Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.679
Filter
1.
Psychophysiology ; : e14660, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090795

ABSTRACT

Understanding the subprocesses of risky decision making is a prerequisite for understanding (dys-)functional decisions. For the present fMRI study, we designed a novel variant of the balloon-analog-risk task (BART) that measures three phases: decision making, reward anticipation, and feedback processing. Twenty-nine healthy young adults completed the BART. We analyzed neural activity and functional connectivity. Parametric modulation allowed assessing changes in brain functioning depending on the riskiness of the decision. Our results confirm involvement of nucleus accumbens, insula, anterior cingulate cortex, and dorsolateral prefrontal cortex in all subprocesses of risky decision-making. In addition, subprocesses were differentiated by the strength of activation in these regions, as well as by changes in activity and nucleus accumbens-connectivity by the riskiness of the decision. The presented fMRI-BART variant allows distinguishing activity and connectivity during the subprocesses of risky decision making and shows how activation and connectivity patterns relate to the riskiness of the decision. Hence, it is a useful tool for unraveling impairments in subprocesses of risky decision making in people with high risk behavior.

2.
medRxiv ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39108535

ABSTRACT

Ultra-processed foods high in fat and sugar may be addictive, in part, due to their purported ability to induce an exaggerated postingestive brain dopamine response akin to drugs of abuse. Using standard [11C]raclopride positron emission tomography (PET) displacement methods used to measure brain dopamine responses to addictive drugs, we measured postingestive striatal dopamine responses to an ultra-processed milkshake high in fat and sugar in 50 young, healthy adults over a wide body mass index range (BMI 20-45 kg/m2). Surprisingly, milkshake consumption did not result in significant postingestive dopamine response in the striatum (p=0.62) nor any striatal subregion (p>0.33) and the highly variable interindividual responses were not significantly related to adiposity (BMI: r=0.076, p=0.51; %body fat: r=0.16, p=0.28). Thus, postingestive striatal dopamine responses to an ultra-processed milkshake were likely substantially smaller than many addictive drugs and below the limits of detection using standard PET methods.

3.
Cereb Cortex ; 34(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39128939

ABSTRACT

The anterior cingulate cortex (ACC) has been implicated across multiple highly specialized cognitive functions-including task engagement, motivation, error detection, attention allocation, value processing, and action selection. Here, we ask if ACC lesions disrupt task performance and firing in dorsomedial striatum (DMS) during the performance of a reward-guided decision-making task that engages many of these cognitive functions. We found that ACC lesions impacted several facets of task performance-including decreasing the initiation and completion of trials, slowing reaction times, and resulting in suboptimal and inaccurate action selection. Reductions in movement times towards the end of behavioral sessions further suggested attenuations in motivation, which paralleled reductions in directional action selection signals in the DMS that were observed later in recording sessions. Surprisingly, however, beyond altered action signals late in sessions-neural correlates in the DMS were largely unaffected, even though behavior was disrupted at multiple levels. We conclude that ACC lesions result in overall deficits in task engagement that impact multiple facets of task performance during our reward-guided decision-making task, which-beyond impacting motivated action signals-arise from dysregulated attentional signals in the ACC and are mediated via downstream targets other than DMS.


Subject(s)
Corpus Striatum , Decision Making , Gyrus Cinguli , Neurons , Reward , Gyrus Cinguli/physiology , Gyrus Cinguli/physiopathology , Animals , Male , Decision Making/physiology , Neurons/physiology , Corpus Striatum/physiology , Corpus Striatum/physiopathology , Action Potentials/physiology , Reaction Time/physiology , Motivation/physiology , Psychomotor Performance/physiology
4.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125878

ABSTRACT

Copper is a trace element whose electronic configuration provides it with essential structural and catalytic functions. However, in excess, both its high protein affinity and redox-catalyzing properties can lead to hazardous consequences. In addition to promoting oxidative stress, copper is gaining interest for its effects on neurotransmission through modulation of GABAergic and glutamatergic receptors and interaction with the dopamine reuptake transporter. The aim of the present study was to investigate the effects of copper overexposure on the levels of dopamine, noradrenaline, and serotonin, or their main metabolites in rat's striatum extracellular fluid. Copper was injected intraperitoneally using our previously developed model, which ensured striatal overconcentration (2 mg CuCl2/kg for 30 days). Subsequently, extracellular fluid was collected by microdialysis on days 0, 15, and 30. Dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and noradrenaline (NA) levels were then determined by HPLC coupled with electrochemical detection. We observed a significant increase in the basal levels of DA and HVA after 15 days of treatment (310% and 351%), which was maintained after 30 days (358% and 402%), with no significant changes in the concentrations of 5-HIAA, DOPAC, and NA. Copper overload led to a marked increase in synaptic DA concentration, which could contribute to the psychoneurological alterations and the increased oxidative toxicity observed in Wilson's disease and other copper dysregulation states.


Subject(s)
Copper , Corpus Striatum , Dopamine , Extracellular Fluid , Homovanillic Acid , Animals , Dopamine/metabolism , Copper/metabolism , Homovanillic Acid/metabolism , Rats , Male , Extracellular Fluid/metabolism , Corpus Striatum/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , Rats, Wistar , Serotonin/metabolism , Norepinephrine/metabolism
5.
Sci Rep ; 14(1): 18586, 2024 08 10.
Article in English | MEDLINE | ID: mdl-39127716

ABSTRACT

Astrocytes display context-specific diversity in their functions and respond to noxious stimuli between brain regions. Astrocytic mitochondria have emerged as key players in governing astrocytic functional heterogeneity, given their ability to dynamically adapt their morphology to regional demands on ATP generation and Ca2+ buffering functions. Although there is reciprocal regulation between mitochondrial dynamics and mitochondrial Ca2+ signaling in astrocytes, the extent of this regulation in astrocytes from different brain regions remains unexplored. Brain-wide, experimentally induced mitochondrial DNA (mtDNA) loss in astrocytes showed that mtDNA integrity is critical for astrocyte function, however, possible diverse responses to this noxious stimulus between brain areas were not reported in these experiments. To selectively damage mtDNA in astrocytes in a brain-region-specific manner, we developed a novel adeno-associated virus (AAV)-based tool, Mito-PstI expressing the restriction enzyme PstI, specifically in astrocytic mitochondria. Here, we applied Mito-PstI to two brain regions, the dorsolateral striatum and dentate gyrus, and we show that Mito-PstI induces astrocytic mtDNA loss in vivo, but with remarkable brain-region-dependent differences on mitochondrial dynamics, Ca2+ fluxes, and astrocytic and microglial reactivity. Thus, AAV-Mito-PstI is a novel tool to explore the relationship between astrocytic mitochondrial network dynamics and astrocytic mitochondrial Ca2+ signaling in a brain-region-selective manner.


Subject(s)
Astrocytes , DNA Damage , DNA, Mitochondrial , Mitochondria , Astrocytes/metabolism , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mice , Mitochondria/metabolism , Dependovirus/genetics , Calcium/metabolism , Brain/metabolism , Male , Calcium Signaling , Mice, Inbred C57BL , Mitochondrial Dynamics , Dentate Gyrus/metabolism
6.
Sci Rep ; 14(1): 18919, 2024 08 14.
Article in English | MEDLINE | ID: mdl-39143173

ABSTRACT

A large-scale biophysical network model for the isolated striatal body is developed to optimise potential intrastriatal deep brain stimulation applied to, e.g. obsessive-compulsive disorder. The model is based on modified Hodgkin-Huxley equations with small-world connectivity, while the spatial information about the positions of the neurons is taken from a detailed human atlas. The model produces neuronal spatiotemporal activity patterns segregating healthy from pathological conditions. Three biomarkers were used for the optimisation of stimulation protocols regarding stimulation frequency, amplitude and localisation: the mean activity of the entire network, the frequency spectrum of the entire network (rhythmicity) and a combination of the above two. By minimising the deviation of the aforementioned biomarkers from the normal state, we compute the optimal deep brain stimulation parameters, regarding position, amplitude and frequency. Our results suggest that in the DBS optimisation process, there is a clear trade-off between frequency synchronisation and overall network activity, which has also been observed during in vivo studies.


Subject(s)
Deep Brain Stimulation , Models, Neurological , Deep Brain Stimulation/methods , Humans , Corpus Striatum/physiology , Neurons/physiology , Nerve Net/physiology , Obsessive-Compulsive Disorder/therapy , Obsessive-Compulsive Disorder/physiopathology
7.
Neurochem Res ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120794

ABSTRACT

Autism spectrum disorder (ASD) is known as a group of neurodevelopmental conditions including stereotyped and repetitive behaviors, besides social and sensorimotor deficits. Anatomical and functional evidence indicates atypical maturation of the striatum. Astrocytes regulate the maturation and plasticity of synaptic circuits, and impaired calcium signaling is associated with repetitive behaviors and atypical social interaction. Spontaneous calcium transients (SCT) recorded in the striatal astrocytes of the rat were investigated in the preclinical model of ASD by prenatal exposure to valproic acid (VPA). Our results showed sensorimotor delay, augmented glial fibrillary acidic protein -a typical intermediate filament protein expressed by astrocytes- and diminished expression of GABAA-ρ3 through development, and increased frequency of SCT with a reduced latency that resulted in a diminished amplitude in the VPA model. The convulsant picrotoxin, a GABAA (γ-aminobutyric acid type A) receptor antagonist, reduced the frequency of SCT in both experimental groups but rescued this parameter to control levels in the preclinical ASD model. The amplitude and latency of SCT were decreased by picrotoxin in both experimental groups. Nipecotic acid, a GABA uptake inhibitor, reduced the mean amplitude only for the control group. Nevertheless, nipecotic acid increased the frequency but diminished the latency in both experimental groups. Thus, we conclude that striatal astrocytes exhibit SCT modulated by GABAA-mediated signaling, and prenatal exposure to VPA disturbs this tuning.

8.
Front Cell Neurosci ; 18: 1412897, 2024.
Article in English | MEDLINE | ID: mdl-39144155

ABSTRACT

The cytoarchitecture of the striatum is remarkably homogeneous, in contrast to the regional variation in striatal functions. Whether differences in the intrinsic membrane properties of striatal neurons contribute to regional heterogeneity has not been addressed systematically. We made recordings throughout the young adult mouse striatum under identical conditions, with synaptic input blocked, from four major striatal neuron types, namely, the two subtypes of spiny projection neurons (SPNs), cholinergic interneurons (ChIs), and fast-spiking GABAergic interneurons (FSIs), sampling at least 100 cells per cell type. Regional variation manifested across all cell types. All cell types in the nucleus accumbens (NAc) shell had higher input impedance and increased excitability. Cells in the NAc core were differentiated from the caudate-putamen (CPu) for both SPN subtypes by smaller action potentials and increased excitability. Similarity between the two SPN subtypes showed regional variation, differing more in the NAc than in the CPu. So, in the Str, both the intrinsic properties of interneurons and projection neurons are regionally heterogeneous, with the greatest difference between the NAc and CPu; greater excitability of NAc shell neurons may make the region more susceptible to activity-dependent plasticity.

9.
Front Neurosci ; 18: 1439656, 2024.
Article in English | MEDLINE | ID: mdl-39145302

ABSTRACT

Background: Decision-making under risk is a common challenge. It is known that risk-taking behavior varies between contexts of reward and punishment, yet the mechanisms underlying this asymmetry in risk sensitivity remain unclear. Methods: This study used a monetary task to investigate neurochemical mechanisms and brain dynamics underpinning risk sensitivity. Twenty-eight participants engaged in a task requiring selection of visual stimuli to maximize monetary gains and minimize monetary losses. We modeled participant trial-and-error processes using reinforcement learning. Results: Participants with higher subjective utility parameters showed risk preference in the gain domain (r = -0.59) and risk avoidance in the loss domain (r = -0.77). Magnetic resonance spectroscopy (MRS) revealed that risk avoidance in the loss domain was associated with γ-aminobutyric acid (GABA) levels in the ventral striatum (r = -0.42), but not in the insula (r = -0.15). Using functional magnetic resonance imaging (fMRI), we tested whether risk-sensitive brain dynamics contribute to participant risky choices. Energy landscape analyses demonstrated that higher switching rates between brain states, including the striatum and insula, were correlated with risk avoidance in the loss domain (r = -0.59), a relationship not observed in the gain domain (r = -0.02). Conclusions: These findings from MRS and fMRI suggest that distinct mechanisms are involved in gain/loss decision making, mediated by subcortical neurometabolite levels and brain dynamic transitions.

10.
J Psychopharmacol ; 38(7): 581-596, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39041250

ABSTRACT

Pramipexole, a D2/D3 dopamine receptor agonist, is used to treat the motor symptoms of Parkinson's disease, caused by degeneration of the dopaminergic nigrostriatal pathway. There are three paradoxes associated with its mode of action. Firstly, stimulation of D2/D3 receptors leads to neuronal inhibition, although pramipexole does not inhibit but promotes some dopamine-modulated functions, such as locomotion and reinforcement. Secondly, another dopamine-modulated function, arousal, is not promoted but inhibited by pramipexole, leading to sedation. Thirdly, pramipexole-evoked sedation is associated with an increase in pupil diameter, although sedation is expected to cause pupil constriction. To resolve these paradoxes, the path from stimulation of D2/D3 receptors to the modification of dopamine-modulated functions has been tracked. The functions considered are modulated by midbrain dopaminergic nuclei: locomotion - substantia nigra pars compacta (SNc), reinforcement/motivation - ventral tegmental area (VTA), sympathetic activity (as reflected in pupil function) - VTA; arousal - ventral periaqueductal grey (vPAG), with contributions from VTA and SNc. The application of genetics-based molecular techniques (optogenetics and chemogenetics) has enabled tracing the chains of neurones from the dopaminergic nuclei to their final targets executing the functions. The functional neuronal circuits linked to the D2/D3 receptors in the dorsal and ventral striata, stimulated by inputs from SNc and VTA, respectively, may explain how neuronal inhibition induced by pramipexole is translated into the promotion of locomotion, reinforcement/motivation and sympathetic activity. As the vPAG may increase arousal mainly by stimulating cortical D1 dopamine receptors, pramipexole would stimulate only presynaptic D2/D3 receptors on vPAG neurones, curtailing their activity and leading to sedation.


Subject(s)
Dopamine Agonists , Dopamine , Pramipexole , Receptors, Dopamine D2 , Receptors, Dopamine D3 , Pramipexole/pharmacology , Animals , Humans , Dopamine Agonists/pharmacology , Receptors, Dopamine D3/metabolism , Receptors, Dopamine D3/agonists , Receptors, Dopamine D3/drug effects , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/drug effects , Dopamine/metabolism , Benzothiazoles/pharmacology , Locomotion/drug effects , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Arousal/drug effects
11.
Front Cell Neurosci ; 18: 1415015, 2024.
Article in English | MEDLINE | ID: mdl-39045533

ABSTRACT

Introduction: Dysfunction of the cortico-basal circuitry - including its primary input nucleus, the striatum - contributes to neuropsychiatric disorders, such as autism and Tourette Syndrome (TS). These conditions show marked sex differences, occurring more often in males than in females. Regulatory interneurons, such as cholinergic interneurons (CINs) and parvalbumin-expressing GABAergic fast spiking interneurons (FSIs), are implicated in human neuropsychiatric disorders such as TS, and ablation of these interneurons produces relevant behavioral pathology in male mice, but not in females. Here we investigate sex differences in the density and distribution of striatal interneurons. Methods: We use stereological quantification of CINs, FSIs, and somatostatin-expressing (SOM) GABAergic interneurons in the dorsal striatum (caudate-putamen) and the ventral striatum (nucleus accumbens) in male and female mice. Results: Males have a higher density of CINs than females, especially in the dorsal striatum; females have equal distribution between dorsal and ventral striatum. FSIs showed similar distributions, with a greater dorsal-ventral density gradient in males than in females. SOM interneurons were denser in the ventral than in the dorsal striatum, with no sex differences. Discussion: These sex differences in the density and distribution of FSIs and CINs may contribute to sex differences in basal ganglia function, particularly in the context of psychopathology.

12.
Cell Rep ; 43(8): 114540, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39058595

ABSTRACT

Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Our studies reveal that SPNs manifest a heterosynaptic, nitric oxide (NO)-dependent form of long-term postsynaptic depression of glutamatergic SPN synapses (NO-LTD) that is preferentially engaged at quiescent synapses. Plasticity is gated by Ca2+ entry through CaV1.3 Ca2+ channels and phosphodiesterase 1 (PDE1) activation, which blunts intracellular cyclic guanosine monophosphate (cGMP) and NO signaling. Both experimental and simulation studies suggest that this Ca2+-dependent regulation of PDE1 activity allows for local regulation of dendritic cGMP signaling. In a mouse model of Parkinson disease (PD), NO-LTD is absent because of impaired interneuronal NO release; re-balancing intrastriatal neuromodulatory signaling restores NO release and NO-LTD. Taken together, these studies provide important insights into the mechanisms governing NO-LTD in SPNs and its role in psychomotor disorders such as PD.

13.
Biol Sex Differ ; 15(1): 54, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003495

ABSTRACT

BACKGROUND: The transition from childhood to adulthood, or adolescence, a developmental stage, is characterized by psychosocial and biological changes. The nucleus accumbens (NAc), a striatal brain region composed of the core (NAcC) and shell (NAcSh), has been linked to risk-taking behavior and implicated in reward seeking and evaluation. Most neurons in the NAc are medium spiny neurons (MSNs) that express dopamine D1 receptors (D1R +) and/or dopamine D2 receptors (D2R +). Changes in dopaminergic and glutamatergic systems occur during adolescence and converge in the NAc. While there are previous investigations into sex differences in membrane excitability and synaptic glutamate transmission in both subdivisions of the NAc, to our knowledge, none have specified NAcSh D1R + MSNs from mice during pre- and mid-adolescence. METHODS: Sagittal brain slices containing the NAc were prepared from B6.Cg-Tg(Drd1a-tdTomato)6Calak/J mice of both sexes from postnatal days 21-25 and 35-47, representing pre- and mid-adolescence, respectively. Whole-cell electrophysiology recordings were collected from NAcSh D1R + MSNs in the form of membrane-voltage responses to current injections, to assess membrane properties and action potential waveform characteristics, and spontaneous excitatory postsynaptic currents (sEPSCs) to assess glutamatergic synaptic activity. RESULTS: Relative to pre-adolescent males, pre-adolescent female NAcSh D1R + MSNs exhibited a less hyperpolarized resting membrane potential, increased input resistance, and smaller action potential afterhyperpolarization amplitudes. During mid-adolescence, decreased input resistance and a shorter action potential duration in females were the only sex differences observed. CONCLUSIONS: Taken together, our results indicate that NAcSh D1R + MSNs in mice exhibit sex differences in membrane properties and AP waveform during pre-adolescence that are overall indicative of increased cellular excitability in females and are suggestive of possible sex differences in glycine receptors, inwardly-rectifying potassium channels, and large conductance voltage-gated potassium channels. These differences do not appear to persist into mid-adolescence, when sex was observed to affect input resistance oppositely to that of pre-adolescence and AP waveform in a manner suggestive of differences in voltage-gated potassium channels.


Adolescence marks a period of substantial changes in both the mind and body, where alterations in the brain's structure can influence behavior. One change in behavior exhibited by many adolescents is an increased tendency to take risks, particularly in males. While taking risks can result in positive outcomes, like learning new skills, it can also lead to reckless behaviors that may result in negative outcomes. The nucleus accumbens, a brain region tied to risk-taking and reward perception, is not well-studied during the transition from childhood to adulthood, particularly in terms of sex differences. To fill this gap in understanding, this study examined a specific type of brain cell in the nucleus accumbens of pre- and mid-adolescent male and female mice. We measured the electrical properties of these cells and assessed how they responded to manipulation of their electrical state. We also measured how much and how often excitatory electrical information is sent to these cells from other brain regions. Our results suggest that in pre-adolescent females, these brain cells are more excited by manipulations of their electrical state and that these brain cells in mid-adolescent males may take longer to communicate information to other brain regions than in similarly aged females. Understanding these intricacies of brain cell communication sheds light on potential sex-specific vulnerabilities during the transition from childhood to adulthood.


Subject(s)
Neurons , Nucleus Accumbens , Receptors, Dopamine D1 , Sex Characteristics , Animals , Receptors, Dopamine D1/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Nucleus Accumbens/cytology , Female , Male , Neurons/metabolism , Neurons/physiology , Mice , Membrane Potentials , Mice, Inbred C57BL , Excitatory Postsynaptic Potentials , Mice, Transgenic
14.
Addict Neurosci ; 112024 Jun.
Article in English | MEDLINE | ID: mdl-38957402

ABSTRACT

A preclinical model of cue exposure therapy, cue extinction, reduces cue-induced cocaine seeking that is goal-directed but not habit-like. Goal-directed and habitual behaviors differentially rely on the dorsomedial striatum (DMS) and dorsolateral striatum (DLS), but the effects of cue extinction on dorsal striatal responses to cue-induced drug seeking are unknown. We used fiber photometry in rats trained to self-administer cocaine paired with an audiovisual cue to examine how dorsal striatal intracellular calcium and extracellular dopamine activity differs between goal-directed and habit-like cue-induced cocaine seeking and how it is impacted by cue extinction. After minimal fixed-ratio training, rats showed enhanced DMS and DLS calcium responses to cue-reinforced compared to unreinforced lever presses. After rats were trained on goal-promoting fixed ratio schedules or habit-promoting second-order schedules of reinforcement, different patterns of dorsal striatal calcium and dopamine responses to cue-reinforced lever presses emerged. Rats trained on habit-promoting second-order schedules showed reduced DMS calcium responses and enhanced DLS dopamine responses to cue-reinforced lever presses. Cue extinction reduced calcium responses during subsequent drug seeking in the DMS, but not in the DLS. Therefore, cue extinction may reduce goal-directed behavior through its effects on the DMS, whereas habit-like behavior and the DLS are unaffected.

15.
Res Sq ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38978598

ABSTRACT

The striatonigral neurons are known to promote locomotion1,2. These neurons reside in both the patch (also known as striosome) and matrix compartments of the dorsal striatum3-5. However, the specific contribution of patch and matrix striatonigral neurons to locomotion remain largely unexplored. Using molecular identifier Kringle-Containing Protein Marking the Eye and the Nose (Kremen1) and Calbidin (Calb1)6, we showed in mouse models that patch and matrix striatonigral neurons exert opposite influence on locomotion. While a reduction in neuronal activity in matrix striatonigral neurons precedes the cessation of locomotion, fiber photometry recording during self-paced movement revealed an unexpected increase of patch striatonigral neuron activity, indicating an inhibitory function. Indeed, optogenetic activation of patch striatonigral neurons suppressed locomotion, contrasting with the locomotion-promoting effect of matrix striatonigral neurons. Consistently, patch striatonigral neuron activation markedly inhibited dopamine release, whereas matrix striatonigral neuron activation initially promoted dopamine release. Moreover, the genetic deletion of inhibitory GABA-B receptor Gabbr1 in Aldehyde dehydrogenase 1A1-positive (ALDH1A1+) nigrostriatal dopaminergic neurons (DANs) completely abolished the locomotion-suppressing effect caused by activating patch striatonigral neurons. Together, our findings unravel a compartment-specific mechanism governing locomotion in the dorsal striatum, where patch striatonigral neurons suppress locomotion by inhibiting the activity of ALDH1A1+ nigrostriatal DANs.

16.
Acta Neuropathol Commun ; 12(1): 121, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085955

ABSTRACT

Agyrophilic grains (AGs) are age-related limbic-predominant lesions in which four-repeat tau is selectively accumulated. Because previous methodologically heterogeneous studies have demonstrated inconsistent findings on the relationship between AGs and dementia, whether AGs affect cognitive function remains unclear. To address this question, we first comprehensively evaluated the distribution and quantity of Gallyas-positive AGs and the severity of neuronal loss in the limbic, neocortical, and subcortical regions in 30 cases of pure argyrophilic grain disease (pAGD) in Braak stages I-IV and without other degenerative diseases, and 34 control cases that had only neurofibrillary tangles with Braak stages I-IV and no or minimal Aß deposits. Then, we examined whether AGs have independent effects on neuronal loss and dementia by employing multivariate ordered logistic regression and binomial logistic regression. Of 30 pAGD cases, three were classified in diffuse form pAGD, which had evident neuronal loss not only in the limbic region but also in the neocortex and subcortical nuclei. In all 30 pAGD cases, neuronal loss developed first in the amygdala, followed by temporo-frontal cortex, hippocampal CA1, substantia nigra, and finally, the striatum and globus pallidus with the progression of Saito AG stage. In multivariate analyses of 30 pAGD and 34 control cases, the Saito AG stage affected neuronal loss in the amygdala, hippocampal CA1, temporo-frontal cortex, striatum, globus pallidus, and substantia nigra independent of the age, Braak stage, and limbic-predominant age-related TDP-43 encephalopathy (LATE-NC) stage. In multivariate analyses of 23 pAGD and 28 control cases that lacked two or more lacunae and/or one or more large infarctions, 100 or more AGs per × 400 visual field in the amygdala (OR 10.02, 95% CI 1.12-89.43) and hippocampal CA1 (OR 12.22, 95% CI 1.70-87.81), and the presence of AGs in the inferior temporal cortex (OR 8.18, 95% CI 1.03-65.13) affected dementia independent of age, moderate Braak stages (III-IV), and LATE-NC. Given these findings, the high density of limbic AGs and the increase of AGs in the inferior temporal gyrus may contribute to the occurrence of dementia through neuronal loss, at least in cases in a low to moderate Braak stage.


Subject(s)
Dementia , Neocortex , Humans , Male , Female , Aged , Aged, 80 and over , Dementia/pathology , Neocortex/pathology , Limbic System/pathology , Middle Aged , Neurofibrillary Tangles/pathology , Substantia Nigra/pathology , Globus Pallidus/pathology , Neurodegenerative Diseases/pathology
17.
Neuron ; 112(15): 2486-2502, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39002543

ABSTRACT

One key function of the brain is to control our body's movements, allowing us to interact with the world around us. Yet, many motor behaviors are not innate but require learning through repeated practice. Among the brain's motor regions, the cortico-basal ganglia circuit is particularly crucial for acquiring and executing motor skills, and neuronal activity in these regions is directly linked to movement parameters. Cell-type-specific adaptations of activity patterns and synaptic connectivity support the learning of new motor skills. Functionally, neuronal activity sequences become structured and associated with learned movements. On the synaptic level, specific connections become potentiated during learning through mechanisms such as long-term synaptic plasticity and dendritic spine dynamics, which are thought to mediate functional circuit plasticity. These synaptic and circuit adaptations within the cortico-basal ganglia circuitry are thus critical for motor skill acquisition, and disruptions in this plasticity can contribute to movement disorders.


Subject(s)
Basal Ganglia , Learning , Motor Skills , Neuronal Plasticity , Basal Ganglia/physiology , Neuronal Plasticity/physiology , Learning/physiology , Humans , Animals , Motor Skills/physiology , Cerebral Cortex/physiology , Neural Pathways/physiology , Motor Cortex/physiology
18.
Front Neuroanat ; 18: 1454746, 2024.
Article in English | MEDLINE | ID: mdl-39021662

ABSTRACT

[This corrects the article DOI: 10.3389/fnana.2019.00022.].

19.
Brain Behav Immun ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39084540

ABSTRACT

Pediatric Acute-onset Neuropsychiatric Syndrome (PANS) is characterized by the abrupt onset of significant obsessive-compulsive symptoms (OCS) and/or severe food restriction, together with other neuropsychiatric manifestations. An autoimmune pathogenesis triggered by infection has been proposed for at least a subset of PANS. The older diagnosis of Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcus (PANDAS) describes rapid onset of OCD and/or tics associated with infection with Group A Streptococcus. The pathophysiology of PANS and PANDAS remains incompletely understood. We recently found serum antibodies from children with rigorously defined PANDAS to selectively bind to cholinergic interneurons (CINs) in the striatum. Here we examine this binding in children with relapsing and remitting PANS, a more heterogeneous condition, collected in a distinct clinical context from those examined in our previous work, from children with a clinical history of Streptococcus infection. IgG from PANS cases showed elevated binding to striatal CINs in both mouse and human brain. Patient plasma collected during symptom flare decreased a molecular marker of CIN activity, phospho-riboprotein S6, in ex vivo brain slices; control plasma did not. Neither elevated antibody binding to CINs nor diminished CIN activity was seen with plasma collected from the same children during remission. These findings replicate what we have seen previously in PANDAS and support the hypothesis that at least a subset of PANS cases have a neuroimmune pathogenesis. Given the critical role of CINs in modulating basal ganglia function, these findings confirm striatal CINs as a locus of interest in the pathophysiology of both PANS and PANDAS.

20.
Biomed Pharmacother ; 178: 117145, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39038374

ABSTRACT

Vitamin D is a critical fat-soluble vitamin for the nervous system. Research suggests a potential link between vitamin D deficiency and attention-deficit hyperactivity disorder (ADHD), particularly in children and adolescents. The core symptoms of ADHD are associated with deficits in striatal functions, and maintaining sufficient levels of vitamin D may help prevent or alleviate ADHD symptoms. However, the molecular changes in the striatum caused by vitamin D supplementation that may contribute to the brain processes linked to ADHD symptoms remain unclear. In this study, we established a mouse model fed diets with three different dose gradients of vitamin D3 (0, 500, and 2000 IU/kg·day) from postnatal day 21 (P21) to 14 weeks of age. Striatal tissues from mice with gradient vitamin D3 intake were subjected to reduced representation bisulfite sequencing (RRBS), RNA-sequencing, and neurotransmitter profiling by liquid chromatography-mass spectrometry (LC-MS). Our findings indicate that vitamin D supplementation since childhood influenced the overall landscape of DNA methylations and the expression of many genes involved in critical neurological functions in a dose-dependent manner. Additionally, our data demonstrate how vitamin D modulated neuropeptide signaling pathways, as well as cholinergic and dopaminergic synapses in the striatum, through an orchestrated mechanism involving epigenetic and transcriptional regulations. Furthermore, we observed a synergistic effect of vitamin D on dopamine release following acute methylphenidate injection into our mouse model. In summary, this study provides mechanistic insights into how dietary vitamin D supplementation since childhood can modulate specific signal transductions among striatal cells, underscoring the importance of vitamin D supplementation for ADHD management.

SELECTION OF CITATIONS
SEARCH DETAIL