Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Pharmacol Biochem Behav ; 242: 173820, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996926

ABSTRACT

BACKGROUND: Emerging data has demonstrated that in mature neurons, SorCS2 localizes to the postsynaptic density of dendritic spines and facilitates plasma membrane sorting of TrkB by interacting with it, transmitting positive signaling from BDNF on neurons. Thus, it is possible that SorCS2 plays a role in the pathophysiology of depression by regulating the BDNF-TrkB system. METHODS: In the present study, SorCS2 expression in different brain regions [hippocampus, medial prefrontal cortex (mPFC), hypothalamus, amygdala, ventral tegmental area (VTA), and nucleus accumbens (NAc)] was thoroughly investigated in the chronic social defeat stress (CSDS) and chronic unpredictable mild stress (CUMS) models of depression. The changes in depressive-like behaviors, the hippocampal BDNF signaling cascade, and amounts of hippocampal immature neurons were further investigated after SorCS2 overexpression by microinjection of the adenovirus associated virus vector containing the coding sequence of mouse SorCS2 (AAV-SorCS2) into the hippocampus of mice exposed to CSDS or CUMS. RESULTS: It was found that both CSDS and CUMS significantly decreased the protein and mRNA expression of SorCS2 in the hippocampus but not in other brain regions. Chronic stress also notably downregulated the level of hippocampal SorCS2-TrkB binding in mice. In contrast, AAV-based genetic overexpression of hippocampal SorCS2 fully reversed the chronic stress-induced not only depressive-like behaviors but also decreased SorCS2-TrkB binding, BDNF signaling pathway, and amounts of immature neurons in the hippocampus of mice. CONCLUSION: All these results suggest that enhancing the hippocampal SorCS2 expression protects against chronic stress, producing antidepressant-like actions. Hippocampal SorCS2 may participate in depression neurobiology and be a potential antidepressant target. SIGNIFICANCE STATEMENT: Targeting of proteins to distinct subcellular compartments is essential for neuronal activity and modulated by VPS10P domain receptors which include SorCS2. In mature neurons, SorCS2 localizes to the postsynaptic density of dendritic spines and facilitates plasma membrane sorting of TrkB by interacting with it, transmitting positive signaling from BDNF on neurons. Our study is the first direct evidence preliminarily showing that SorCS2 plays a role in depression neurobiology. It was found that chronic stress induced not only depressive-like behaviors but also decreased SorCS2 expression in the hippocampus. Chronic stress did not affect SorCS2 expression in the mPFC, hypothalamus, amygdala, VTA, or NAc. In contrast, genetic overexpression of hippocampal SorCS2 prevented against chronic stress, producing antidepressant-like actions in mice. Thus, hippocampal SorCS2 is a potential participant underlying depression neurobiology and may be a novel antidepressant target. Our study may also extend the knowledge of the neurotrophic hypothesis of depression.


Subject(s)
Brain-Derived Neurotrophic Factor , Depression , Hippocampus , Mice, Inbred C57BL , Receptor, trkB , Stress, Psychological , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Hippocampus/metabolism , Stress, Psychological/metabolism , Mice , Male , Receptor, trkB/metabolism , Depression/metabolism , Signal Transduction , Disease Models, Animal , Behavior, Animal , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Neurons/metabolism
2.
Oral Dis ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568959

ABSTRACT

BACKGROUND: Emerging evidence supports the association between periodontitis and depression, although the mechanisms are unclear. This study investigated the role of SorCS2 in the pathogenesis of periodontitis-induced depression. MATERIALS AND METHODS: An experimental periodontitis model was established using SorCS2 knockout mice and their wild-type littermates, and depression-like behaviour was evaluated. The expression of proBDNF signalling, neuronal activity, and glutamate-associated signalling pathways were further measured by western blotting and immunofluorescence. In addition, neuroinflammatory status, astrocytic and microglial markers, and the expression of corticosterone-related factors were measured by immunofluorescence, western blotting, and enzyme-linked immunosorbent assays. RESULTS: SorCS2 deficiency alleviated periodontitis-induced depression-like behaviour in mice. Further results suggested that SorCS2 deficiency downregulated the expression of pro-BDNF and glutamate signalling and restored neuronal activities in mice with periodontitis. Neuroinflammation in the mouse hippocampus was triggered by experimental periodontitis but was not affected by SorCS2 deficiency. The levels of corticosterone and the expression of glucocorticoid receptors were also not altered. CONCLUSION: Our study, for the first time, reveals the critical role of SorCS2 in the pathogenesis of periodontitis-induced depression. The underlying mechanism involves proBDNF and glutamate signalling in the hippocampus, providing a novel therapeutic target for periodontitis-associated depression.

3.
Cell Rep ; 42(11): 113333, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37897724

ABSTRACT

Motor neuron (MN) development and nerve regeneration requires orchestrated action of a vast number of molecules. Here, we identify SorCS2 as a progranulin (PGRN) receptor that is required for MN diversification and axon outgrowth in zebrafish and mice. In zebrafish, SorCS2 knockdown also affects neuromuscular junction morphology and fish motility. In mice, SorCS2 and PGRN are co-expressed by newborn MNs from embryonic day 9.5 until adulthood. Using cell-fate tracing and nerve segmentation, we find that SorCS2 deficiency perturbs cell-fate decisions of brachial MNs accompanied by innervation deficits of posterior nerves. Additionally, adult SorCS2 knockout mice display slower motor nerve regeneration. Interestingly, primitive macrophages express high levels of PGRN, and their interaction with SorCS2-positive motor axon is required during axon pathfinding. We further show that SorCS2 binds PGRN to control its secretion, signaling, and conversion into granulins. We propose that PGRN-SorCS2 signaling controls MN development and regeneration in vertebrates.


Subject(s)
Intercellular Signaling Peptides and Proteins , Zebrafish , Mice , Animals , Progranulins , Zebrafish/metabolism , Motor Neurons/metabolism , Granulins , Mice, Knockout , Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/metabolism
4.
J Biol Chem ; 299(9): 105102, 2023 09.
Article in English | MEDLINE | ID: mdl-37507021

ABSTRACT

The Vps10p domain receptor SorCS2 is crucial for the development and function of the nervous system and essential for brain-derived neurotrophic factor (BDNF)-induced changes in neuronal morphology and plasticity. SorCS2 regulates the subcellular trafficking of the BDNF signaling receptor TrkB as well as selected neurotransmitter receptors in a manner that is dependent on the SorCS2 intracellular domain (ICD). However, the cellular machinery and adaptor protein (AP) interactions that regulate receptor trafficking via the SorCS2 ICD are unknown. We here identify four splice variants of human SorCS2 differing in the insertion of an acidic cluster motif and/or a serine residue within the ICD. We show that each variant undergoes posttranslational proteolytic processing into a one- or two-chain receptor, giving rise to eight protein isoforms, the expression of which differs between neuronal and nonneuronal tissues and is affected by cellular stressors. We found that the only variants without the serine were able to rescue BDNF-induced branching of SorCS2 knockout hippocampal neurons, while variants without the acidic cluster showed increased interactions with clathrin-associated APs AP-1, AP-2, and AP-3. Using yeast two-hybrid screens, we further discovered that all variants bound dynein light chain Tctex-type 3; however, only variants with an acidic cluster motif bound kinesin light chain 1. Accordingly, splice variants showed markedly different trafficking properties and localized to different subcellular compartments. Taken together, our findings demonstrate the existence of eight functional SorCS2 isoforms with differential capacity for interactions with cytosolic ligands dynein light chain Tctex-type 3 and kinesin light chain 1, which potentially allows cell-type specific SorCS2 trafficking and BDNF signaling.


Subject(s)
Alternative Splicing , Central Nervous System , Receptors, Cell Surface , Humans , Adaptor Proteins, Signal Transducing/metabolism , Alternative Splicing/physiology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Dyneins/metabolism , Kinesins/metabolism , Protein Binding , Protein Isoforms/metabolism , Receptor, trkB/metabolism , Receptors, Cell Surface/metabolism , Central Nervous System/growth & development , Protein Processing, Post-Translational , Protein Transport/genetics
5.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-36996265

ABSTRACT

Reproductive fitness of rams is seasonal, showing the highest libido during short days coinciding with the ovarian cyclicity resumption in the ewe. However, the remarkable variation in sexual behavior between rams impair farm efficiency and profitability. Intending to identify in vivo sexual behavior biomarkers that may aid farmers to select active rams, transcriptome profiling of blood was carried out by analyzing samples from 6 sexually active (A) and 6 nonactive (NA) Rasa Aragonesa rams using RNA-Seq technique. A total of 14,078 genes were expressed in blood but only four genes were differentially expressed (FDR < 0.10) in the A vs. NA rams comparison. The genes, acrosin inhibitor 1 (ENSOARG00020023278) and SORCS2, were upregulated (log2FC > 1) in active rams, whereas the CRYL1 and immunoglobulin lambda-1 light chain isoform X47 (ENSOARG00020025518) genes were downregulated (log2FC < -1) in this same group. Gene set Enrichment Analysis (GSEA) identified 428 signaling pathways, predominantly related to biological processes. The lysosome pathway (GO:0005764) was the most enriched, and may affect fertility and sexual behavior, given the crucial role played by lysosomes in steroidogenesis, being the SORCS2 gene related to this signaling pathway. Furthermore, the enriched positive regulation of ERK1 and ERK2 cascade (GO:0070374) pathway is associated with reproductive phenotypes such as fertility via modulation of hypothalamic regulation and GnRH-mediated production of pituitary gonadotropins. Furthermore, external side of plasma membrane (GO:0009897), fibrillar center (GO:0001650), focal adhesion (GO:0005925), and lamellipodium (GO:0030027) pathways were also enriched, suggesting that some molecules of these pathways might also be involved in rams' sexual behavior. These results provide new clues for understanding the molecular regulation of sexual behavior in rams. Further investigations will be needed to confirm the functions of SORCS2 and CRYL1 in relation to sexual behavior.


Analyzing ram sexual behavior via blood transcriptome profiling can help to identify in vivo sexual behavior biomarkers as an innovative alternative to invasive and time-consuming methods in farms. Using RNA-sequencing technique, we compared 12 Rasa Aragonesa rams with different sexual behavior (6 sexually active and 6 nonactive) to identify differentially expressed genes (DEGs) in peripheral blood putatively responsible of libido differences between rams. Comparative analysis revealed four candidate genes and several signaling pathways related to sexual behavior such as lysosome, and positive regulation of the extracellular signal-regulated kinase 1/2 (ERK1 and ERK2) cascade. This data will be helpful for further investigations to understand the differences of sheep sexual behavior.


Subject(s)
Sexual Behavior, Animal , Transcriptome , Animals , Female , Male , Phenotype , Reproduction/genetics , Sexual Behavior, Animal/physiology , Sheep/genetics , Sheep, Domestic , Crystallins/genetics , Receptors, Cell Surface/genetics
6.
Cell Mol Neurobiol ; 43(1): 237-249, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34741697

ABSTRACT

SORCS2 is one of five proteins that constitute the Vps10p-domain receptor family. Members of this family play important roles in cellular processes linked to neuronal survival, differentiation and function. Genetic and functional studies implicate SORCS2 in cognitive function, as well as in neurodegenerative and psychiatric disorders. DNA damage and DNA repair deficits are linked to ageing and neurodegeneration, and transient neuronal DNA double-strand breaks (DSBs) also occur as a result of neuronal activity. Here, we report a novel role for SORCS2 in DSB formation. We show that SorCS2 loss is associated with elevated DSB levels in the mouse dentate gyrus and that knocking out SORCS2 in a human neuronal cell line increased Topoisomerase IIß-dependent DSB formation and reduced neuronal viability. Neuronal stimulation had no impact on levels of DNA breaks in vitro, suggesting that the observed differences may not be the result of aberrant neuronal activity in these cells. Our findings are consistent with studies linking the VPS10 receptors and DNA damage to neurodegenerative conditions.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Humans , Animals , Mice , Neurons/metabolism , DNA Damage , Cell Line , Receptors, Cell Surface/genetics , Nerve Tissue Proteins/metabolism
7.
Mol Neurodegener ; 17(1): 74, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36397124

ABSTRACT

The family of VPS10p-Domain (D) receptors comprises five members named SorLA, Sortilin, SorCS1, SorCS2 and SorCS3. While their physiological roles remain incompletely resolved, they have been recognized for their signaling engagements and trafficking abilities, navigating a number of molecules between endosome, Golgi compartments, and the cell surface. Strikingly, recent studies connected all the VPS10p-D receptors to Alzheimer's disease (AD) development. In addition, they have been also associated with diseases comorbid with AD such as diabetes mellitus and major depressive disorder. This systematic review elaborates on genetic, functional, and mechanistic insights into how dysfunction in VPS10p-D receptors may contribute to AD etiology, AD onset diversity, and AD comorbidities. Starting with their functions in controlling cellular trafficking of amyloid precursor protein and the metabolism of the amyloid beta peptide, we present and exemplify how these receptors, despite being structurally similar, regulate various and distinct cellular events involved in AD. This includes a plethora of signaling crosstalks that impact on neuronal survival, neuronal wiring, neuronal polarity, and synaptic plasticity. Signaling activities of the VPS10p-D receptors are especially linked, but not limited to, the regulation of neuronal fitness and apoptosis via their physical interaction with pro- and mature neurotrophins and their receptors. By compiling the functional versatility of VPS10p-D receptors and their interactions with AD-related pathways, we aim to further propel the AD research towards VPS10p-D receptor family, knowledge that may lead to new diagnostic markers and therapeutic strategies for AD patients.


Subject(s)
Alzheimer Disease , Depressive Disorder, Major , Humans , Amyloid beta-Peptides , Protein Transport/physiology , Nerve Growth Factors
8.
Protein Expr Purif ; 193: 106058, 2022 05.
Article in English | MEDLINE | ID: mdl-35114376

ABSTRACT

Neurotrophin signaling pathways are one of the major cascades in neuronal development and involved in many key processes including proliferation, differentiation, apoptosis, synaptic plasticity, axonal growth. In addition to the main classes of neurotrophin receptors, Trk and P75NTR, there are many auxiliary proteins, which can also bind neurotrophins and regulate the signaling pathways. The versatility of interactions between them could explain multiple and completely opposite biological outcomes such as cell survival or apoptosis. Membrane protein SorCS2, a vacuolar protein sorting 10 protein-domain receptor, interacts with P75NTR and controls the activity of Trk receptors. The abnormal functioning of SorCS2 is associated with neurodegenerative diseases, such as Alzheimer's and Huntington's disease. But the mechanism of SorCS2 activation and basis of the interaction with P75NTR has remained elusive. Herein, we describe two efficient approaches for the intracellular domain of the SorCS2 production employing bacterial and cell-free expression systems, as well as purification and refolding protocols. Finally, we characterized the purified protein by DLS and NMR and demonstrated that the protein sample is suitable for structural studies.


Subject(s)
Nerve Growth Factors , Signal Transduction , Apoptosis , Cell Survival , Nerve Growth Factors/metabolism , Protein Transport
9.
Front Neurosci ; 15: 799761, 2021.
Article in English | MEDLINE | ID: mdl-35145374

ABSTRACT

The present study examined the relationship between DNA methylation differences and variations in brain structures involved in the development of attention-deficit hyperactivity disorder (ADHD). First, we used monozygotic (MZ) twins discordant (2 pairs of 4 individuals, 2 boys, mean age 12.5 years) for ADHD to identify candidate DNA methylation sites involved in the development of ADHD. Next, we tried to replicate these candidates in a case-control study (ADHD: N = 18, 15 boys, mean age 10.0 years; Controls: N = 62, 40 boys, mean age 13.9 years). Finally, we examined how methylation rates at those sites relate to the degree of local structural alterations where significant differences were observed between cases and controls. As a result, we identified 61 candidate DNA methylation sites involved in ADHD development in two pairs of discordant MZ twins, among which elevated methylation at a site in the sortilin-related Vps10p domain containing receptor 2 (SorCS2) gene was replicated in the case-control study. We also observed that the ADHD group had significantly reduced gray matter volume (GMV) in the precentral and posterior orbital gyri compared to the control group and that this volume reduction was positively associated with SorCS2 methylation. Furthermore, the reduced GMV regions in children with ADHD are involved in language processing and emotional control, while SorCS2 methylation is also negatively associated with emotional behavioral problems in children. These results indicate that SorCS2 methylation might mediate a reduced GMV in the precentral and posterior orbital gyri and therefore influence the pathology of children with ADHD.

10.
F1000Res ; 82019.
Article in English | MEDLINE | ID: mdl-31583078

ABSTRACT

Complex mechanisms control the signaling of neurotrophins through p75 NTR and Trk receptors, allowing cellular responses that are highly context dependent, particularly in the nervous system and particularly with regard to the neurotrophin brain-derived neurotrophic factor (BDNF). Recent reports describe a variety of sophisticated regulatory mechanisms that contribute to such functional flexibility. Mechanisms described include regulation of trafficking of alternative BDNF transcripts, regulation of post-translational processing and secretion of BDNF, engagement of co-receptors that influence localization and signaling of p75 NTR and Trk receptors, and control of trafficking of receptors in the endocytic pathway and during anterograde and retrograde axonal transport.


Subject(s)
Brain-Derived Neurotrophic Factor/physiology , Signal Transduction , Axonal Transport , Endocytosis , Humans , Nerve Tissue Proteins/pharmacology , Protein Processing, Post-Translational , Receptors, Nerve Growth Factor/physiology
11.
Cells ; 8(9)2019 08 23.
Article in English | MEDLINE | ID: mdl-31450785

ABSTRACT

A higher incidence of diabetes was observed among family members of individuals affected by Huntington's Disease with no follow-up studies investigating the genetic nature of the observation. Using a genome-wide association study (GWAS), RNA sequencing (RNA-Seq) analysis and western blotting of Rattus norvegicus and human, we were able to identify that the gene family of sortilin receptors was affected in Huntington's Disease patients. We observed that less than 5% of SNPs were of statistical significance and that sortilins and HLA/MHC gene expression or SNPs were associated with mutant huntingtin (mHTT). These results suggest that ST14A cells derived from R. norvegicus are a reliable model of HD, since sortilins were identified through analysis of the transcriptome in these cells. These findings help highlight the genes involved in mechanisms targeted by diabetes drugs, such as glucose transporters as well as proteins controlling insulin release related to mHTT. To the best of our knowledge, this is the first GWAS using RNA-Seq data from both ST14A rat HD cell model and human Huntington's Disease.


Subject(s)
Adaptor Proteins, Vesicular Transport/genetics , Alzheimer Disease/genetics , Diabetes Mellitus/genetics , HLA Antigens/genetics , Huntingtin Protein/genetics , Huntington Disease/genetics , Polymorphism, Single Nucleotide , Animals , Cell Line , Gene Expression Profiling/methods , Gene Expression Regulation , Genetic Markers , Genome-Wide Association Study , Humans , Models, Biological , Mutation , Rats , Sequence Analysis, RNA , Up-Regulation
12.
Front Pharmacol ; 10: 499, 2019.
Article in English | MEDLINE | ID: mdl-31156431

ABSTRACT

Alcohol use disorder (AUD) is characterized by repetitive and uncontrolled intake of alcohol with severe consequences for affected individuals, their families and society as a whole. Numerous studies have implicated brain-derived neurotrophic factor (BDNF) activity in the neurobiology underlying AUD. The BDNF signaling mechanism is complex and depends on two receptor systems, TrkB and p75NTR, which appear to have opposite effects on alcohol seeking behavior in animal models. We recently discovered that the sortilin-related receptor SorCS2 forms complexes with both TrkB and p75NTR and is important for BDNF activity in the developing and adult CNS. Moreover, the SORCS2 gene was recently identified as the top association signal for severity of alcohol withdrawal symptoms. Hence, we speculated that SorCS2 deficient mice would have an altered response to alcohol. The role of SorCS2 in the acute and adapted response to alcohol was therefore investigated by comparing SorCS2 knockout (Sorcs2-/- ) mice to wild type (WT) mice in three paradigms modeling alcohol sensitivity and consumption; alcohol-induced conditioned place preference, two-bottle choice test as well as the behavioral response to alcohol withdrawal. We found that, when compared to the WT mice, (I) Sorcs2-/- mice displayed complete lack of alcohol-induced place preference, (II) when given free choice between water and alcohol, Sorcs2-/- mice consumed less alcohol, and (III) Sorcs2-/- mice showed no handling-induced convulsion in response to alcohol withdrawal following extended alcohol exposure. Taken together, these results show that lack of the alcohol withdrawal risk gene Sorcs2 results in abnormal behavioral response to alcohol in mice. Consequently, SorCS2 may play an important role in the molecular pathways underlying AUD and complications associated with alcohol withdrawal.

13.
Neuroscientist ; 25(5): 434-454, 2019 10.
Article in English | MEDLINE | ID: mdl-30387693

ABSTRACT

Since its discovery, brain-derived neurotrophic factor (BDNF) has spawned a literature that now spans 35 years of research. While all neurotrophins share considerable overlap in sequence homology and their processing, BDNF has become the most widely studied neurotrophin because of its broad roles in brain homeostasis, health, and disease. Although research on BDNF has produced thousands of articles, there remain numerous long-standing questions on aspects of BDNF molecular biology and signaling. Here we provide a comprehensive review, including both a historical narrative and a forward-looking perspective on advances in the actions of BDNF within the brain. We specifically review BDNF's gene structure, peptide composition (including domains, posttranslational modifications and putative motif sites), mechanisms of transport, signaling pathway recruitment, and other recent developments including the functional effects of genetic variation and the discovery of a new BDNF prodomain ligand. This body of knowledge illustrates a highly conserved and complex role for BDNF within the brain, that promotes the idea that the neurotrophin biology of BDNF is diverse and that any disease involvement is likely to be equally multifarious.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain/metabolism , Gene Expression Regulation , Neurons/metabolism , Animals , Gene Expression , Genetic Variation , Humans , Protein Transport , Receptor, Nerve Growth Factor/metabolism , Receptor, trkB/metabolism , Signal Transduction
14.
Neuron ; 99(1): 163-178.e6, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29909994

ABSTRACT

A human variant in the BDNF gene (Val66Met; rs6265) is associated with impaired fear extinction. Using super-resolution imaging, we demonstrate that the BDNF Met prodomain disassembles dendritic spines and eliminates synapses in hippocampal neurons. In vivo, ventral CA1 (vCA1) hippocampal neurons undergo similar morphological changes dependent on their transient co-expression of a SorCS2/p75NTR receptor complex during peri-adolescence. BDNF Met prodomain infusion into the vCA1 during this developmental time frame reduces dendritic spine density and prelimbic (PL) projections, impairing cued fear extinction. Adolescent BdnfMet/Met mice display similar spine and PL innervation deficits. Using fiber photometry, we found that, in wild-type mice, vCA1 neurons projecting to the PL encode extinction by enhancing neural activity in threat anticipation and rapidly subsiding their response. This adaptation is absent in BDNFMet/Met mice. We conclude that the BDNF Met prodomain renders vCA1-PL projection neurons underdeveloped, preventing their capacity for subsequent circuit modulation necessary for fear extinction. VIDEO ABSTRACT.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , CA1 Region, Hippocampal/pathology , Dendritic Spines/pathology , Extinction, Psychological , Fear , Neurons/pathology , Synapses/pathology , Animals , CA1 Region, Hippocampal/physiopathology , Mice , Polymorphism, Single Nucleotide
15.
BMC Cell Biol ; 17: 8, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26964886

ABSTRACT

BACKGROUND: Sortilin and SorCS2 are part of the Vps10p receptor family. They have both been studied in nervous tissue with several important functions revealed, while their expression and possible functions in developing peripheral tissue remain poorly understood. Here we deliver a thorough characterization of the prenatal localization of sortilin and SorCS2 in mouse peripheral tissue. RESULTS: Sortilin is highly expressed in epithelial tissues of the developing lung, nasal cavity, kidney, pancreas, salivary gland and developing intrahepatic bile ducts. Furthermore tissues such as the thyroid gland, developing cartilage and ossifying bone also show high expression of sortilin together with cell types such as megakaryocytes in the liver. SorCS2 is primarily expressed in mesodermally derived tissues such as striated muscle, adipose tissue, ossifying bone and general connective tissue throughout the body, as well as in lung epithelia. Furthermore, the adrenal gland and liver show high expression of SorCS2 in embryos 13.5 days old. CONCLUSIONS: The possible functions relating to the expression patterns of Sortilin and SorCS2 in development are numerous and hopefully this paper will help to generate new hypotheses to further our understanding of the Vps10p receptor family.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Mice/embryology , Mice/metabolism , Nerve Tissue Proteins/metabolism , Organogenesis , Receptors, Cell Surface/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Amino Acid Sequence , Animals , Body Patterning , Epithelium/embryology , Epithelium/metabolism , Female , Kidney/embryology , Kidney/metabolism , Lung/embryology , Lung/metabolism , Male , Mice/genetics , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Pancreas/embryology , Pancreas/metabolism , Protein Transport , Receptors, Cell Surface/genetics , Salivary Glands/embryology , Salivary Glands/metabolism
16.
Am J Med Genet B Neuropsychiatr Genet ; 168(6): 459-470, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26174813

ABSTRACT

Attention deficit is one of the core symptoms of the attention-deficit/hyperactivity disorder (ADHD). However, the specific genetic variants that may be associated with attention function in adult ADHD remain largely unknown. The present study aimed to identifying SNPs associated with attention function in adult ADHD and tested whether these associations were enriched for specific biological pathways. Commissions, hit-reaction time (HRT), the standard error of HRT (HRTSE), and intraindividual coefficient variability (ICV) of the Conners Continuous Performance Test (CPT-II) were assessed in 479 unmedicated adult ADHD individuals. A Genome-Wide Association Study (GWAS) was conducted for each outcome and, subsequently, gene set enrichment analyses were performed. Although no SNPs reached genome-wide significance (P < 5E-08), 27 loci showed suggestive evidence of association with the CPT outcomes (P < E-05). The most relevant associated SNP was located in the SORCS2 gene (P = 3.65E-07), previously associated with bipolar disorder (BP), Alzheimer disease (AD), and brain structure in elderly individuals. We detected other genes suggested to be involved in synaptic plasticity, cognitive function, neurological and neuropsychiatric disorders, and smoking behavior such as NUAK1, FGF20, NETO1, BTBD9, DLG2, TOP3B, and CHRNB4. Also, several of the pathways nominally associated with the CPT outcomes are relevant for ADHD such as the ubiquitin proteasome, neurodegenerative disorders, axon guidance, and AD amyloid secretase pathways. To our knowledge, this is the first GWAS and pathway analysis of attention function in patients with persistent ADHD. Overall, our findings reinforce the conceptualization of attention function as a potential endophenotype for studying the molecular basis of adult ADHD. © 2015 Wiley Periodicals, Inc.

17.
ASN Neuro ; 6(5)2014.
Article in English | MEDLINE | ID: mdl-25290065

ABSTRACT

ProNGF and p75(NTR) are upregulated and induce cell death following status epilepticus (SE) in rats. However, less is known about the proneurotrophin response to SE in mice, a more genetically tractable species where mechanisms can be more readily dissected. We evaluated the temporal- and cell-specific induction of the proneurotrophins and their receptors, including p75(NTR), sortilin, and sorCS2, following mild SE induced with kainic acid (KA) or severe SE induced by pilocarpine. We found that mature NGF, p75(NTR), and proBDNF were upregulated following SE, while proNGF was not altered, indicating potential mechanistic differences between rats and mice. ProBDNF was localized to mossy fibers and microglia following SE. p75(NTR) was transiently induced primarily in axons and axon terminals following SE, as well as in neuron and astrocyte cell bodies. ProBDNF and p75(NTR) increased independently of cell death and their localization was different depending on the severity of SE. We also examined the expression of proneurotrophin co-receptors, sortilin and sorCS2. Following severe SE, sorCS2, but not sortilin, was elevated in neurons and astrocytes. These data indicate that important differences exist between rat and mouse in the proneurotrophin response following SE. Moreover, the proBDNF and p75(NTR) increase after seizures in the absence of significant cell death suggests that proneurotrophin signaling may play other roles following SE.


Subject(s)
Nerve Growth Factor/metabolism , Protein Precursors/metabolism , Receptor, Nerve Growth Factor/metabolism , Status Epilepticus/metabolism , Up-Regulation/physiology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Excitatory Amino Acid Agonists/toxicity , Female , Fluoresceins , Hippocampus/drug effects , Hippocampus/pathology , Kainic Acid/toxicity , Male , Mice , Mice, Transgenic , Muscarinic Agonists/toxicity , Nerve Growth Factor/genetics , Nerve Tissue Proteins/metabolism , Pilocarpine/toxicity , Protein Precursors/genetics , Receptor, Nerve Growth Factor/genetics , Status Epilepticus/chemically induced , Status Epilepticus/pathology , Time Factors , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL