Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24.094
Filter
1.
MAbs ; 16(1): 2381891, 2024.
Article in English | MEDLINE | ID: mdl-39041287

ABSTRACT

Novel engineered IL-2 agonists strive to increase the therapeutic window of aldesleukin (human IL-2) by increasing selectivity toward effector over regulatory T cells and reducing dose-limiting toxicities. Here we describe ANV419, an IL-2/anti-IL2 antibody fusion protein designed for selective IL-2 receptor ßγ (IL-2 Rßγ) activation by sterically hindering IL-2 from binding to IL-2 Rα. The fusion protein has an IL-2 connected to the light chain complementarity-determining region (CDR) domain of a humanized antibody that binds to IL-2 at the same epitope as IL-2 Rα. Optimization of the selectivity and pharmacological properties led to the selection of ANV419. ANV419 preferentially expands CD8+ T cells and natural killer (NK) cells over Tregs and can be safely administered at doses that elicit strong pharmacodynamic effects and efficacy in mouse tumor models. Its anti-tumor efficacy was enhanced when combined with programmed cell death protein 1 (PD-1) or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) checkpoint inhibitors. ANV419 also enhances the NK cell killing capacity and increases tumor growth inhibition when used alongside trastuzumab in a Her-2+ xenograft mouse model. In cynomolgus monkeys, the estimated half-life of ANV419 is 24 h, and doses that induced sustained expansion of effector cells were well tolerated without the severe toxicities typically observed with high-dose IL-2. These data support the clinical development of ANV419 in solid tumors and hematological malignancies as monotherapy and in combination with checkpoint inhibitors or agents that induce antibody-dependent cellular cytotoxicity. ANV419 is currently in Phase 1/2 clinical development and may provide cancer patients with a wider therapeutic window than aldesleukin.


Subject(s)
CD8-Positive T-Lymphocytes , Interleukin-2 , Killer Cells, Natural , Recombinant Fusion Proteins , Animals , Killer Cells, Natural/immunology , Humans , Interleukin-2/immunology , CD8-Positive T-Lymphocytes/immunology , Mice , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Immunotherapy/methods , Macaca fascicularis , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Cell Line, Tumor , Female
2.
Front Immunol ; 15: 1406716, 2024.
Article in English | MEDLINE | ID: mdl-39044836

ABSTRACT

Introduction: Older recipient age is associated with a significant decreased risk for rejection after kidney transplantation which is incompletely understood. Methods: In a longitudinal study, circulating alloreactive T cells were assessed of young (≤45 years) and older (≥55 years) stable kidney transplant recipients. Alloreactive T-cells were identified by CD137-expression and phenotype, cytokine producing and proliferative capacity, were evaluated using multiparameter flowcytometry. Results: The results show that before transplantation frequencies of alloreactive CD4+ and CD8+ T-cells in older KT-recipients are significantly higher and shifted towards an effector memory-phenotype. However, the frequency of polyfunctional (≥2 pro-inflammatory cytokines) CD4+ T-cells was significantly lower and less IL2 was produced. The frequency of polyfunctional alloreactive CD4+ T-cells and proliferation of alloreactive T-cells donor-specifically declined after transplantation reaching a nadir at 12 months after transplantation, irrespective of age. A striking difference was observed for the proliferative response of alloreactive CD8+ T-cells. This was not only lower in older compared to younger recipients but could also not be restored by exogenous IL2 or IL15 in the majority of older recipients while the response to polyclonal stimulation was unaffected. Conclusion: In conclusion, older age is associated with a distinct and marked reduction of functionality of both alloreactive CD4+ and CD8+ T-cells.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Kidney Transplantation , Humans , CD8-Positive T-Lymphocytes/immunology , Middle Aged , CD4-Positive T-Lymphocytes/immunology , Female , Male , Aged , Adult , Age Factors , Graft Rejection/immunology , Longitudinal Studies , Interleukin-2/metabolism , Cytokines/metabolism , Cell Proliferation
3.
J Theor Biol ; 593: 111898, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996911

ABSTRACT

The CD8+ T cell response is the main determinant of viral clearance during influenza infection. However, influenza viral dynamics and the respective immune responses are affected by the host's age. To investigate age-related differences in the CD8+ T cell immune response dynamics, we propose 16 ordinary differential equation models of existing experimental data. These data consist of viral titer and CD8+ T cell counts collected periodically over a period of 19 days from adult and aged mice infected with influenza A/Puerto Rico/8/34 (H1N1). We use the corrected Akaike Information Criterion to identify the models which best represent the considered data. Our model selection process indicates differences in mechanisms which reduce the CD8+ T cell response: linear downregulation is favored for adult mice, while baseline exponential decay is favored for aged mice. Parameter fitting of the top ranked models suggests that the aged population has reduced CD8+ T cell proliferation compared to the adult population. More experimental work is needed to determine the specific immunological features through which age might cause these differences. A better understanding of the immunological mechanisms by which aging leads to discrepant CD8+ T cell dynamics may inform future treatment strategies.

4.
Clin Immunol ; 266: 110313, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002793

ABSTRACT

Autoimmunity is a normal physiological state that requires immunological homeostasis and surveillance, whereas necroptosis is a type of inflammatory cell death. When necroptosis occurs, various immune system cells must perform their appropriate duties to preserve immunological homeostasis, whether the consequence is expanding or limiting the inflammatory response and the pathological condition is cleared or progresses to the autoimmune disease stage. This article discusses necroptosis based on RIP homotypic interaction motif (RHIM) interaction under various physiological and pathological situations, with the RIPK1-RIPK3-MLKL necrosome serving as the regulatory core. In addition, the cell biology of necroptosis involved in autoimmunity and its application in autoimmune diseases were also reviewed.

5.
J Neuroinflammation ; 21(1): 171, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010082

ABSTRACT

White matter injury (WMI) is thought to be a major contributor to long-term cognitive dysfunctions after traumatic brain injury (TBI). This damage occurs partly due to apoptotic death of oligodendrocyte lineage cells (OLCs) after the injury, triggered directly by the trauma or in response to degenerating axons. Recent research suggests that the gut microbiota modulates the inflammatory response through the regulation of peripheral immune cell infiltration after TBI. Additionally, T-cells directly impact OLCs differentiation and proliferation. Therefore, we hypothesized that the gut microbiota plays a critical role in regulating the OLC response to WMI influencing T-cells differentiation and activation. Gut microbial depletion early after TBI chronically reduced re-myelination, acutely decreased OLCs proliferation, and was associated with increased myelin debris accumulation. Surprisingly, the absence of T-cells in gut microbiota depleted mice restored OLC proliferation and remyelination after TBI. OLCs co-cultured with T-cells derived from gut microbiota depleted mice resulted in impaired proliferation and increased expression of MHC-II compared with T cells from control-injured mice. Furthermore, MHC-II expression in OLCs appears to be linked to impaired proliferation under gut microbiota depletion and TBI conditions. Collectively our data indicates that depletion of the gut microbiota after TBI impaired remyelination, reduced OLCs proliferation with concomitantly increased OLC MHCII expression, and required the presence of T cells. This data suggests that T cells are an important mechanistic link by which the gut microbiota modulate the oligodendrocyte response and white matter recovery after TBI.


Subject(s)
Brain Injuries, Traumatic , Gastrointestinal Microbiome , Mice, Inbred C57BL , Oligodendroglia , Animals , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/microbiology , Oligodendroglia/pathology , Gastrointestinal Microbiome/physiology , Mice , Cell Proliferation/physiology , Male , T-Lymphocytes/immunology , Cells, Cultured
6.
BMC Cancer ; 24(1): 869, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030523

ABSTRACT

CD8+T cells secreting granzyme A (GZMA) can induce pyroptosis in tumor cells by effectively cleaving gasdermin B (GSDMB), which is stimulated by interferon-γ (IFN-γ). However, the interaction between GZMA-expressing CD8+T cells and GSDMB-expressing tumor cells in colon cancer remains poorly understood. Our research employed multi-color immunohistochemistry (mIHC) staining and integrated clinical data to explore the spatial distribution and clinical relevance of GZMA- and IFN-γ-expressing CD8+ tumor-infiltrating lymphocytes (TILs), as well as GSDMB-expressing CK+ cells, within the tumor microenvironment (TME) of human colon cancer samples. Additionally, we utilizing single-cell RNA sequencing (scRNA-seq) data to examine the functional dynamics and interactions among these cell populations. scRNA-seq analysis of colorectal cancer (CRC) tissues revealed that CD8+TILs co-expressed GZMA and IFN-γ, but not other cell types. Our mIHC staining results indicated that a significant reduction in the infiltration of GZMA+IFN-γ+CD8+TILs in colon cancer patients (P < 0.01). Functional analysis results indicated that GZMA+IFN-γ+CD8+TILs demonstrated enhanced activation and effector functions compared to other CD8+TIL subsets. Furthermore, GSDMB-expressing CK+ cells exhibited augmented immunogenicity. Correlation analysis highlighted a positive association between GSDMB+CK+ cells and GZMA+IFN-γ+CD8+TILs (r = 0.221, P = 0.033). Analysis of cell-cell interactions further showed that these interactions were mediated by IFN-γ and transforming growth factor-ß (TGF-ß), the co-stimulatory molecule ICOS, and immune checkpoint molecules TIGIT and TIM-3. These findings suggested that GZMA+IFN-γ+CD8+TILs modulating GSDMB-expressing tumor cells, significantly impacted the immune microenvironment and patients' prognosis in colon cancer. By elucidating these mechanisms, our present study aims to provide novel insights for the advancement of immunotherapeutic strategies in colon cancer.


Subject(s)
CD8-Positive T-Lymphocytes , Colonic Neoplasms , Granzymes , Interferon-gamma , Lymphocytes, Tumor-Infiltrating , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Granzymes/metabolism , Interferon-gamma/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Male , Female , Single-Cell Analysis
7.
J Infect ; 89(3): 106231, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032519

ABSTRACT

OBJECTIVES: The mechanism that leads to disseminated tuberculosis in HIV-negative patients is still largely unknown. T cell subsets and signaling pathways that were associated with disseminated tuberculosis were investigated. METHODS: Single-cell profiling of whole T cells was performed to identify T cell subsets and enriched signaling pathways that were associated with disseminated tuberculosis. Flow cytometric analysis and blocking experiment were used to investigate the findings obtained by transcriptome sequencing. RESULTS: Patients with disseminated tuberculosis had depleted Th1, Tc1 and Tc17 cell subsets, and IFNG was the most down-regulated gene in both CD4 and CD8 T cells. Gene Ontology analysis showed that non-canonical NF-κB signaling pathway, including NFKB2 and RELB genes, was significantly down-regulated and was probably associated with disseminated tuberculosis. Expression of several TNF superfamily ligands and receptors, such as LTA and TNF genes, were suppressed in patients with disseminated tuberculosis. Blocking of TNF-α and soluble LTα showed that TNF-α was involved in IFN-γ production and LTα influenced TNF-α expression in T cells. CONCLUSIONS: Impaired T cell IFN-γ response mediated by suppression of TNF and non-canonical NF-κB signaling pathways might be responsible for disseminated tuberculosis.

8.
Cancer Cell Int ; 24(1): 255, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033098

ABSTRACT

BACKGROUND: Numerous gene signatures predicting the prognosis of bladder cancer have been identified. However, a tumor-specific T cell signature related to immunotherapy response in bladder cancer remains under investigation. METHODS: Single-cell RNA and TCR sequencing from the Gene expression omnibus (GEO) database were used to identify tumor-specific T cell-related genes in bladder cancer. Subsequently, we constructed a tumor-specific T cell signature (TstcSig) and validated its clinical relevance for predicting immunotherapy response in multiple immunotherapy cohorts. Further analyses explored the immune characteristics of TstcSig in bladder cancer patients from other cohorts in the TCGA and GEO databases. Western blot (WB), multicolor immunofluorescence (MIF), qRT-PCR and flow cytometry assays were performed to validate the results of bioinformatics analysis. RESULTS: The established TstcSig, based on five tumor-specific T cell-related genes, could predict outcomes in a bladder cancer immunotherapy cohort. This was verified using two additional immunotherapy cohorts and showed better predictive performance compared to 109 published T cell signatures. TstcSig was strongly correlated with immune characteristics such as immune checkpoint gene expression, tumor mutation burden, and T cell infiltration, as validated by single-cell and spatial transcriptomics datasets. Notably, the positive correlation between TstcSig and T cell infiltration was confirmed in the TCGA cohort. Furthermore, pan-cancer analysis demonstrated the heterogeneity of the prognostic value of TstcSig. Tumor-specific T cells highly expressed CD27, IFNG, GZMB and CXCL13 and secreted more effector cytokines for tumor cell killing, as validated experimentally. CONCLUSION: We developed a five-gene signature (including VAMP5, TIGIT, LCK, CD27 and CACYBP) based on tumor-specific T cell-related genes to predict the immunotherapy response in bladder cancer patients.

9.
Clin Exp Immunol ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044534

ABSTRACT

T cells are one of the main drivers of inflammatory bowel diseases (IBD). Infliximab (IFX) is used in the treatment of IBD as an anti-inflammatory drug to induce remission by neutralizing TNFα. We determined the individual chemokine/homing receptor and cytokine profile in pediatric IBD patients before and during IFX therapy to identify predictive biomarkers for therapy success. Peripheral blood CD4+ cells from pediatric patients with IBD were immunomagnetically isolated and either directly analyzed by FACS for cell distribution and chemokine/homing receptor expression or evaluated for cytokine production after in-vitro-stimulation. 21 responders (RS) and 21 non-responders (NRS) were recruited. Before IFX therapy, flow cytometry revealed decreased percentages of naïve conventional T cells in pediatric IBD patients. The proportions of CD62-L+ T cells were decreased in both CD and UC therapy responders. The cytokine profile of T cells was highly altered in IBD patients compared to healthy controls (HC). During IFX therapy, the frequencies of conventional memory and regulatory memory T cells expanded in both cohorts. IFX response was marked by a decrease of α4ß7+ and IFNγ+ memory T cells in both CD and UC. In contrast, frequencies of Lag-3+ T cells proved to be significantly increased in NRS. These observations were irrespective of the underlying disease. T cells of pediatric IBD patients display an activated and rather Th1/Th17 shifted phenotype The increased expression of the checkpoint molecule Lag-3 on T cells of NRS resembles a more exhausted phenotype than in RS and HC which appeared to be a relevant predictive marker for therapy failure.

10.
Clin Exp Med ; 24(1): 163, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039306

ABSTRACT

Primary Sjögren's syndrome (pSS) is a prevalent autoimmune disorder wherein CD4+ T cells play a pivotal role in its pathogenesis. However, the underlying mechanisms driving the hyperactivity of CD4+ T cells in pSS remain poorly understood. This study aimed to investigate the potential role of immunometabolic alterations in driving the hyperactivity of CD4+ T cells in pSS. We employed Seahorse XF assay to evaluate the metabolic phenotype of CD4+ T cells, conducted flow cytometry to assess the effector function and differentiation of CD4+ T cells and measured the level of intracellular reactive oxygen species (ROS). Additionally, transcriptome sequencing, PCR, and Western blotting were utilized to examine the expression of glycolytic genes. Our investigation revealed that activated CD4+ T cells from pSS patients exhibited elevated aerobic glycolysis, rather than oxidative phosphorylation, resulting in excessive production of IFN-γ and IL-17A. Inhibition of glycolysis by 2-Deoxy-D-glucose reduced the expression of IFN-γ and IL-17A in activated CD4+ T cells and mitigated the differentiation of Th1 and Th17 cells. Furthermore, the expression of glycolytic genes, including CD3E, CD28, PIK3CA, AKT1, mTOR, MYC, LDHA, PFKL, PFKFB3, and PFKFB4, was upregulated in activated CD4+ T cells from pSS patients. Specifically, the expression and activity of LDHA were enhanced, contributing to an increased level of intracellular ROS. Targeting LDHA with FX-11 or inhibiting ROS with N-acetyl-cysteine had a similar effect on reversing the dysfunction of activated CD4+ T cells from pSS patients. Our study unveils heightened aerobic glycolysis in activated CD4+ T cells from pSS patients, and inhibition of glycolysis or its metabolite normalizes the dysfunction of activated CD4+ T cells. These findings suggest that aerobic glycolysis may be a promising therapeutic target for the treatment of pSS.


Subject(s)
CD4-Positive T-Lymphocytes , Glycolysis , Reactive Oxygen Species , Sjogren's Syndrome , Humans , Sjogren's Syndrome/immunology , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/pathology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Reactive Oxygen Species/metabolism , Female , Middle Aged , Male , Adult , Th17 Cells/immunology , Cell Differentiation , Interferon-gamma/metabolism , Interleukin-17/metabolism , Th1 Cells/immunology
11.
BMC Oral Health ; 24(1): 829, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039547

ABSTRACT

BACKGROUND: Mucosal-associated invariant T (MAIT) cells assume pivotal roles in numerous autoimmune inflammatory maladies. However, scant knowledge exists regarding their involvement in the pathological progression of oral lichen planus (OLP). The focus of our study was to explore whether MAIT cells were altered across distinct clinical types of OLP. METHODS: The frequency, phenotype, and partial functions of MAIT cells were performed by flow cytometry, using peripheral blood from 18 adults with non-erosive OLP and 22 adults with erosive OLP compared with 15 healthy adults. We also studied the changes in MAIT cells in 15 OLP patients receiving and 10 not receiving corticosteroids. Surface proteins including CD4, CD8, CD69, CD103, CD38, HLA-DR, Tim-3, Programmed Death Molecule-1 (PD-1), and related factors released by MAIT cells such as Granzyme B (GzB), interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-17A, and IL-22 were detected. RESULTS: Within non-erosive OLP patients, MAIT cells manifested an activated phenotype, evident in an elevated frequency of CD69+ CD38+ MAIT cells (p < 0.01). Conversely, erosive OLP patients displayed an activation and depletion phenotype in MAIT cells, typified by elevated CD69 (p < 0.01), CD103 (p < 0.05), and PD-1 expression (p < 0.01). Additionally, MAIT cells exhibited heightened cytokine production, encompassing GzB, IFN-γ, and IL-17A in erosive OLP patients. Notably, the proportion of CD103+ MAIT cells (p < 0.05) and GzB secretion (p < 0.01) by MAIT cells diminished, while the proportion of CD8+ MAIT cells (p < 0.05) rose in OLP patients with corticosteroid therapy. CONCLUSIONS: MAIT cells exhibit increased pathogenicity and pro-inflammatory capabilities in OLP. Corticosteroid therapy influences the expression of certain phenotypes and functions of MAIT cells in the peripheral blood of OLP patients.


Subject(s)
Lichen Planus, Oral , Mucosal-Associated Invariant T Cells , Humans , Lichen Planus, Oral/immunology , Lichen Planus, Oral/pathology , Mucosal-Associated Invariant T Cells/immunology , Male , Female , Middle Aged , Adult , Antigens, CD , Aged , Granzymes/metabolism , Adrenal Cortex Hormones/therapeutic use , Cytokines/metabolism , Programmed Cell Death 1 Receptor , Case-Control Studies , Antigens, Differentiation, T-Lymphocyte , Phenotype , Flow Cytometry , Lectins, C-Type
12.
Expert Rev Clin Immunol ; : 1-14, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39039915

ABSTRACT

INTRODUCTION: Cytomegalovirus (CMV) is a common opportunistic infection after solid organ transplantation, with significant impact on morbidity and long-term survival. Despite advances in diagnostics and therapeutics, the management of CMV remains very challenging. AREAS COVERED: This article reviews emerging data on the clinical utility of laboratory assays that quantify cell-mediated immune responses to CMV. Observational studies have consistently demonstrated that a deficiency in pathogen-specific cell-mediated immunity is correlated with a heightened risk of primary, reactivation or recurrent CMV after transplantation. A limited number of interventional studies have recently investigated cell-mediated immune assays in guiding the prevention and treatment of CMV infection after solid organ transplantation. EXPERT OPINION: The pathogenesis and outcome of CMV after solid organ transplantion reflect the interplay between viral replication and CMV-specific immune reconstitution. Research in CMV-specific cell-mediated immunity paved way for the development of several laboratory assays that may assist clinicians in predicting the risk of CMV after transplantation, individualize the approach to CMV disease prevention, guide the need and duration of treatment of CMV infection, and predict the risk of relapse after treatment. More interventional studies are needed to further solidify the role of cell-mediated immune assays in various clinical situations after transplantation.

13.
Immunity ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39043184

ABSTRACT

The memory CD8+ T cell pool contains phenotypically and transcriptionally heterogeneous subsets with specialized functions and recirculation patterns. Here, we examined the epigenetic landscape of CD8+ T cells isolated from seven non-lymphoid organs across four distinct infection models, alongside their circulating T cell counterparts. Using single-cell transposase-accessible chromatin sequencing (scATAC-seq), we found that tissue-resident memory T (TRM) cells and circulating memory T (TCIRC) cells develop along distinct epigenetic trajectories. We identified organ-specific transcriptional regulators of TRM cell development, including FOSB, FOS, FOSL1, and BACH2, and defined an epigenetic signature common to TRM cells across organs. Finally, we found that although terminal TEX cells share accessible regulatory elements with TRM cells, they are defined by TEX-specific epigenetic features absent from TRM cells. Together, this comprehensive data resource shows that TRM cell development is accompanied by dynamic transcriptome alterations and chromatin accessibility changes that direct tissue-adapted and functionally distinct T cell states.

14.
Cell Rep ; 43(7): 114490, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38990720

ABSTRACT

Although oral tolerance is a critical system in regulating allergic disorders, the mechanisms by which dietary factors regulate the induction and maintenance of oral tolerance remain unclear. To address this, we explored the differentiation and function of various immune cells in the intestinal immune system under fasting and ad libitum-fed conditions before oral ovalbumin (OVA) administration. Fasting mitigated OVA-specific Treg expansion, which is essential for oral tolerance induction. This abnormality mainly resulted from functional defects in the CX3CR1+ cells responsible for the uptake of luminal OVA and reduction of tolerogenic CD103+ dendritic cells. Eventually, fasting impaired the preventive effect of oral OVA administration on asthma and allergic rhinitis development. Specific food ingredients, namely carbohydrates and arginine, were indispensable for oral tolerance induction by activating glycolysis and mTOR signaling. Overall, prior food intake and nutritional signals are critical for maintaining immune homeostasis by inducing tolerance to ingested food antigens.


Subject(s)
Arginine , Dendritic Cells , Immune Tolerance , Ovalbumin , T-Lymphocytes, Regulatory , TOR Serine-Threonine Kinases , Animals , Arginine/metabolism , T-Lymphocytes, Regulatory/immunology , Ovalbumin/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mice , TOR Serine-Threonine Kinases/metabolism , Mice, Inbred C57BL , Administration, Oral , CX3C Chemokine Receptor 1/metabolism , Intestines/immunology , Antigens, CD/metabolism , Integrin alpha Chains/metabolism , Sugars/metabolism , Glycolysis , Fasting , Signal Transduction , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Female
15.
Cell Rep ; 43(7): 114458, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38996070

ABSTRACT

Regulatory T (Treg) cells play a critical regulatory role in the immune system by suppressing excessive immune responses and maintaining immune balance. The effective migration of Treg cells is crucial for controlling the development and progression of inflammatory diseases. However, the mechanisms responsible for directing Treg cells into the inflammatory tissue remain incompletely elucidated. In this study, we identified BAF60b, a subunit of switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complexes, as a positive regulator of Treg cell migration that inhibits the progression of inflammation in experimental autoimmune encephalomyelitis (EAE) and colitis animal models. Mechanistically, transcriptome and genome-wide chromatin-landscaped analyses demonstrated that BAF60b interacts with the transcription factor RUNX1 to promote the expression of CCR9 on Treg cells, which in turn affects their ability to migrate to inflammatory tissues. Our work provides insights into the essential role of BAF60b in regulating Treg cell migration and its impact on inflammatory diseases.


Subject(s)
Cell Movement , Inflammation , Mice, Inbred C57BL , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Mice , Inflammation/pathology , Inflammation/metabolism , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Humans , Transcription Factors/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Colitis/metabolism , Colitis/pathology , Colitis/immunology , Colitis/genetics
16.
Dermatopathology (Basel) ; 11(3): 218-229, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39051325

ABSTRACT

IgG4-RD is a multisystem fibroinflammatory disease characterized by the infiltration of tissues by IgG4 plasma cells. Combined skin and biliary tract involvement in IgG4-RD has not been described. We present perhaps the most comprehensive analysis of lymphocyte subsets in the first case of IgG4-related generalized skin rash and first case of combined skin and biliary tract manifestations. A 55-year-old male presented with painful jaundice and generalized macular pigmented pruritic eruptions, and CT abdomen revealed biliary obstruction. Ampulla and skin biopsies were subjected to histology and immunostaining. Naïve, central memory (TCM), effector memory (TEM), terminally differentiated effector memory (TEMRA) subsets of CD4+ and CD8+ T cells, T follicular helper subsets, naïve, transitional, marginal zone (MZ), germinal center (GC), IgM memory, and class-switched memory (CSM) B cells, and T follicular regulatory, regulatory B cells, CD4 Treg, and CD8 Treg were analyzed. Serum IgG4 was elevated at 448 mg/dL. Ampula biopsy showed lamina propria fibrosis and increased IgG4-positive plasma cells. Skin punch biopsy showed lymphoplasmacytic infiltrates with a 67% ratio of IgG4+:IgG+ plasma cells. CD4+TN and CD4+TCM decreased, whereas CD4+TEM increased. Naïve B cells increased; transitional, MZ, CSM, GC B cells, and plasmablasts decreased compared to control. CD4 Treg increased, whereas CD8 Treg and Breg decreased. In conclusion, IgG-RD may present with combined biliary tract and generalized dermatological manifestations. Changes in regulatory lymphocytes suggest their role in the pathogenesis of IgG4-RD.

17.
Mol Immunol ; 173: 61-70, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39059207

ABSTRACT

Aging is a gradual, inevitable physiologic process. The organ aging is related to the persistence of chronic inflammation, but the understanding of inflammatory state during renal aging is lacking currently. Single-cell transcriptome sequencing was performed on aging mouse kidney to reveal the molecular phenotype and composition changes of different cell types. In the early stage of aging, immune cells such as T, B cells and mononuclear macrophages increased in kidney. The molecular state of T cells in aging kidney changed and polarized. Among them, we identified a group of GZMK+ CD8 + T cells with high expression of Eomes, Pdcd1 and Ifng and a group of Il17a+ T cells with high expression of Il17a and Il23r. Moreover, the cytokines and inflammations can aggravate tissue damage eventually. Furthermore, we found the interaction between different types of epithelial cells and T cells increased during the renal aging. These results identify the changes of T cells in the early stage of aging kidney and suggest that GZMK+CD8+ T cells might be a potential target to ameliorate age-associated dysfunctions of kidney(Graphical Abstract).

18.
Phytomedicine ; 132: 155852, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39029137

ABSTRACT

BACKGROUND: Theabrownin (TB) is a dark brown pigment from Pu-erh tea or other dark teas. It is formed by further oxidization of theaflavins and thearubigins, in combination with proteins, polysaccharides, and caffeine etc. TB is a characteristic ingredient and bioactive substance of Pu-erh tea. However, the effects of TB on ulcerative colitis (UC) remains unclear. PURPOSE: This study aims to elucidate the mechanism of TB on UC in terms of recovery of intestinal homeostasis and regulation of toll-like receptor (TLR) 2&4 signaling pathway. METHODS: The colitis models were established by administering 5% dextran sulfate sodium (DSS) to C57BL/6 mice for 5 days to evaluate the therapeutic and preventive effects of TB on UC. Mesalazine was used as a positive control. H&E staining, complete blood count, enzyme-linked immunosorbent assay, immunohistochemistry, flow cytometry, and 16S rRNA sequencing were employed to assess histological changes, blood cells analysis, content of cytokines, expression and distribution of mucin (MUC)2 and TLR2&4, differentiation of CD4+T cells in lamina propria, and changes in intestinal microbiota, respectively. Western blot was utilized to study the relative expression of tight junction proteins and the key proteins in TLR2&4-mediated MyD88-dependent MAPK, NF-κB, and AKT signaling pathways. RESULTS: TB outstanding alleviated colitis, inhibited the release of pro-inflammatory cytokines, reduced white blood cells while increasing red blood cells, hemoglobin, and platelets. TB increased the expression of occludin, claudin-1 and MUC2, effectively restored intestinal barrier function. TB also suppressed differentiation of Th1 and Th17 cells in the colon's lamina propria, increased the fraction of Treg cells, and promoted the balance of Treg/Th17 to tilt towards Tregs. Moreover, TB increased the Firmicutes to Bacteroides (F/B) ratio, as well as the abundance of Akkermansia, Muribaculaceae, and Eubacterium_coprostanoligenes_group at the genus level. In addition, TB inhibited the activation of TLR2&4-mediated MAPK, NF-κB, and AKT signaling pathways in intestinal epithelial cells of DSS-induced mice. CONCLUSION: TB acts in restoring intestinal homeostasis and anti-inflammatory in DSS-induced UC, and exhibiting a preventive effect after long-term use. In a word, TB is a promising beverage, health product and food additive for UC.

19.
Eur J Med Chem ; 276: 116673, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39029338

ABSTRACT

Phosphoantigens (pAgs) induce conformational changes after binding to the intracellular region of BTN3A1 which result in its clustering with BTN2A1, forming an activating ligand for the Vγ9Vδ2 T cell receptor. Here, we designed a small panel of bulky analogs of the prototypical pAg (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) that contain an aromatic ring attached to the C-3 position in place of methyl group. These compounds bind with high affinity to BTN3A1 but fail to fully support its interaction with BTN2A1 and only partially trigger T cell activation relative to HMBPP. Furthermore, they can compete with HMBPP for cellular binding to BTN3A1 and reduce the cellular response to HMBPP, a classic partial agonist phenotype. Trifluoromethyl analog 6e was the weakest agonist but the strongest inhibitor of HMBPP ELISA response. Our study provides a rationale for the mode of action of pAg-induced γδ T cell activation and provides insights into other naturally occurring BTN proteins and their respective ligands.

20.
Cancer Cell ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39029466

ABSTRACT

The tumor microenvironment (TME) has a significant impact on tumor growth and immunotherapy efficacies. However, the precise cellular interactions and spatial organizations within the TME that drive these effects remain elusive. Using advanced multiplex imaging techniques, we have discovered that regulatory T cells (Tregs) accumulate around lymphatic vessels in the peripheral tumor stroma. This localized accumulation is facilitated by mature dendritic cells enriched in immunoregulatory molecules (mregDCs), which promote chemotaxis of Tregs, establishing a peri-lymphatic Treg-mregDC niche. Within this niche, mregDCs facilitate Treg activation, which in turn restrains the trafficking of tumor antigens to the draining mesenteric lymph nodes, thereby impeding the initiation of anti-tumor adaptive immune responses. Disrupting Treg recruitment to mregDCs inhibits tumor progression. Our study provides valuable insights into the organization of TME and how local crosstalk between lymphoid and myeloid cells suppresses anti-tumor immune responses.

SELECTION OF CITATIONS
SEARCH DETAIL