Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.496
Filter
1.
Heliyon ; 10(11): e32352, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961933

ABSTRACT

Previous studies have indicated the efficacy of momordin Ic (MIc), a plant-derived triterpenoid, against several types of cancers, implying its potential for further development. However, comprehensive insights into the molecular mechanisms and targets of MIc in cholangiocarcinoma (CCA) are lacking. This study aimed to investigate the actions of MIc against CCA at the molecular level. Network pharmacology analysis was first employed to predict the mechanisms and targets of MIc. The results unveiled the potential involvement of MIc in apoptosis and cell migration, pinpointing Src and FAK as key targets. Subsequently, cell-based assays, in accordance with FAK/Src-associated metastasis, were conducted, demonstrating the ability of MIc to attenuate the metastatic behaviours of KKU-452 cells. The in vitro results further indicated the capability of MIc to suppress the epithelial-mesenchymal transition (EMT) process, notably by downregulating EMT regulators, including N-cadherin, vimentin, ZEB2 and FOXC1/2 expression. Furthermore, MIc suppressed the activation of the FAK/Src signalling pathway, influencing critical downstream factors such as MMP-9, VEGF, ICAM-1, and c-Myc. Molecular docking simulations also suggested that MIc could interact with FAK and Src domains and restrain kinases from being activated by hindering ATP binding. In conclusion, this study employs a comprehensive approach encompassing network pharmacology analysis, in vitro assays, and molecular docking to unveil the mechanisms and targets of MIc in CCA. MIc mitigates metastatic behaviours and suppresses key pathways, offering a promising avenue for future therapeutic strategies against this aggressive cancer.

2.
Aging (Albany NY) ; 162024 Jul 05.
Article in English | MEDLINE | ID: mdl-38975937

ABSTRACT

OBJECTIVE: In this study, we investigated the mechanism of action of LIMK1 in cervical cancer progression. METHODS: The biological role of LIMK1 in regulating the growth, invasion, and metastasis of cervical cancer was studied in SiHa, CaSki cells and nude mice tumor models. The role of LIMK1 in the growth of cervical cancer was evaluated by HE staining. The role of LIMK1 in the invasion, metastasis, and proliferation of cervical cancer was evaluated by cell scratch, Transwell, and monoclonal experiments. The interaction among LIMK1, ROS, and Src was evaluated by Western blotting. The effects of regulating ROS and p-Src expression on LIMK1 in the migration/invasion and proliferation of cervical cancer cells were evaluated through cellular functional assays. RESULTS: Overexpression of LIMK1 promoted tumor growth in nude mice. Cell scratch, Transwell, and monoclonal experiments suggested that LIMK1 promoted the invasion, metastasis, and proliferation of cervical cancer cells. Western blotting suggested that LIMK1 can promote the expression of ROS-related proteins NOX2, NOX4, p-Src, and downstream proteins p-FAK, p-ROCK1/2, p-Cofilin-1, F-actin and inhibit the expression of p-SHP2 protein. Correction experiments showed that LIMK1 regulated the expression of p-FAK and p-Cofilin-1 proteins by regulating ROS and p-Src. Through the detection of cervical cancer cell functions, it was found that the activation of ROS and p-Src induced by LIMK1 is an early event that promotes the migration, proliferation, and invasion of cervical cancer cells. CONCLUSIONS: LIMK1 promotes the expression of F-actin and promotes the development of cervical cancer by regulating the oxidative stress/Src-mediated p-FAK/p-ROCK1/2/p-Cofilin-1 pathway.

3.
Adv Sci (Weinh) ; : e2310037, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953362

ABSTRACT

Programmed death-ligand 1 (PD-L1) is overexpressed in multiple cancers and critical for their immune escape. It has previously shown that the nuclear coactivator SRC-1 promoted colorectal cancer (CRC) progression by enhancing CRC cell viability, yet its role in CRC immune escape is unclear. Here, we demonstrate that SRC-1 is positively correlated with PD-L1 in human CRC specimens. SRC-1 deficiency significantly inhibits PD-L1 expression in CRC cells and retards murine CRC growth in subcutaneous grafts by enhancing CRC immune escape via increasing tumor infiltration of CD8+ T cells. Genetic ablation of SRC-1 in mice also decreases PD-L1 expression in AOM/DSS-induced murine CRC. These results suggest that tumor-derived SRC-1 promotes CRC immune escape by enhancing PD-L1 expression. Mechanistically, SRC-1 activated JAK-STAT signaling by inhibiting SOCS1 expression and coactivated STAT3 and IRF1 to enhance PD-L1 transcription as well as stabilized PD-L1 protein by inhibiting proteasome-dependent degradation mediated by speckle type POZ protein (SPOP). Pharmacological inhibition of SRC-1 improved the antitumor effect of PD-L1 antibody in both subcutaneous graft and AOM/DSS-induced murine CRC models. Taken together, these findings highlight a crucial role of SRC-1 in regulating PD-L1 expression and targeting SRC-1 in combination with PD-L1 antibody immunotherapy may be an attractive strategy for CRC treatment.

4.
Immunol Res ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967692

ABSTRACT

The extracellular matrix (ECM) is currently considered to be an important factor influencing the migration and progression of cancer cells. Therefore, the aim of our study was to investigate the mechanism of action of elastin-derived peptides in cancerous cells derived from the immunological system, i.e., HL-60, K562, and MEG-A2 cell lines. Moreover, an attempt to clarify the involvement of c-SRC kinase in EDP mechanism of action was also undertaken. Our data show that the VGVAPG and VVGPGA peptides are not toxic in the studied cell lines. Moreover, due to the involvement of KI67 and PCNA proteins in the cell cycle and proliferation, we can assume that neither peptide stimulates cell proliferation. Our data suggest that both peptides could initiate the differentiation process in all the studied cell lines. However, due to the different origins (HL-60 and K562-leukemic cell line vs. MEG-A2-megakaryoblastic origin) of the cell lines, the mechanism may differ. The increase in the ELANE mRNA expression noted in our experiments may also suggest enhancement of the migration of the tested cells. However, more research is needed to fully explain the mechanism of action of the VGVAPG and VVGPGA peptides in the HL-60, K562, and MEG-A2 cell lines. HIGHLIGHTS: • VGVAPG and VVGPGA peptides do not affect the metabolic activity of HL-60, K562, and MEG-A2 cells. • mTOR and PPARγ proteins are involved in the mechanism of action of VGVAPG and VVGPGA peptides. • Both peptides may initiate differentiation in HL-60, K562, and MEG-A2 cell lines.

5.
Cells ; 13(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38920637

ABSTRACT

Excessive levels of glutamate activity could potentially damage and kill neurons. Glutamate excitotoxicity is thought to play a critical role in many CNS and retinal diseases. Accordingly, glutamate excitotoxicity has been used as a model to study neuronal diseases. Immune proteins, such as major histocompatibility complex (MHC) class I molecules and their receptors, play important roles in many neuronal diseases, while T-cell receptors (TCR) are the primary receptors of MHCI. We previously showed that a critical component of TCR, CD3ζ, is expressed by mouse retinal ganglion cells (RGCs). The mutation of CD3ζ or MHCI molecules compromises the development of RGC structure and function. In this study, we investigated whether CD3ζ-mediated molecular signaling regulates RGC death in glutamate excitotoxicity. We show that mutation of CD3ζ significantly increased RGC survival in NMDA-induced excitotoxicity. In addition, we found that several downstream molecules of TCR, including Src (proto-oncogene tyrosine-protein kinase) family kinases (SFKs) and spleen tyrosine kinase (Syk), are expressed by RGCs. Selective inhibition of an SFK member, Hck, or Syk members, Syk or Zap70, significantly increased RGC survival in NMDA-induced excitotoxicity. These results provide direct evidence to reveal the underlying molecular mechanisms that control RGC death under disease conditions.


Subject(s)
CD3 Complex , Glutamic Acid , Retinal Ganglion Cells , Signal Transduction , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Animals , Glutamic Acid/metabolism , Signal Transduction/drug effects , CD3 Complex/metabolism , Mice , Mice, Inbred C57BL , N-Methylaspartate/toxicity , Cell Survival/drug effects , Retina/metabolism , Retina/pathology , src-Family Kinases/metabolism , Syk Kinase/metabolism
6.
J Biotechnol ; 392: 48-58, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906221

ABSTRACT

Combining phytochemicals and nanotechnology to improve the unfavorable innate properties of phytochemicals and develop them into potent nanomedicines to enhance antitumor efficacy has become a novel strategy for cancer chemoprevention. Melanoma is the most aggressive, metastatic, and deadly disease of the primary cutaneous neoplasms. In this study, we fabricated phytoconstituent-derived zingerone nanoparticles (NPs) and validated their effects on cell adhesion and motility in melanoma B16F10 cells. Our data indicated that zingerone NPs significantly induced cytotoxicity and anti-colony formation and inhibited cell migration and invasion. Moreover, zingerone NPs dramatically interfered with the cytoskeletal reorganization and markedly delayed the period of cell adhesion. Our results also revealed that zingerone NPs-mediated downregulation of MMPs (matrix metalloproteinases) activity is associated with inhibiting cell adhesion and motility. We further evaluated the effects of zingerone NPs on Src/FAK /Paxillin signaling, our data showed that zingerone NPs significantly inhibited the protein activities of Src, FAK, and Paxillin, indicating that they play important roles in zingerone NP-mediated anti-motility and anti-invasion in melanoma cells. Accordingly, the phytoconstituent-zingerone NPs can strengthen the inhibition of tumor growth, invasion, and metastasis in malignant melanoma. Altogether, these multi-pharmacological benefits of zingerone NPs will effectively achieve the purpose of melanoma prevention and invasion inhibition.

7.
Int J Mol Sci ; 25(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38928093

ABSTRACT

The Drosophila downstream receptor kinase (Drk), a homologue of human GRB2, participates in the signal transduction from the extracellular to the intracellular environment. Drk receives signals through the interaction of its Src homology 2 (SH2) domain with the phosphorylated tyrosine residue in the receptor tyrosine kinases (RTKs). Here, we present the solution NMR structure of the SH2 domain of Drk (Drk-SH2), which was determined in the presence of a phosphotyrosine (pY)-containing peptide derived from a receptor tyrosine kinase, Sevenless (Sev). The solution structure of Drk-SH2 possess a common SH2 domain architecture, consisting of three ß strands imposed between two α helices. Additionally, we interpret the site-specific interactions of the Drk-SH2 domain with the pY-containing peptide through NMR titration experiments. The dynamics of Drk-SH2 were also analysed through NMR-relaxation experiments as well as the molecular dynamic simulation. The docking simulations of the pY-containing peptide onto the protein surface of Drk-SH2 provided the orientation of the peptide, which showed a good agreement with the analysis of the SH2 domain of GRB2.


Subject(s)
Drosophila Proteins , Molecular Dynamics Simulation , Protein Binding , src Homology Domains , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Animals , Humans , Receptor Protein-Tyrosine Kinases/chemistry , Receptor Protein-Tyrosine Kinases/metabolism , GRB2 Adaptor Protein/metabolism , GRB2 Adaptor Protein/chemistry , Molecular Docking Simulation , Binding Sites , Amino Acid Sequence , Magnetic Resonance Spectroscopy
8.
FASEB J ; 38(11): e23731, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38855909

ABSTRACT

Ca2+ permeation through TRPV4 in fibroblasts is associated with pathological matrix degradation. In human gingival fibroblasts, IL-1ß binding to its signaling receptor (IL-1R1) induces activation of extracellular regulated kinase (ERK) and MMP1 expression, processes that require Ca2+ flux across the plasma membrane. It is not known how IL-1R1, which does not conduct Ca2+, generates Ca2+ signals in response to IL-1. We examined whether TRPV4 mediates the Ca2+ fluxes required for ERK signaling in IL-1 stimulated gingival fibroblasts. TRPV4 was immunostained in fibroblasts of human gingival connective tissue and in focal adhesions of cultured mouse gingival fibroblasts. Human gingival fibroblasts treated with IL-1ß showed no change of TRPV4 expression but there was increased MMP1 expression. In mouse, gingival fibroblasts expressing TRPV4, IL-1 strongly increased [Ca2+]i. Pre-incubation of cells with IL-1 Receptor Antagonist blocked Ca2+ entry induced by IL-1 or the TRPV4 agonist GSK101. Knockout of TRPV4 or expression of a non-Ca2+-conducting TRPV4 pore-mutant or pre-incubation with the TRPV4 inhibitor RN1734, blocked IL-1-induced Ca2+ transients and expression of the mouse interstitial collagenase, MMP13. Treatment of mouse gingival fibroblasts with GSK101 phenocopied Ca2+ and ERK responses induced by IL-1; these responses were absent in TRPV4-null cells or cells expressing a non-conducting TRPV4 pore-mutant. Immunostained IL-1R1 localized with TRPV4 in adhesions within cell extensions. While TRPV4 immunoprecipitates analyzed by mass spectrometry showed no association with IL-1R1, TRPV4 associated with Src-related proteins and Src co-immunoprecipitated with TRPV4. Src inhibition reduced IL-1-induced Ca2+ responses. The functional linkage of TRPV4 with IL-1R1 expands its repertoire of innate immune signaling processes by mediating IL-1-driven Ca2+ responses that drive matrix remodeling in fibroblasts. Thus, inhibiting TRPV4 activity may provide a new pharmacological approach for blunting matrix degradation in inflammatory diseases.


Subject(s)
Calcium Signaling , Fibroblasts , Gingiva , TRPV Cation Channels , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Animals , Humans , Mice , Fibroblasts/metabolism , Gingiva/metabolism , Gingiva/cytology , Calcium/metabolism , MAP Kinase Signaling System , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Interleukin-1/metabolism , Interleukin-1/pharmacology , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/pharmacology
9.
Front Cardiovasc Med ; 11: 1341145, 2024.
Article in English | MEDLINE | ID: mdl-38845688

ABSTRACT

Introduction: Pulmonary hypertension (PH) is a pathological condition that affects approximately 1% of the population. The prognosis for many patients is poor, even after treatment. Our knowledge about the pathophysiological mechanisms that cause or are involved in the progression of PH is incomplete. Additionally, the mechanism of action of many drugs used to treat pulmonary hypertension, including sotatercept, requires elucidation. Methods: Using our graph-powered knowledge mining software Lifelike in combination with a very small patient metabolite data set, we demonstrate how we derive detailed mechanistic hypotheses on the mechanisms of PH pathophysiology and clinical drugs. Results: In PH patients, the concentration of hypoxanthine, 12(S)-HETE, glutamic acid, and sphingosine 1 phosphate is significantly higher, while the concentration of L-arginine and L-histidine is lower than in healthy controls. Using the graph-based data analysis, gene ontology, and semantic association capabilities of Lifelike, led us to connect the differentially expressed metabolites with G-protein signaling and SRC. Then, we associated SRC with IL6 signaling. Subsequently, we found associations that connect SRC, and IL6 to activin and BMP signaling. Lastly, we analyzed the mechanisms of action of several existing and novel pharmacological treatments for PH. Lifelike elucidated the interplay between G-protein, IL6, activin, and BMP signaling. Those pathways regulate hallmark pathophysiological processes of PH, including vasoconstriction, endothelial barrier function, cell proliferation, and apoptosis. Discussion: The results highlight the importance of SRC, ERK1, AKT, and MLC activity in PH. The molecular pathways affected by existing and novel treatments for PH also converge on these molecules. Importantly, sotatercept affects SRC, ERK1, AKT, and MLC simultaneously. The present study shows the power of mining knowledge graphs using Lifelike's diverse set of data analytics functionalities for developing knowledge-driven hypotheses on PH pathophysiological and drug mechanisms and their interactions. We believe that Lifelike and our presented approach will be valuable for future mechanistic studies of PH, other diseases, and drugs.

10.
Transl Res ; 272: 95-110, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876188

ABSTRACT

Glioblastoma (GBM) is the most frequent and aggressive primary brain cancer. The Src inhibitor, TAT-Cx43266-283, exerts antitumor effects in in vitro and in vivo models of GBM. Because addressing the mechanism of action is essential to translate these results to a clinical setting, in this study we carried out an unbiased proteomic approach. Data-independent acquisition mass spectrometry proteomics allowed the identification of 190 proteins whose abundance was modified by TAT-Cx43266-283. Our results were consistent with the inhibition of Src as the mechanism of action of TAT-Cx43266-283 and unveiled antitumor effectors, such as p120 catenin. Changes in the abundance of several proteins suggested that TAT-Cx43266-283 may also impact the brain microenvironment. Importantly, the proteins whose abundance was reduced by TAT-Cx43266-283 correlated with an improved GBM patient survival in clinical datasets and none of the proteins whose abundance was increased by TAT-Cx43266-283 correlated with shorter survival, supporting its use in clinical trials.

11.
J Cell Sci ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940198

ABSTRACT

TMEM16F, a Ca2+-activated lipid scramblase (CaPLSase) that dynamically disrupts lipid asymmetry, plays a crucial role in various physiological and pathological processes such as blood coagulation, neurodegeneration, cell-cell fusion, and viral infection. However, the mechanisms through which it regulates these processes remain largely elusive. Using endothelial cell-mediated angiogenesis as a model, here we report a previously unknown intracellular signaling function of TMEM16F. We demonstrate that TMEM16F deficiency impairs developmental retinal angiogenesis in mice and disrupts angiogenic processes in vitro. Biochemical analyses indicate that the absence of TMEM16F enhances the plasma membrane association of activated Src kinase. This in turn increases VE-cadherin phosphorylation and downregulation, accompanied by suppressed angiogenesis. Our findings not only highlight TMEM16F's intracellular signaling role in endothelial cells but also open new avenues for exploring the regulatory mechanisms of membrane lipid asymmetry and their implications in disease pathogenesis.

12.
J Cell Sci ; 137(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38881365

ABSTRACT

Endothelial cells lining the blood vessel wall communicate intricately with the surrounding extracellular matrix, translating mechanical cues into biochemical signals. Moreover, vessels require the capability to enzymatically degrade the matrix surrounding them, to facilitate vascular expansion. c-Src plays a key role in blood vessel growth, with its loss in the endothelium reducing vessel sprouting and focal adhesion signalling. Here, we show that constitutive activation of c-Src in endothelial cells results in rapid vascular expansion, operating independently of growth factor stimulation or fluid shear stress forces. This is driven by an increase in focal adhesion signalling and size, with enhancement of localised secretion of matrix metalloproteinases responsible for extracellular matrix remodelling. Inhibition of matrix metalloproteinase activity results in a robust rescue of the vascular expansion elicited by heightened c-Src activity. This supports the premise that moderating focal adhesion-related events and matrix degradation can counteract abnormal vascular expansion, with implications for pathologies driven by unusual vascular morphologies.


Subject(s)
Extracellular Matrix , Focal Adhesions , src-Family Kinases , Focal Adhesions/metabolism , Extracellular Matrix/metabolism , Humans , src-Family Kinases/metabolism , src-Family Kinases/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Animals , CSK Tyrosine-Protein Kinase/metabolism , Signal Transduction , Endothelial Cells/metabolism , Endothelial Cells/pathology , Matrix Metalloproteinases/metabolism
13.
J Affect Disord ; 359: 241-252, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38768820

ABSTRACT

BACKGROUND: Postpartum depression (PPD) is a serious psychiatric disorder that has significantly adverse impacts on maternal health. Metabolic abnormalities in the brain are associated with numerous neurological disorders, yet the specific metabolic signaling pathways and brain regions involved in PPD remain unelucidated. METHODS: We performed behavioral test in the virgin and postpartum mice. We used mass spectrometry imaging (MSI) and targeted metabolomics analyses to investigate the metabolic alternation in the brain of GABAAR Delta-subunit-deficient (Gabrd-/-) postpartum mice, a specific preclinical animal model of PPD. Next, we performed mechanism studies including qPCR, Western blot, immunofluorescence staining, electron microscopy and primary astrocyte culture. In the specific knockdown and rescue experiments, we injected the adeno-associated virus into the central amygdala (CeA) of female mice. RESULTS: We identified that prostaglandin D2 (PGD2) downregulation in the CeA was the most outstanding alternation in PPD, and then validated that lipocalin-type prostaglandin D synthase (L-PGDS)/PGD2 downregulation plays a causal role in depressive behaviors derived from PPD in both wild-type and Gabrd-/- mice. Furthermore, we verified that L-PGDS/PGD2 signaling dysfunction-induced astrocytes atrophy is mediated by Src phosphorylation both in vitro and in vivo. LIMITATIONS: L-PGDS/PGD2 signaling dysfunction may be only responsible for the depressive behavior rather than maternal behaviors in the PPD, and it remains to be seen whether this mechanism is applicable to all depression types. CONCLUSION: Our study identified abnormalities in the L-PGDS/PGD2 signaling in the CeA, which inhibited Src phosphorylation and induced astrocyte atrophy, ultimately resulting in the development of PPD in mice.


Subject(s)
Astrocytes , Atrophy , Depression, Postpartum , Disease Models, Animal , Prostaglandin D2 , Signal Transduction , Animals , Astrocytes/pathology , Astrocytes/metabolism , Female , Depression, Postpartum/pathology , Depression, Postpartum/metabolism , Mice , Signal Transduction/physiology , Prostaglandin D2/metabolism , Central Amygdaloid Nucleus/metabolism , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Lipocalins/genetics , Lipocalins/metabolism , src-Family Kinases/metabolism , Mice, Knockout
14.
Hematology ; 29(1): 2356292, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38785187

ABSTRACT

OBJECTIVES: This study aims to investigate the role of excessive Protein Tyrosine Phosphatase Non-Receptor Type 21 (PTPN21) in the proliferation of Acute Lymphoblastic Leukemia (ALL) cells with EGF stimulation. METHODS: PTPN21 was overexpressed in ALL cell lines by lentiviral transfection. Apoptosis was assayed by Annexin V/7-AAD staining. The proliferation and cell cycle of EGF-treated ALL cells were assessed by MTT and Ki-67/7-AAD staining respectively. The phosphorylation of Src tyrosine kinase and mediators of distinct MAPK pathways were assessed by Western blot. RESULTS: Overexpression of PTPN21 had minimal effect on the apoptosis of ALL cells, but significantly promoted the proliferation and cell cycle progression of ALL cells stimulated with EGF. The activity of Src tyrosine kinase and the MAPK pathways was elevated. Inhibition of MAPK pathways by specific inhibitors mitigated this pro-proliferative effect of excessive PTPN21 on EGF-stimulated ALL cells. CONCLUSION: PTPN21 may facilitate ALL progression by promoting cell proliferation via the Src/MAPK signaling pathways.


Subject(s)
Cell Proliferation , Epidermal Growth Factor , MAP Kinase Signaling System , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Protein Tyrosine Phosphatases, Non-Receptor , Humans , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Epidermal Growth Factor/pharmacology , MAP Kinase Signaling System/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Protein Tyrosine Phosphatases, Non-Receptor/metabolism
15.
Med Oncol ; 41(6): 156, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750377

ABSTRACT

This study explores the therapeutic potential of phytochemicals derived from Morus alba for colorectal cancer (CRC) treatment. Colorectal cancer is a global health concern with increasing mortality rates, necessitating innovative strategies for prevention and therapy. Employing in silico analysis, molecular docking techniques (MDT), and molecular dynamics simulations (MDS), the study investigates the interactions between Morus alba-derived phytochemicals and key proteins (AKT1, Src, STAT3, EGFR) implicated in CRC progression. ADME/T analysis screens 78 phytochemicals for drug-like and pharmacokinetic properties. The study integrates Lipinski's Rule of Five and comprehensive bioactivity assessments, providing a nuanced understanding of Morus alba phytoconstituent's potential as CRC therapeutic agents. Notably, 14 phytochemicals out of 78 emerge as potential candidates, demonstrating oral bioavailability and favorable bioactivity scores. Autodock 1.5.7 is employed for energy minimization followed by molecular docking with the highest binding energy observed to be - 11.7 kcal/mol exhibited by Kuwanon A against AKT1. Molecular dynamics simulations and trajectory path analysis were conducted between Kuwanon A and AKT1 at the Pleckstrin homology (PH) domain region (TRP80), revealing minimal deviations. In comparison to the standard drug Capivasertib, the phytochemical Kuwanon A emerges as a standout candidate based on computational analysis. This suggests its potential as an alternative to mitigate the limitations associated with the standard drug. The research aims to provide insights for future experimental validations and to stimulate the development of Kuwanon A as a novel, effective therapeutic agent for managing colorectal cancer.


Subject(s)
Colorectal Neoplasms , Molecular Docking Simulation , Molecular Dynamics Simulation , Morus , Phytochemicals , Morus/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/pharmacokinetics , Humans , Proto-Oncogene Proteins c-akt/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , STAT3 Transcription Factor/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/pharmacokinetics , Antineoplastic Agents, Phytogenic/chemistry , src-Family Kinases/metabolism
16.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2197-2209, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812235

ABSTRACT

This study aims to explore the potential mechanism of action in the intervention of acute lung injury(ALI) based on the blood entry components of Ganke Granules in rats and in conjunction with network pharmacology, molecular docking, and animal experimental validation. The blood entry components of Ganke Granules in rats were imported into the SwissTargetPrediction platform to predict drug targets, and ALI-related targets were collected from the disease database. Intersections were taken, and protein-protein interaction(PPI) networks were constructed to screen the core targets, followed by Gene Ontology(GO) functional and Kyoto encyclopedia of genes and gnomes(KEGG) pathway enrichment analyses. A "blood entry components-target-pathway-disease" network was constructed, and the core components for disease intervention based on their topological parameters were screened. Molecular docking was used to predict the binding ability of the core components to key targets. The key targets of Ganke Granules in the intervention of ALI were verified by the lipopolysaccharide(LPS)-induced ALI mouse model. Through PPI topological parameter analysis, the top six key targets of STAT3, SRC, HSP90AA1, MAPK3, HRAS, and MAPK1 related to ALI were obtained. GO functional analysis showed that it was mainly related to ERK1 and ERK2 cascade, inflammatory response, and response to LPS. KEGG analysis showed that the main enrichment pathways were MAPK, neutrophil extracellular trap(NET) formation, and so on. Six core components(schizantherin B, schisandrin, besigomsin, harpagoside, isotectorigenin, and trachelanthamine) were filtered out by the "blood entry components-target-pathway-disease" network based on the analysis of topological parameters. Molecular docking results showed that the six core components and Tectoridin with the highest content in the granules had a high affinity with the key targets of MAPK3, SRC, MAPK1, and STAT3. In vivo experiment results showed that compared with the model group, Ganke Granules could effectively alleviate LPS-induced histopathological injury in the lungs of mice and reduce the percentage of inflammatory infiltration. The total protein content, nitric oxide(NO) level, myeloperoxidase(MPO) content, tumor necrosis factor-α(TNF-α), gamma interferon(IFN-γ), interleukin-1ß(IL-1ß), interleukin-6(IL-6), vascular endothelial growth factor(VEGF), and chemokine(C-X-C motif) ligand 1(CXCL1) chemokines in bronchoalveolar lavage fluid(BALF) were decreased, and the expression levels of lymphocyte antigen 6G(Ly6G), citrullinated histones 3(Cit-H3), and phosphorylated proteins SRC, ERK1/2, and STAT3 in lung tissue were significantly down-regulated. In conclusion, Ganke Granules could effectively inhibit the inflammatory response of ALI induced by LPS, protect lung tissue, regulate the release of inflammatory factors, and inhibit neutrophil infiltration and NET formation, and the mechanism of action may be related to inhibiting the activation of SRC/ERK1/2/STAT3 signaling pathway.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice , Rats , Male , Protein Interaction Maps , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Rats, Sprague-Dawley , Humans
17.
Cell Mol Biol Lett ; 29(1): 68, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730334

ABSTRACT

BACKGROUND: Members of the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing (NLRP) family regulate various physiological and pathological processes. However, none have been shown to regulate actin cap formation or spindle translocation during the asymmetric division of oocyte meiosis I. NLRP4E has been reported as a candidate protein in female fertility, but its function is unknown. METHODS: Immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR), and western blotting were employed to examine the localization and expression levels of NLRP4E and related proteins in mouse oocytes. small interfering RNA (siRNA) and antibody transfection were used to knock down NLRP4E and other proteins. Immunoprecipitation (IP)-mass spectrometry was used to identify the potential proteins interacting with NLRP4E. Coimmunoprecipitation (Co-IP) was used to verify the protein interactions. Wild type (WT) or mutant NLRP4E messenger RNA (mRNA) was injected into oocytes for rescue experiments. In vitro phosphorylation was employed to examine the activation of steroid receptor coactivator (SRC) by NLRP4E. RESULTS: NLRP4E was more predominant within oocytes compared with other NLRP4 members. NLRP4E knockdown significantly inhibited actin cap formation and spindle translocation toward the cap region, resulting in the failure of polar body extrusion at the end of meiosis I. Mechanistically, GRIN1, and GANO1 activated NLRP4E by phosphorylation at Ser429 and Thr430; p-NLRP4E is translocated and is accumulated in the actin cap region during spindle translocation. Next, we found that p-NLRP4E directly phosphorylated SRC at Tyr418, while p-SRC negatively regulated p-CDC42-S71, an inactive form of CDC42 that promotes actin cap formation and spindle translocation in the GTP-bound form. CONCLUSIONS: NLRP4E activated by GRIN1 and GANO1 regulates actin cap formation and spindle translocation toward the cap region through upregulation of p-SRC-Tyr418 and downregulation of p-CDC42-S71 during meiosis I.


Subject(s)
Actins , Meiosis , Oocytes , cdc42 GTP-Binding Protein , Animals , Oocytes/metabolism , Mice , Female , Actins/metabolism , Actins/genetics , cdc42 GTP-Binding Protein/metabolism , cdc42 GTP-Binding Protein/genetics , Phosphorylation , Spindle Apparatus/metabolism
18.
Cancer Cell Int ; 24(1): 166, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734640

ABSTRACT

Triple-negative breast cancer (TNBC) is highly malignant and lacks effective biotherapeutic targets. The development of efficient anticancer drugs with low toxicity and few side effects is a hotspot in TNBC treatment research. Although erianin is known to have potent antitumor activity, its regulatory mechanism and target in TNBC have not been fully elucidated, hampering further drug development. This study showed that erianin can significantly inhibit TNBC cell proliferation and migration, promote cell apoptosis, and inhibit the growth of transplanted tumors in mice. Mechanistically, through network pharmacology analysis, molecular docking and cellular thermal shift assays, we preliminarily identified SRC as the cellular target of erianin. Erianin potently inhibited the expression of SRC, which mediated the anticancer effect of erianin in TNBC. Moreover, erianin can downregulate the expression of genes related to cholesterol synthesis and uptake by targeting SRC, interfering with cholesterol levels in TNBC, thereby inhibiting the progression of TNBC in vivo and in vitro. Taken together, our results suggest that erianin may inhibit the progression of TNBC by suppressing SRC-mediated cholesterol metabolism, and erianin has the great potential to be an effective treatment for TNBC patients.

19.
Mol Neurobiol ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819634

ABSTRACT

Inflammation is an important pathogenic driving force in the genesis and development of epilepsy. The latest researches demonstrated that IL-17A mediated blood-brain barrier (BBB) dysfunction through disruption of tight junction protein expression. To investigate whether IL-17A is involved in BBB disruption after acute seizure attack, the pilocarpine model was established with C57BL/6 J (wild type, WT) and IL-17R-deficient mice in vivo and with primary cultured rat brain microvascular endothelial cells in vitro. The mortality rate and brain water content were evaluated at 24 h after status epilepticus, and IL-17A concentration, endothelial tight junction, adherens junction proteins, and albumin leakage were assessed at 0 h, 4 h, 12 h, and 24 h after status epilepticus (SE). IL-17R-deficient mice showed lessen severity of epilepsy than WT mice, accompanied by less albumin leakage, reduced brain water content, decreased IL-17A, and upregulated expression of target proteins (ZO-1, Occludin and VE-cadherin). IL-17R knockout abrogated abnormal upregulation of Src kinase and phosphorylated Src kinase in the setting of SE, and Src kinase inhibitor PP1 abrogated IL-17A-induced SE related endothelial injury in vitro. In conclusion, IL-17A inhibition might be a promising therapeutic option to attenuate endothelial cell injury and further BBB disruption by reducing Src kinase activation.

20.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 644-651, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708496

ABSTRACT

OBJECTIVE: To observe the effect of Shenqi Chongcao (SQCC) Formula on the ASS1/src/STAT3 signaling pathway in a rat model of lung fibrosis and explore its therapeutic mechanism. METHODS: A total of 120 male SD rats were divided equally into 5 groups, including a blank control group with saline treatment and 4 groups of rat models of idiopathic pulmonary fibrosis induced by intratracheal instillation of bleomycin. One day after modeling, the rat models were treated with daily gavage of 10 mL/kg saline, SQCC decoction (0.423 g/kg), pirfenidone (10 mL/kg), or intraperitoneal injection of arginine deiminase (ADI; 2.25 mg/kg, every 3 days) for 28 days. After the treatments, the lung tissues of the rats were collected for calculating the lung/body weight ratio, observing histopathology using HE and Masson staining, and analyzing the inflammatory cells in BALF using Giemsa staining. Serum chemokine ligand 2 (CCL2) and transforming growth factor-ß1 (TGF-ß1) levels were measured with ELISA. The protein expressions of src, p-srcTry529, STAT3, and p-STAT3Try705 and the mRNA expressions of ASS1, src and STAT3 in the lung tissues were detected using Western blotting and RT-qPCR. RESULTS: The neutrophil, macrophage and lymphocyte counts and serum levels of CCL2 and TGF-ß1 were significantly lower in SQCC, pirfenidone and ADI treatment groups than in the model group at each time point of measurement (P < 0.05). P-srcTry529 and p-STAT3Try705 protein expression levels and ASS1, src, and STAT3 mRNA in the lung tissues were also significantly lower in the 3 treatment groups than in the model group (P < 0.05). CONCLUSION: SQCC Formula can alleviate lung fibrosis in rats possibly by activating the ASS1/src/STAT3 signaling pathway in the lung tissues.


Subject(s)
Drugs, Chinese Herbal , Pulmonary Fibrosis , STAT3 Transcription Factor , Signal Transduction , Animals , Male , Rats , Bleomycin , Chemokine CCL2/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Inflammation/metabolism , Inflammation/drug therapy , Lung/metabolism , Lung/pathology , Lung/drug effects , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , src-Family Kinases/drug effects , src-Family Kinases/metabolism , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism , Transforming Growth Factor beta1/metabolism , Carbon-Carbon Ligases/drug effects , Carbon-Carbon Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL