed. Arithmetic mean values (AMs) of Cd and Pb in rice were 0.080 and 0.199 mg kg-1, and exceeded the standard limits by 27.1% and 22.7%, respectively. We found that the AMs of Cd and Pb concentrations in paddy soil were 0.294 and 43.0 mg kg-1. Additionally, Cd in 29.26% of soil samples and Pb in 11.35% of soil samples exceeded the risk screening value for toxic elements. The enrichment factor generally showed that soil Cd and Pb on Hainan Island were both moderately enriched. Results obtained from both Spearman's correlation and stepwise regression analyses suggest that the concentrations of soil Cd and Pb are significantly influenced by the soil Na and Fe concentrations. Specifically, an increment of 1 g kg-1 in soil Na caused a rise of soil Cd and Pb by 57.1 mg kg-1 and 34.4 mg kg-1, respectively, while an increase of 1 g kg-1 in soil Fe resulted in a rise by 25.0 mg kg-1 and 14.5 mg kg-1. Similarly for rice grains, an increment of 1 g kg-1 in soil Ca resulted in a rise of rice Pb by 30.8 mg kg-1, whereas an increase of 1 g kg-1 in soil Mg led to a decrease in rice Pb by 14.8 mg kg-1. However, no significant correlation between soil Se and rice Cd concentrations was found. Furthermore, the result of geographically weighted regression revealed that the impacts of soil Na, Ca, Fe, and Mg on rice Cd were more significant in the western region, whereas the effects of soil Na and Fe on rice Pb were stronger in the northeastern region. This study provides new insights for the identification of factors influencing the distribution and accumulation of Cd and Pb in tropical island agroecosystems.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , Soil , Lead/analysis , Soil Pollutants/analysis
2.
Sci Total Environ ; 881: 163392, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37044334

ABSTRACT

The accumulation of Cd in soil-rice systems at a large region is often extremely complicated due to environmental heterogeneity and the interactions of multiple influencing factors. However, the interactive effects and quantification of the contributions of influencing factors on Cd accumulation in large regions remain unclear. In this study, conditional inference trees and random forest analysis were used to identify the interactions of various factors (soil properties, topography and demographic-economic), and quantify their contributions to Cd accumulation in soil-rice systems of Sichuan-Chongqing region, China. The results showed that Cd content in the soil was the most significant influencing factor on Cd accumulation in soil-rice systems, especially bioavailable Cd in soil contributed to 35.73 % and 54.78 % for soil total Cd (Cdsoil) and brown rice Cd (Cdrice), respectively. Population density (PD) and elevation contributed 31.16 % and 27.40 % to Cdsoil content, respectively, and their interaction promoted the increase in Cdsoil content. Moreover, PD played a leading role in Cdsoil content when the elevation exceeded 324 m. The relative importances of slope and elevation for Cdrice content were 16.81 % and 8.49 %, respectively, and their interaction facilitated the increment of Cdrice content. As soil pH, gross domestic product (GDP) and slope decreased, the interaction of soil pH with GDP led to the increase of bioavailability factor (BAF), and that with slope enhanced the bioaccumulation factor (BCF). In addition, soil pH, PD and elevation were of considerable importance for the migration and transformation of Cd, with contributions of 22.11 %, 12.90 % and 12.52 % to BAF, and 5.05 %, 5.62 % and 5.50 % to BCF, respectively. This study is hopeful to provide a scientific insight into the prevention and control of Cd contamination in soil-rice systems at a large region.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , Soil/chemistry , Oryza/chemistry , Soil Pollutants/analysis , China
3.
Environ Sci Pollut Res Int ; 29(11): 16193-16202, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34643868

ABSTRACT

Many studies have reported high arsenic concentrations in the groundwater and soil of the Jianghan Plain (JHP), an important rice production base in China. However, no comprehensive study on the occurrence and risk of As in groundwater-soil-rice systems in this region has been conducted. In this study, As concentrations in groundwater, soil, rice straw, and rice grain samples were analyzed. Arsenic concentrations were found to range from BDL to 42.88 µg/L (median 0.34 µg/L) in phreatic water, BDL to 41.77 µg/L (median 8.64 µg/L) in soil pore water, 10.20 to 21.90 mg/kg (mean 16.52 mg/kg) in soil, 0.204 to 2.860 mg/kg (mean 0.847 mg/kg) in rice straw, and 0.131 to 0.951 mg/kg (mean 0.449 mg/kg) in rice grain. Arsenic uptake by rice from soils was evaluated according to bioavailable As defined by chemical extraction and diffusive gradients in thin films. The results indicated that owing to the low content of highly mobile As fractions, the less mobile As fraction (mainly bound with amorphous Fe/Al (hydr)oxides) also contributed to bioavailable As, suggesting that amorphous Fe/Al bound As should be considered in analyzing bioavailable As. In terms of the geoaccumulation index and the Chinese paddy soil standard (GB15618-2018) limit (25 mg/kg), As pollution in water and soils in the study area is at a low level and can be considered relatively safe. However, the target hazard quotients and cancer risk assessment indicated that As pollution is at a dangerous level with potential human health risk. According to the bioconcentration factor, the bioavailability of soil is higher in JHP compared with other rice-growing areas owing to the unique hydrogeological conditions and irrigation using groundwater with high As content. Rice planting areas in JHP should be set as far away from large rivers as possible, and groundwater with high As concentrations must be pre-treated prior to irrigation.


Subject(s)
Arsenic , Groundwater , Oryza , Soil Pollutants , Water Pollutants, Chemical , Arsenic/analysis , Biological Availability , China , Humans , Risk Assessment , Soil , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL