Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Am J Obstet Gynecol ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38462144

ABSTRACT

BACKGROUND: Noninvasive biomarkers that predict surgical treatment response would inform personalized treatments and provide insight into potential biologic pathways underlying endometriosis-associated pain and symptom progression. OBJECTIVE: To use plasma proteins in relation to the persistence of pelvic pain following laparoscopic surgery in predominantly adolescents and young adults with endometriosis using a multiplex aptamer-based proteomics biomarker discovery platform. STUDY DESIGN: We conducted a prospective analysis including 142 participants with laparoscopically-confirmed endometriosis from the Women's Health Study: From Adolescence to Adulthood observational longitudinal cohort with study enrollment from 2012-2018. Biologic samples and patient data were collected with modified World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonization Project tools. In blood collected before laparoscopic ablation or excision of endometriosis, we simultaneously measured 1305 plasma protein levels, including markers for immunity, angiogenesis, and inflammation, using SomaScan. Worsening or persistent postsurgical pelvic pain was defined as having newly developed, persistent (ie, stable), or worsening severity, frequency, or persistent life interference of dysmenorrhea or acyclic pelvic pain at 1-year postsurgery compared with presurgery. We calculated odds ratios and 95% confidence intervals using logistic regression adjusted for age, body mass index, fasting status, and hormone use at blood draw. We applied Ingenuity Pathway Analysis and STRING analysis to identify pathophysiologic pathways and protein interactions. RESULTS: The median age at blood draw was 17 years (interquartile range, 15-19 years), and most participants were White (90%). All had superficial peritoneal lesions only and were treated by excision or ablation. One-year postsurgery, pelvic pain worsened or persisted for 76 (54%) of these participants with endometriosis, whereas pelvic pain improved for 66 (46%). We identified 83 proteins associated with worsening or persistent pelvic pain 1-year postsurgery (nominal P<.05). Compared with those with improved pelvic pain 1-year postsurgery, those with worsening or persistent pelvic pain had higher plasma levels of CD63 antigen (odds ratio, 2.98 [95% confidence interval, 1.44-6.19]) and CD47 (odds ratio, 2.68 [95% confidence interval, 1.28-5.61]), but lower levels of Sonic Hedgehog protein (odds ratio, 0.55 [95% confidence interval, 0.36-0.84]) in presurgical blood. Pathways related to cell migration were up-regulated, and pathways related to angiogenesis were down-regulated in those with worsening or persistent postsurgical pelvic pain compared with those with improved pain. When we examined the change in protein levels from presurgery to postsurgery and its subsequent risk of worsening or persistent postsurgical pain at 1-year follow-up, we observed increasing levels of Sonic Hedgehog protein from presurgery to postsurgery was associated with a 4-fold increase in the risk of postsurgical pain (odds ratio [quartile 4 vs 1], 3.86 [1.04-14.33]). CONCLUSION: Using an aptamer-based proteomics platform, we identified plasma proteins and pathways associated with worsening or persistent pelvic pain postsurgical treatment of endometriosis among adolescents and young adults that may aid in risk stratification of individuals with endometriosis.

2.
Eur Radiol ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38012454

ABSTRACT

OBJECTIVES: Sonic hedgehog hepatocellular adenoma (shHCA) is a new hepatocellular adenoma (HCA) subgroup characterized by high risk of hemorrhage. ShHCA account for below 10% of all HCA cases and are often associated with female gender, obesity, and non-alcoholic steatohepatitis. No specific MRI characteristics have been described to date. The objective of this study was to assess the value of using MRI to identify shHCA, and correlate MRI findings with histology. METHODS: We retrospectively collected MRI scans of 29 patients with shHCA from our center and from different liver referral centers to include 35 lesions. Diagnosis of shHCA was assessed by immunohistochemical overexpression of argininosuccinate synthase 1 or prostaglandin D2 synthase, then confirmed by molecular analysis of sonic hedgehog pathway activation and/or by proteomic analysis. RESULTS: In 46% (n = 16/35) of shHCA cases, we detected intralesional fluid-filled cavities defined on MR images as fluid-like foci markedly hyperintense on T2-weighted sequences, and hypointense on T1-weighted sequences, with or without delayed enhancement. Pathologically, these cavities were observed in 54% of cases as vacuoles filled with blood at different stages of degradation. Hemorrhage and/or necrosis were detected among 71% of cases by MRI analysis (n = 25/35) versus 82% pathologically. Seventeen percent of shHCA cases (n = 6/35) were completely homogeneous via MRI and pathological analysis. No MRI criteria was found in favor of focal nodular hyperplasia, HNF1A-mutated HCA, or typical inflammatory HCA. CONCLUSION: We reveal the presence of intralesional fluid-filled cavities among 46% of our shHCA cases that represent a new MRI finding possibly helpful for shHCA diagnosis. CLINICAL RELEVANCE STATEMENT: This multicenter study is the first clinical study about the radiological aspect of this new hepatocellular adenoma subgroup. This highlights a strong correlation between MRI and histological analysis, with a specific pattern emerging for diagnosis. KEY POINTS: • Sonic hedgehog hepatocellular adenoma is a new hepatocellular adenoma subgroup associated with high risk of hemorrhage, but imaging features of this subgroup remain unknown. • Analysis of MR images and correlation with pathology revealed intralesional fluid-filled cavities and necrotic-hemorrhagic changes. • Intralesional fluid-filled cavities have not yet been described in other adenoma subtypes and represent a new MRI finding for sonic hedgehog hepatocellular adenoma.

3.
Life (Basel) ; 12(10)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36294994

ABSTRACT

Breast cancers (BC) are usually classified into four molecular subtypes according to the expression of estrogen (ER), progesterone (PR), and human epidermal growth factor 2 (HER2) receptors and proliferation marker Ki-67. Despite available anti-hormonal therapies and due to the inherent propensity of some subtypes to develop metastasis, there is a permanent need to discover new prognostic and predictive biomarkers, as well as therapeutic targets for BC. In this study, we used immunohistochemical staining to determine the expression of androgen receptor (AR) and sonic hedgehog protein (SHH), the main ligand of the Hedgehog-GLI (HH-GLI) signaling pathway, in 185 archival primary BC tissue samples and correlated it with clinicopathological characteristics, molecular subtypes, receptors statuses, and survival in a cohort of Croatian BC patients. Results showed that higher SHH and AR expressions were associated with positive receptor status, but increased SHH expression had a negative impact on survival in receptor-negative BCs. On the contrary, higher AR expression was mostly protective. However, multivariate analysis showed that only higher AR expression could be considered as an independent prognostic biomarker for poorer overall survival in triple-negative breast cancer patients (TNBC) (HR 10.9, 95% CI 1.43-83.67; p = 0.021), what could be Croatian population-related. SHH could be a potential target for treating TNBCs and HER2-enriched BCs, in cases where HH-GLI signaling is canonical (SHH-dependent).

4.
J Cancer ; 13(3): 987-997, 2022.
Article in English | MEDLINE | ID: mdl-35154464

ABSTRACT

The current study aimed to investigate the function of the Hedgehog pathway and its association with epithelial-mesenchymal transition (EMT) in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) resistance in non-small cell lung cancer (NSCLC). Lung tumor tissue specimens from EGFR TKI-resistant patients, including those with brain metastases, had hyperactive Hedgehog signaling compared with those from TKI-sensitive patients. SHH stimulation promoted GLI1 activation as well as cell motility in parental PC9 cells while suppressing gefitinib-induced apoptosis in gefitinib-resistant cells. SHH also promoted EMT in parental PC9 cells via E-cadherin suppression and N-cadherin and vimentin upregulation. The knockdown of GLI1 exhibited the opposite effects. Besides, SHH induced, whereas GLI1 knockdown reversed gefitinib resistance in xenograft tumors. The Hedgehog pathway inhibitor GDC-0449 synergized with gefitinib to increase xenograft tumor sensitivity to chemotherapy and extend survival in tumor-bearing animals. These results suggest the Hedgehog pathway mediates EGFR TKI resistance and induces EMT in NSCLC, representing a potential therapeutic target to defeat TKI resistance.

5.
Natal; s.n; 25 jan. 2022. 114 p. tab, ilus, graf.
Thesis in Portuguese | LILACS, BBO - Dentistry | ID: biblio-1532971

ABSTRACT

O desenvolvimento do dente depende de uma série de interações sinalizadoras recíprocas entre o epitélio oral (EO) e o ectomesênquima derivado da crista neural, a via WNT com o TGF-ß e BMP4 tem sido implicada na tumorigênese. A via de sinalização tipo Wingless (Wnt) / ß-catenina é essencial para a ativação precoce da odontogênese e no desenvolvimento de tumores odontogênicos. O TGF-ß e as BMPs tem sido associadas aos processos de dentinogênese reacionária e reparadora. A sinalização de Shh pode regular a proliferação celular no ectomesênquima dentário, controlando assim a morfogênese dentária. O objetivo da pesquisa foi investigar a atuação de algumas proteínas das vias na odontogênese e na formação de odontomas e tumores odontogênicos mistos benignos, para isto, foi desenvolvido um estudo seccional restrospectivo e imuno-histoquímico contendo 23 odontomas compostos, 21 odontomas complexos, 17 germes dentários, 05 fibro-odontomas ameloblásticos e 01 fibroma ameloblástico. Os resultados encontrados demonstraram maiores imunoexpressões da via WNT/ß-catenina no epitélio dos germes dentários (p<0,001) e no fibroma ameloblástico, enquanto que, esteve no ectomesênquima dos odontomas (p<0,001) e fibro-odontomas ameloblásticos. A via WNT/ßcatenina correlacionou-se moderadamente e significativamente com a CK14 no epitélio (p = 0,007) dos odontomas. A BMP4 foi imunoexpressa, especialmente, no ectomesênquima dos odontomas complexos (mediana = 33,7; p<0,001). A via Shh foi mais imunoexpressa no epitélio dos germes dentários (p<0,001) e no ectomesênquima dos odontomas complexos (p=0,029). De forma similar, o TGFß apresentou maior imunoexpressão no epitélio dos germes dentários (p<0,001) e no ectomesênquima dos odontomas complexos (p = 0,002). O dente em desenvolvimento exibiu maiores concentrações para estas proteínas no epitélio odontogênico nas fases de botão e capuz e a expressão diferencial ocorreu, principalmente, no ectomesênquima dos tumores, o que indica que esse componente é de fato mais proliferativo (AU).


Tooth development depends on a series of reciprocal signaling interactions between oral epithelium (EO) and neural crest-derived ectomesenchyme, the WNT pathway with TGF-ß and BMP4 has been implicated in tumorigenesis. The Wingless (Wnt)/ß-catenin signaling pathway is essential for the early activation of odontogenesis and the development of odontogenic tumors. TGF-ß and BMPs have been associated with reactionary and reparative dentinogenesis processes. Shh signaling can regulate cell proliferation in dental ectomesenchyme, thus controlling dental morphogenesis. The objective of the research was to investigate the role of some proteins in the pathways in odontogenesis and in the formation of odontomas and benign mixed odontogenic tumors. tooth germs, 05 ameloblastic fibro-odontomas and 01 ameloblastic fibroma. The results found showed higher immunoexpressions of the WNT/ß-catenin pathway in the epithelium of tooth germs (p<0.001) and in ameloblastic fibroma, while it was in the ectomesenchyme of odontomas (p<0.001) and ameloblastic fibroodontomas. The WNT/ß-catenin pathway correlated moderately and significantly with CK14 in the epithelium (p = 0.007) of odontomas. BMP4 was immunoexpressed, especially in the ectomesenchyme of complex odontomas (median = 33.7; p<0.001). The Shh pathway was more immunoexpressed in the epithelium of tooth germs (p<0.001) and in the ectomesenchyme of complex odontomas (p=0.029). Similarly, TGF-ß showed higher immunoexpression in the epithelium of tooth germs (p<0.001) and in the ectomesenchyme of complex odontomas (p = 0.002). The developing tooth exhibited higher concentrations of these proteins in the odontogenic epithelium in the bud and cap phases and the differential expression occurred mainly in the ectomesenchyme of the tumors, which indicates that this component is in fact more proliferative (AU).


Subject(s)
Humans , Male , Female , Odontoma/pathology , Transforming Growth Factor beta , Hedgehog Proteins , Wnt Signaling Pathway , Odontogenesis , Immunohistochemistry , Odontogenic Tumors/pathology , Cross-Sectional Studies/methods , Statistics, Nonparametric , Dentinogenesis
6.
Acta Crystallogr D Struct Biol ; 75(Pt 11): 969-979, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31692471

ABSTRACT

The Hedgehog pathway is an essential cell-signaling paradigm implicated in cancer tumorigenesis and the developmental disorder holoprosencephaly, making it an attractive target for therapeutic design. The N-terminal domain of the Sonic Hedgehog protein (Shh-N) is the essential signaling molecule in the Hedgehog pathway. In this role Shh-N interacts with its cognate membrane receptor Patched, as well as the regulatory proteins HHIP and CDO, by utilizing interfaces harboring one or more divalent ions. Here, the crystal structure of human Shh-N is presented at 1.43 Šresolution, representing a landmark in the characterization of this protein. The structure reveals that the conserved Zn2+-binding site adopts an atypical octahedral coordination geometry, whereas an adjacent binding site, normally occupied by binuclear Ca2+, has been supplanted by a single octahedrally bound Mg2+. Both divalent sites are compared with those in previous Shh-N structures, which demonstrates a significant degree of plasticity of the Shh-N protein in terms of divalent ion binding. The presence of a high Mg2+ concentration in the crystallization medium appears to have influenced metal loading at both metal ion-binding sites. These observations have technical and design implications for efforts focused on the development of inhibitors that target Shh-N-mediated protein-protein interactions.


Subject(s)
Hedgehog Proteins/chemistry , Magnesium/chemistry , Zinc/chemistry , Binding Sites , Drug Design , Humans , Protein Conformation
7.
Dev Neurosci ; 39(6): 487-497, 2017.
Article in English | MEDLINE | ID: mdl-28972955

ABSTRACT

Cerebellar growth is impeded following very preterm birth in human infants and the observed reduction in cerebellar volume is associated with neurodevelopmental impairment. Decreased levels of circulating insulin-like growth factor 1 (IGF-1) are associated with decreased cerebellar volume. The relationship between preterm birth, circulating IGF-1, and key cell populations supporting cerebellar proliferation is unknown. The aim of this study was to evaluate the effect of preterm birth on postnatal growth, circulating IGF-1, and cerebellar maturation in a preterm rabbit pup model. Preterm rabbit pups (PT) were delivered by cesarean section at day 29 of gestation, cared for in closed incubators with humidified air, and gavage fed with formula. Control term pups (T) delivered by spontaneous vaginal delivery at day 32 of gestation were housed and fed by their lactating doe. In vivo perfusion-fixation for immunohistochemical evaluation of cerebellar proliferation, cell maturation, and apoptosis was performed at repeated time points in PT and T pups. Results show that the mean weight of the pups and circulating IGF-1 protein levels were lower in the PT group at all time points (p < 0.05) than in the T group. Postnatal weight development correlated with circulating IGF-1 (r2 = 0.89) independently of gestational age at birth and postnatal age. The proliferative (Ki-67-positive) portion of the external granular layer (EGL) was decreased in the PT group at postnatal day 2 (P2) compared to in the T group (p = 0.01). Purkinje cells exhibited decreased calbindin staining at P0 (p = 0.003), P2 (p = 0.004), and P5 (p = 0.04) in the PT group compared to in the T group. Staining for sonic hedgehog was positive in neuronal EGL progenitors and Purkinje cells at early time points but was restricted to a well-defined Purkinje cell monolayer at later time points. Preterm birth in rabbit pups is associated with lower circulating levels of IGF-1, decreased postnatal growth, and decreased cerebellar EGL proliferation and Purkinje cell maturation. The preterm rabbit pup model exhibits important characteristics of human preterm birth, and may thus be suitable for the evaluation of interventions aiming to modify growth and cerebellar development in the preterm population.


Subject(s)
Cerebellum/growth & development , Insulin-Like Growth Factor I/biosynthesis , Organ Size/physiology , Purkinje Cells/cytology , Animals , Animals, Newborn , Female , Gestational Age , Lactation/physiology , Neurogenesis/physiology , Pregnancy , Rabbits
8.
Toxicol Lett ; 277: 76-83, 2017 Aug 05.
Article in English | MEDLINE | ID: mdl-28596144

ABSTRACT

Cr(VI) is widely-recognized as occupational and environmental contaminant, but the precise underlying mechanisms of Cr(VI) induced carcinogenic toxicity remain to be elucidated. Among kinds of toxic mechanisms, alteration of protein profiling usually elaborate a key mechanism of Cr(VI) induced toxicity and carcinogenesis. Large-scale proteins changes can reflect the onset or progression of carcinogenic toxicity, and potential serum protein biomarkers of Cr(VI) exposure. To gain an insight into the serum proteins expression profiling in chromate workers and find potential novel serum proteins biomarkers of Cr(VI) exposure, 107 male participants from a chromate production plant were recruited into the study. Questionnaire was applied to collect personal information and occupational history. Chromium concentration in blood (CrB) was measured to evaluate the participants' internal exposure. Serum proteins profiling and bioinformatics analysis were performed to explore differentially expressed proteins, proteins-chemical interaction network, critical proteins nodes related to the signaling pathways among 16 controls and 25 exposure workers in the first stage. ELISA tests were applied to verify the critical interested proteins nodes in the remaining 41 exposure workers and 25 controls. The results showed that the CrB levels in the control group were significantly lower than that in the exposure group (P<0.05). 44 significantly differentially expressed serum proteins formed 16 significant signaling pathways and a complex proteins-chemical interaction network, which associated with the immune system and extracellular matrix organization. C reactive protein (CRP), sonic hedgehog protein (SHH) and calcium located at critical nodes in proteins-chemical interaction network. There was a significant negative correlation between serum CRP level and CrB (P<0.05), and a significant positive correlation between SHH concentrations and CrB (P<0.05), which indicated that CRP and SHH might be as the potential novel biomarkers of Cr(VI) exposure. Also, the current study preliminarily paved the way to further functional studies to understand the underlying mechanisms and novel serum biomarkers of Cr(VI) exposure.


Subject(s)
Blood Proteins/analysis , Chromium/adverse effects , Computational Biology , Manufacturing and Industrial Facilities , Occupational Exposure/adverse effects , Occupational Health , Proteomics/methods , Adult , Biomarkers/blood , C-Reactive Protein/analysis , Case-Control Studies , Chromium/blood , Environmental Monitoring/methods , Enzyme-Linked Immunosorbent Assay , Hedgehog Proteins/blood , Humans , Male , Protein Interaction Maps , Risk Assessment , Signal Transduction , Surveys and Questionnaires , Young Adult
9.
Cell Tissue Res ; 369(3): 497-512, 2017 09.
Article in English | MEDLINE | ID: mdl-28547659

ABSTRACT

The mechanisms regulating the maintenance of quiescent adult stem cells in teeth remain to be fully elucidated. Our aim is to clarify the relationship between BrdU label-retaining cells (LRCs) and sonic hedgehog (Shh) signaling in murine teeth. After prenatal BrdU labeling, mouse pups were analyzed during postnatal day 1 (P1) to week 5 (P5W). Paraffin sections were processed for immunohistochemistry for BrdU, Sox2, Gli1, Shh, Patched1 (Ptch1) and Ki67 and for in situ hybridization for Shh and Ptch1. Dense LRCs, Gli1-(+) cells and Ptch1-(+) cells were co-localized in the outer enamel epithelium of the apical bud and apical dental papilla of incisors. In developing molars, dense LRCs were numerous at P1 but then decreased in number over the course of odontogenesis and were maintained in the center of pulp tissue. Gli1-(+) cells were maintained in the pulp horn during the examined stages, while they increased in number and were maintained in the center of pulp tissue during P2-5W. Ptch1-(+) cells were localized in the pulp horn at P1 and increased in number in the center of the pulp after P3W. Shh mRNA was first expressed in the enamel epithelium and then shifted to odontoblasts and other pulp cells. Shh protein was distributed in the epithelial and mesenchymal tissues of incisors and molars. These findings suggest that quiescent dental stem cells are regulated by Shh signaling, and that Shh signaling plays a crucial role in the differentiation and integrity of odontoblasts during epithelial-mesenchymal interactions and dentinogenesis.


Subject(s)
Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Cell Cycle , Hedgehog Proteins/metabolism , Tooth/cytology , Animals , Animals, Newborn , Bromodeoxyuridine/metabolism , Female , Hedgehog Proteins/genetics , Ki-67 Antigen/metabolism , Mice, Inbred ICR , Mouth Mucosa/metabolism , Patched-1 Receptor/genetics , Patched-1 Receptor/metabolism , SOXB1 Transcription Factors/metabolism , Tooth/growth & development , Zinc Finger Protein GLI1/metabolism
10.
Oncol Lett ; 12(1): 467-472, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27347166

ABSTRACT

The purpose of the present study was to assess the role of hedgehog signaling pathway in the carcinogenesis of eyelid skin and conjunctival epithelial malignant tumors. The study was conducted on specimens from 41 patients with cutaneous eyelid basal cell carcinoma, 22 with bulbar conjunctival squamous cell carcinoma, 12 with bulbar conjunctival intraepithelial neoplasia. Major molecules of Hedgehog signaling pathway (Sonic Hedgehog [Shh] and Patched-1 [Ptch-1] and Glioma-associated oncogene [Gli-1]) were evaluated in paraffin-embedded tissue specimens using immunohistochemical staining. For each specimen, the percentage (<10%, 10-50%, >50%) and the intensity of the immunohistochemical staining (graded from 0 to 3) were calculated and the scores obtained by multiplication of two values were analyzed using the Kruskall-Wallis test. Shh and Ptch-1 expression levels were statistically significantly lower in the basal cell carcinoma group compared with the squamous cell carcinoma group (P=0.043 for Shh; P=0.030 for Ptch-1). In the conjunctival squamous cell carcinoma group, the Ptch-1 score was 0 in ~25% of specimens and the Gli-1 score was ≤2 in ~45% of cases. In the conjunctival intraepithelial neoplasia group, the Ptch-1 score was ≥2 in 66% of specimens, the Gli-1 score was ≤2 in ~92% of cases. Ptch-1 mutations contribute to the development of cutaneous eyelid basal cell carcinoma. The present study provides evidence that alterations in hedgehog signaling pathways may lead to transformation of the conjunctival intraepithelial neoplasia into invasive squamous cell carcinoma.

11.
Exp Neurol ; 271: 493-505, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26210874

ABSTRACT

Intrinsic molecular determinants of neurodevelopmental outcomes assume new, albeit related roles during adult neural regeneration. Here we studied and identified a facilitatory role for Sonic hedgehog protein (Shh), a morphogen that influences motor neuron floor plate architecture, during adult peripheral neuron regeneration. Shh and its receptors were expressed in adult dorsal root ganglia (DRG) neurons, axons and glia and trended toward higher levels following axotomy injury. Knockdown of Shh in adult sensory neurons resulted in decreased outgrowth and branching in vitro, identifying a role for Shh in facilitating outgrowth. The findings argued for an intrinsic action to support neuron regeneration. Support of advancement and turning however, were not identified in adult sensory neuron growth cones in response to local extrinsic gradients of Shh. That intrinsic Shh supported the regrowth of peripheral nerves after injury was confirmed by the analysis of axon regrowth from the proximal stumps of transected sciatic nerves. By exposing regenerating axons to local infusions of Shh siRNA in vivo within a conduit bridging the transected proximal and distal stumps, we achieved local knockdown of Shh. In response, there was attenuated axonal and Schwann cell outgrowth beyond the transection zone. Unlike its role during neurodevelopment, Shh facilitates but does not confer regenerative outgrowth properties to adult neurons alone. Exploring the differing properties of morphogens and related proteins in the adult nervous system identifies new and important roles for them.


Subject(s)
Hedgehog Proteins/metabolism , Nerve Regeneration/physiology , Sciatic Neuropathy/physiopathology , Sensory Receptor Cells/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Ganglia, Spinal/cytology , Hedgehog Proteins/genetics , Male , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurites/physiology , Patched Receptors , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Sciatic Neuropathy/pathology , Sensory Receptor Cells/cytology
12.
Neural Regen Res ; 8(3): 258-63, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-25206596

ABSTRACT

The sonic hedgehog protein not only plays a key role in early embryonic development, but also has essential effects on the adult nervous system, including neural stem cell proliferation, differentiation, migration and neuronal axon guidance. The N-terminal fragment of sonic hedgehog is the key functional element in this process. Therefore, this study aimed to clone and analyze the N-terminal fragment of the sonic hedgehog gene. Total RNA was extracted from the notochord of a Sprague-Dawley rat at embryonic day 9 and the N-terminal fragment of sonic hedgehog was amplified by nested reverse transcription-PCR. The N-terminal fragment of the sonic hedgehog gene was successfully cloned. The secondary and tertiary structures of the N-terminal fragment of the sonic hedgehog protein were predicted using Jpred and Phyre online.

13.
Mol Med Rep ; 5(1): 12-6, 2012 01.
Article in English | MEDLINE | ID: mdl-21946948

ABSTRACT

Sonic hedgehog (SHh) signaling is essential for normal development of the human gastrointestinal (GI) tract and is reported to be aberrantly activated in GI cancers. However, the association between SHh signaling and extrahepatic biliary tract cancer is not clearly understood. In this study, we evaluated the activities of SHh family proteins and their downstream signals in extrahepatic biliary tract cancer. The activity of the SHh pathway was analyzed in established human extrahepatic biliary tract cell lines and human cancer tissues using RT-PCR and immunohistochemistry. We also evaluated the effects of suppressing the SHh pathway with cyclopamine and siRNA. The SHh, Smo and Gli-1 genes were overexpressed in extrahepatic biliary tract cancer cell lines and six extrahepatic biliary tract cancer tissues compared to the levels in normal biliary tract tissues. The degrees of SHh and Gli-1 expression were independent of tumor stage and cancer cell differentiation. SHh pathway suppression with cyclopamine or siRNA inhibited proliferation of extrahepatic biliary tract cancer cell lines. In conclusion, the SHh pathway is highly activated in extrahepatic biliary tract cancer and is a potential anticancer drug target.


Subject(s)
Bile Ducts, Extrahepatic , Biliary Tract Neoplasms/metabolism , Hedgehog Proteins/antagonists & inhibitors , Aged , Biliary Tract Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Female , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Immunohistochemistry , Male , Middle Aged , Neoplasm Staging , RNA Interference , RNA, Small Interfering/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Transcription Factors/metabolism , Veratrum Alkaloids/pharmacology , Zinc Finger Protein GLI1
SELECTION OF CITATIONS
SEARCH DETAIL