Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 726
Filter
1.
3D Print Addit Manuf ; 11(3): e1310-e1323, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39359578

ABSTRACT

The hybrid selective laser melting (SLM) technology by laser welding can capture the superiorities of both processes to produce large-scale, high-quality, high-resolution, and complicated-shaped metallic parts. In this work, the SLMed 304 stainless steel, Inconel 718 superalloy, and Ti-6Al-4V alloy sheets were joined by laser welding under various building directions. And then, the microstructure, microhardness, tensile properties, and corrosion resistance of the laser-welded SLMed 304 stainless steel, Inconel 718 superalloy, and Ti-6Al-4V alloy were compared to explore the effect of SLMed microstructural anisotropy and crystal structure. The results showed that phase constitutions were the same between the SLMed and laser-welded joints for the three alloys. But the grain size and dendrite arm spacings in the joints were coarser than those in the SLMed samples. The SLMed microstructural anisotropy resulted in differences in the thermal gradient, grain size, dendrite arm spacing, and tensile properties in the joints under various welding types. Compared with the SLMed counterparts, the laser-welded 304 stainless steel and Inconel 718 joints showed lower microhardness and tensile properties but better corrosion resistance. In contrast, the laser-welded Ti-6Al-4V joints possess a higher microhardness, tensile properties, and corrosion resistance. Therefore, it is feasible to join SLMed parts to manufacture large-scale parts by laser welding.

2.
Biomed Phys Eng Express ; 10(6)2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39353464

ABSTRACT

A scaffold is a three-dimensional porous structure that is used as a template to provide structural support for cell adhesion and the formation of new cells. Metallic cellular scaffolds are a good choice as a replacement for human bones in orthopaedic implants, which enhances the quality and longevity of human life. In contrast to conventional methods that produce irregular pore distributions, 3D printing, or additive manufacturing, is characterized by high precision and controlled manufacturing processes. AM processes can precisely control the scaffold's porosity, which makes it possible to produce patient specific implants and achieve regular pore distribution. This review paper explores the potential of Ti-6Al-4V scaffolds produced via the SLM method as a bone substitute. A state-of-the-art review on the effect of design parameters, material, and surface modification on biological and mechanical properties is presented. The desired features of the human tibia and femur bones are compared to bulk and porous Ti6Al4V scaffold. Furthermore, the properties of various porous scaffolds with varying unit cell structures and design parameters are compared to find out the designs that can mimic human bone properties. Porosity up to 65% and pore size of 600 µm was found to give optimum trade-off between mechanical and biological properties. Current manufacturing constraints, biocompatibility of Ti-6Al-4V material, influence of various factors on bio-mechanical properties, and complex interrelation between design parameters are discussed herein. Finally, the most appropriate combination of design parameters that offers a good trade-off between mechanical strength and cell ingrowth are summarized.


Subject(s)
Alloys , Tissue Scaffolds , Titanium , Titanium/chemistry , Humans , Alloys/chemistry , Porosity , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Materials Testing , Bone Substitutes/chemistry , Printing, Three-Dimensional , Tissue Engineering/methods , Bone and Bones , Surface Properties , Orthopedics/methods , Femur , Tibia
3.
Materials (Basel) ; 17(19)2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39410272

ABSTRACT

The ability of additive manufacturing to generate intricate structures has led to its popularity and widespread use in a variety of applications, ranging from the production of biomedical implants to aircraft components. Additive manufacturing techniques can overcome the limitations of the traditional manufacturing methods to create complex near-net-form structures. A vast array of clinical applications effectively employ Ti-6Al-4V as a biomaterial. The evolution of additive manufacturing has accelerated the development of patient-specific implants. The surface characteristics play a critical role in tissue healing and adaptation to implants. The present research set out to examine the effects of powder recycling with respect to the powder itself and the surface properties resulting from the electron beam melting (EBM) of the implant material. The printed implants, as well as the powder samples, underwent morphological, surface chemistry, and microstructure analyses. The in vitro cytotoxicity was evaluated with THP-1 macrophages. The overall microstructure of the implant samples showed little variation in terms of powder recycling based on the results. Higher oxygen levels were found in the solid and lattice sections of those implants manufactured with batches of recycled powder, along with marginally better cell viability. This emphasizes how crucial powder quality is to the process of additive manufacturing.

4.
Materials (Basel) ; 17(19)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39410475

ABSTRACT

Difficult-to-cut titanium matrix composites (TiB+TiC)/Ti6Al4V have extensive application prospects in the fields of biomedical and aerospace metal microcomponents due to their excellent mechanical properties. Jet electrochemical micromilling (JEMM) technology is an ideal method for machining microstructures that leverages the principle of electrochemical anodic dissolution. However, the matrix Ti6Al4V is susceptible to passivation during electrochemical milling, and the inclusion of high-strength TiB whiskers and TiC particles as reinforcing phases further increases the machining difficulty of (TiB+TiC)/Ti6Al4V. In this study, a novel approach using NaCl+NaNO3 mixed electrolyte for the JEMM of (TiB+TiC)/Ti6Al4V was adopted. Electrochemical behaviors were measured in NaCl and NaCl+NaNO3 electrolytes. In the mixed electrolyte, a higher transpassive potential was required to break down the passive film, which led to better corrosion resistance of (TiB+TiC)/Ti6Al4V, and the exposed reinforcing phases on the dissolved surface were significantly reduced. The results of the JEMM machining indicate that, compared to NaCl electrolyte, using mixed electrolyte effectively mitigates stray corrosion at the edges of micro-grooves and markedly improves the uniformity of both groove depth and width dimensions. Additionally, the surface quality was noticeably improved, with a reduction in Ra from 2.84 µm to 1.03 µm and in Rq from 3.41 µm to 1.40 µm.

5.
Materials (Basel) ; 17(18)2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39336289

ABSTRACT

The fatigue performance of laser powder bed fusion-fabricated Ti-6Al-4V alloy was investigated using four-point bending testing. Specifically, the effects of keyhole and lack-of-fusion porosities along with various surface roughness parameters, were evaluated in the context of pore circularity and size using 2D optical metallography. Surface roughness of Sa = 15 to 7 microns was examined by SEM, and the corresponding fatigue performance was found to vary by 102 cycles to failure. The S-N curves for the various defects were also correlated with process window examination in laser beam power-velocity (P-V) space. Basquin's stress-life relation was well fitted to the experimental S-N curves for various process parameters except keyhole porosity, indicating reduced importance for LPBF-fabricated Ti-6Al-4V alloy components.

6.
Materials (Basel) ; 17(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39336349

ABSTRACT

Lattice structures have demonstrated the ability to provide secondary stability in orthopedic implants by promoting internal bone growth. In response to the growing prevalence of lattices in orthopedic design, we investigated the effects of porosity and unit cell geometry in additively manufactured Ti-6Al-4V biomimetic lattice structures on the osteogenesis of human MG-63 osteoblastic cell lines in vitro. We analyzed glucose consumption, alkaline phosphatase (ALP) concentration, and end-of-culture cell count as markers for osteogenic growth. Two different strut geometries were utilized (cubic and body-centered cubic), along with four different pore sizes (400, 500, 600, and 900 µm, representing 40-90% porosity in a 10 mm cube), in addition to a solid specimen. Structural characterization was performed using scanning electron microscopy. The results indicated that lattices with a 900 µm pore size exhibited the highest glucose consumption, the greatest change in ALP activity, and the highest cell count when compared to other pore sizes. Cubic 900 µm lattice structures outperformed other specimens in facilitating the maturation of viable MG-63 cells from the formation to the mineralization phase of bone remodeling, offering the most promise for osseointegration in additively manufactured titanium implants in the future. However, irrespective of a particular pore size or unit cell geometry, it was found that all the lattices were capable of promoting osteogenic growth due to surface roughness in the printed parts.

7.
Materials (Basel) ; 17(18)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39336345

ABSTRACT

Additive manufacturing from metal powders using selective laser melting technology is gaining increasing interest in various industries. The purpose of this study was to determine the effect of changes in process parameter values on the relative density, microstructure and mechanical properties of Ti-6Al-4V and Ti-6Al-7Nb alloy samples. The experiment was conducted in response to a noticeable gap in the research on the manufacturability of the Ti-6Al-7Nb alloy in SLM technology. This topic is significant given the growing interest in this alloy for biomedical applications. The results of this study indicate that by properly selecting the volumetric energy density (VED), the relative density of the material produced and the surface roughness of the components can be effectively influenced. Microstructural analyses revealed similar patterns in both alloys manufactured under similar conditions, characterized by columnar ß phase grains with needle-like α' phases. Increasing the VED increased the tensile strength of the fabricated Ti-6Al-4V alloy components, while the opposite effect was observed for components fabricated from Ti-6Al-7Nb alloy. At the same time, Ti-6Al-7Nb alloy parts featured higher elongation values, which is desirable from the perspective of biomedical applications.

8.
Materials (Basel) ; 17(18)2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39336408

ABSTRACT

Within the scope of these investigations, the feasibility of a material bond between Ti-6Al-4V and the magnesium alloy AZ91 is analyzed. Ti-6Al-4V is frequently used for implants due to its biocompatibility, corrosion resistance, and specific strength. However, depending on the surface quality, the attachment behavior of the bone to the implant varies. Magnesium implants promote the regeneration of bone tissue and biodegrade as the bone tissue heals. Combining the properties of both materials in one implant enables a reduced implant volume and increased stability. For this reason, this study aims to demonstrate the feasibility of creating a material bond between the materials Ti-6Al-4V and AZ91. For this purpose, Ti-6Al-4V truncated cones and AZ91 sleeves were produced using the additive manufacturing process of laser powder bed fusion (L-PBF). The as-built sleeves were then pressed onto machined truncated cones. Since zinc serves as a lubricant and has good diffusion properties with the materials used as a result of heat treatment, a comparison was made between zinc-coated and the as-built Ti-6Al-4V samples. This showed that a bond was created after hot isostatic pressing and that the push-out force could be increased by more than 4.5 times. Consequently, a proof of feasibility was demonstrated, and a high potential for applications in medical technology was shown.

9.
Polymers (Basel) ; 16(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39274179

ABSTRACT

Metal Fused Filament Fabrication provides a simple and cost-efficient way to produce dense metal parts with a homogenous microstructure. However, current limitations include the use of hazardous and expensive organic solvents during debinding for flexible filaments the stiffness of filaments made from partly water-soluble binder systems. In this study, the influence of various additives on different partly water-soluble binder systems, with regard to the flexibility and properties of the final parts, was investigated. Furthermore, a method using dynamic mechanical analysis to quantify the flexibility of filaments was introduced and successfully applied. For the first time, it was possible to produce flexible, partly water-soluble filaments with 60 vol.% solid content, which allowed the 3D printing of complex small and large parts with a high level of detail. After sintering, density values of up to 98.9% of theoretical density were achieved, which is significantly higher than those obtained with existing binder systems.

10.
Materials (Basel) ; 17(17)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39274593

ABSTRACT

The mechanical properties of local materials subjected to various stress triaxialities were investigated via self-designed small punch tests and corresponding simulations, which were tailored to the geometry and notch forms of the samples. The finite element model was developed on the basis of the actual test method. After verifying the accuracy of the simulation, the stress, strain, and void volume fraction distributions of the Ti6Al4V titanium alloy under different stress states were compared and analyzed. The results indicate that the mechanical properties of the local material significantly differ during downward pressing depending on the geometric shape. A three-dimensional tensile stress state was observed in the center area, where the void volume fraction was greater than the fracture void volume fraction. The fracture morphology of the samples further confirmed the presence of different stress states. Specifically, the fracture morphology of the globular head samples (with or without U-shaped notches) predominantly featured dimples. Modifying the specimen's geometry effectively increased stress triaxiality, facilitating the determination of the material's constitutive relationship under varying stress states.

11.
Sci Rep ; 14(1): 20797, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39242758

ABSTRACT

The non-conventional manufacturing technologies are notorious when it comes to productivity and processing time in production-related industries. However, the aerospace and other high-end sectors enjoy another quality matrix of these processes and compromise on the processing time. For instance, the machinability of hard-to-cut materials such as Ti6Al4V aerospace alloy for micro-impressions is challenging and commonly carried out through non-conventional processes. Among these processes, the electric discharge machining (EDM) is famous for machining Ti6Al4V. In the current study, the EDM process is enhanced through modified dielectrics such as kerosene with non-ionic liquids (span 20, 60, and 80) and cryogenically treated tool electrodes (aluminum and graphite), and is compared to the conventional kerosene-based process. A three-phase experimental campaign is deployed to explore parametric effects including modified dielectric conditions (non-ionic liquid type and concentration), tool material, and machine parameter pulse ON:OFF time. A total of 60 experiments (54 modified dielectrics and 6 as baseline) were performed to explore process physics. The statistical analyses show that the unmodified process (kerosene dielectric-based) results in the least favorable results 0.58 mm3/min against cryo-graphite and 1.2 mm3/min against cryo-aluminum electrodes. However, the modified dielectrics outperform and improve process dynamics by altering dielectric conditions through hydrophilic-lipophilic balance. Surface morphological analysis shows significantly shallow craters on the machined surface showing evidence of effective flushing through a modified dielectric (S-20) as compared to a kerosene-based dielectric. A thorough microscopical, statistical, and scanning electron-based analysis is carried out to explain the process and correlate significant improvements.

12.
Materials (Basel) ; 17(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39274717

ABSTRACT

This study aims to optimize the performance of CrN coatings deposited on WC cutting tools for machining Ti6Al4V alloy, where the formation of built-up edge (BUE) is a prevalent and critical issue. In-house CrN coatings were developed using the PVD (Physical Vapor Deposition) process, with variations in deposition parameters including nitrogen gas pressure, bias voltage, and coating thickness. A comprehensive experimental approach encompassing deposition, characterization, and machining performance evaluation was employed to identify the optimal deposition conditions. The results indicated that CrN coatings deposited at a nitrogen gas pressure of 4 Pa, a bias voltage of -50 V, and a thickness of 1.81 µm exhibited superior performance, significantly reducing BUE formation and tool wear. These optimized coatings demonstrated enhanced properties, such as a higher elastic modulus and a lower coefficient of friction, which contributed to improved tool life and machining performance. Comparative studies with commercial CrN coatings revealed that the in-house developed coatings outperformed the commercial variants by approximately 65% in tool life, owing to their superior mechanical properties and reduced friction. This research highlights the potential of tailored CrN coatings for advanced machining applications and emphasizes the importance of optimizing deposition parameters to achieve high-performance tool coatings.

13.
Materials (Basel) ; 17(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39274774

ABSTRACT

This study investigates the microstructural effects of process parameters on Ti6Al4V alloy produced via powder bed fusion (PBF) using laser beam melting (LB/M) technology. The research focuses on how variations in laser power, exposure velocity, and hatching distance influence the final material's porosity, microhardness, and microstructure. To better understand the relationships between process parameters, energy density, and porosity, a simple mathematical model was developed. The microstructure of the alloy was analyzed in the YZ plane using a confocal microscope. The study identified optimal parameters-302.5 W laser power, 990 mm/s exposure velocity, and 0.14 mm hatching distance-yielding the lowest porosity index of 0.005%. The material's average hardness was measured at 434 ± 18 HV0.5. These findings offer valuable insights for optimizing printing parameters to produce high-quality Ti6Al4V components using PBF-LB/M technology, shedding light on the critical relationship between process parameters and the resulting microstructure.

14.
Materials (Basel) ; 17(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39274776

ABSTRACT

In order to improve the wear and corrosion resistance of Ti6Al4V alloy, a Ti-N compound layer was formed on the alloy by plasma nitriding at a relatively low temperature (750 °C) and within an economical processing duration (4 h), in a mixture of NH3 and N2 gases with varying ratios. The influence of the gas mixture on the microstructure, phase composition, and properties of the Ti-N layer was investigated. The results indicated that the thickness of the nitrided layer achieved in a mixed atmosphere with optimal proportions of NH3 and N2 (with a ratio of 1:2) was substantially greater than that obtained in an atmosphere of pure NH3. This suggests that appropriately increasing the proportion of N2 in the nitriding atmosphere is beneficial for the growth of the nitrided layer. The experiments demonstrated that the formation of the surface nitrided layer significantly enhances the corrosion and wear resistance of the titanium alloys.

15.
Biomater Adv ; 166: 214006, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39265449

ABSTRACT

Ti-6Al-4V (wt%) is the most widely used titanium alloy and its additive manufactured (or 3D printed) parts with near net-shape have provided great advantages for biomedical applications. While the impact of surface roughness on the biocompatibility of 3D-printed Ti-6Al-4V part is recognized, further exploration is needed to fully understand this complex relationship. Hence, this study presents a comprehensive evaluation of as-printed Ti-6Al-4V structures, both with and without surface texturing, with particular focus on the fibroblast response. Alongside a flat surface, or as-printed surface, two different types of surface textures: diamond texture and diamond crystal texture, were meticulously designed and printed through laser powder bed fusion (LPBF). The viability, cell adhesion, and morphology of human and murine fibroblasts seeded on the surface patterns was investigated, as well as the distribution of extracellular matrix (ECM) proteins (collagen I, fibronectin). The results demonstrated that the as-fabricated surface morphologies did not impact fibroblast viability, however, a reduced density of human fibroblasts was observed on the diamond texture surface, likely owing to the upright strut structure preventing cell adhesion. Interestingly, spreading of the human, but not murine, fibroblasts was limited by the remaining partially-sintered powders. The relative intensity of ECM protein signals was unaffected, however, ECM protein distribution across the surfaces was also altered. Thus, the as-printed substrates, particularly with diamond crystal struts, present a promising avenue for the cost-effective and efficient fabrication of Ti-6Al-4V components for medical applications in the future.

16.
Heliyon ; 10(18): e37808, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39315134

ABSTRACT

Superhydrophobic and superhydrophilic surfaces are attracting significant attention in fundamental and applied research. This study fabricated the micro/nanostructure with a Q-switched nanosecond pulsed laser on the Ti-6Al-4V surface. Three laser-generated surface topographies on titanium were produced based on three different pitch sizes (51 µm, 34 µm, and 29 µm). The laser textured surfaces (LTS) were studied in terms of both structure evolution and chemical composition using Field Emission Scanning Electron Microscopy (FE-SEM), Optical Microscopy (OM), Confocal Laser Scanning Microscopy (CLSM), Raman Spectroscopy, and X-ray Diffractometer (XRD). 29 µm pitch displayed the lowest water contact angle of 18.5° and surface roughness of 0.5 µm. This structure was further treated with cyclohexane at different temperatures. The best sample reached superhydrophobicity with a maximum water contact angle of 155.1° immediately after being treated with cyclohexane at the low temperature of 70 °C for 2 h, while the raw surface, for comparison, showed no change in hydrophobicity after being treated with cyclohexane under the same condition. Thus showing clear evidence of a combined effect between LTS and post-treatment. The surface features were assessed to explain the underlying process.

17.
Bioact Mater ; 42: 18-31, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39262845

ABSTRACT

Infected bone defect is a formidable clinical challenge. Conventional approaches to prevention and treatment for infected bone defects are unsatisfactory. The key elements of the treatment are bone defect reconstruction, anti-infection, and osteogenesis. Conventional treatment methods remain unsatisfactory owing to the absence of composite integrating materials with anti-infective, and osteogenic activities as well as proper mechanical strength at the same time. In this study, we fabricated a vancomycin-encapsulated hydrogel with bacteria-responsive release properties combined with a shaved porous (submicron-micron) three-dimensional-printed Ti6Al4V implant. The implant surface, modified with submicron-sized pores through microarc oxidation (MAO), showed enhanced osteogenic activity and integrated well with the hydrogel drug release system, enabling sustained vancomycin release. In vitro experiments underscored the commendable antibacterial ability, biosafety, and osteoinductive potential. Effective antibacterial and osteogenic abilities of the implant were further demonstrated in vivo in infected rabbit bone defects. These results showed that the vancomycin-encapsulated hydrogel-loaded microarc-oxidized 3D-printed porous Ti6Al4V can repair the infected bone defects with satisfactory anti-infection and osseointegration effects.

18.
Materials (Basel) ; 17(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39203307

ABSTRACT

In this paper, the morphological, micromechanical and tribological characteristics of the Ti-6Al-4V ELI alloy after thermal oxidation (TO) were identified. TO was carried out at temperatures of 848 K, 898 K and 948 K over a period of 50 h. Microscopic examination revealed that an increase in temperature resulted in an improved uniformity of coverage and an increased oxide grain size. Micromechanical tests showed that TO of the Ti-6Al-4V ELI alloy led to an increase in hardness and deformation resistance. Following oxidation, a decrease (by approximately 10-22%) was observed in the total mechanical work of indentation, Wtotal, compared to the as-received material. The formation of protective oxide films on the Ti-6Al-4V ELI alloy also led to the improvement of tribological characteristics, both when tested under dry friction conditions and in Ringer's solution. The sliding wear resistance increased with an increase in the oxidation temperature. However, a greater degree of wear reduction (by approximately 30-50%) was found for the lubricated contact in comparison with the dry friction tests. Surface roughness also increased with the increase in temperature.

19.
Biomater Adv ; 164: 213993, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39151271

ABSTRACT

Regarding its structural and mechanical adaptability to bone defects, 3D printed (3DP) Ti6Al4V scaffolds are widely used in orthopedics now, purposed to restore the function and mechanical stability of impaired bone. In scaffold fabrication, surface modification is acknowledged as a reliable strategy to enhance the interface interaction between 3DP Ti6Al4V scaffold and bone. Despite its advantage in bone-Ti6Al4V bonding improvement, surface modification lacks the ability to induce bone in-growth efficiently as expected. As an attempt to overcome this challenge, in the current work the inner voids of 3DP Ti6Al4V scaffold were occupied by a gelatin/chitosan porous matrix, purposed to act as a platform for guiding bone ingrowth. Firstly, the gelatin/chitosan matrix was prepared via freeze-drying using genipin as a crosslinker, resulting in a trabecular bone-like interconnected porous network characterized with a gelatin/chitosan ratio dependent swelling capability, degradation and model anti-bacterial drug release behavior. Besides of that, gelatin in the matrix was witnessed to accelerate biomineralization in simulated body fluid. Secondly, a formulated gelatin/chitosan matrix was embedded into 3DP Ti6Al4V scaffold to generate a composite scaffold capable of inducing bone in-growth. The followed studies showed gelatin/chitosan matrix can endow the scaffold with good biological and sustained drug release properties, along with minimal change to the compressive strength of the scaffold. The in vivo experiment results revealed that after 4 weeks of implantation, more new bone formation was witnessed in the inner structure of the composite scaffold than the 3DP Ti6Al4V scaffold, with the average bone volume fraction (BV/TV) value increased from 24.09 % to 46.08 %, the average trabecular bone thickness (Tb. Th) value increased from 0.118 mm to 0.278 mm. Therefore, it was confirmed an inner matrix in 3DP Ti6Al4V scaffold played an essential role in guiding bone in-growth.


Subject(s)
Alloys , Chitosan , Gelatin , Tissue Scaffolds , Titanium , Gelatin/chemistry , Chitosan/chemistry , Titanium/chemistry , Alloys/chemistry , Animals , Tissue Scaffolds/chemistry , Porosity , Printing, Three-Dimensional , Osteogenesis/drug effects , Tissue Engineering/methods , Rats
20.
Materials (Basel) ; 17(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39124458

ABSTRACT

In this paper, hip implants made of Ti-6Al-4V titanium alloy are analyzed numerically using Extended Finite Element Method XFEM. The combined effect of corrosion and fatigue was considered here since this is a common cause of failure of hip implants. Experimental testing of Ti-6Al-4V alloy was performed to determine its mechanical properties under different working environments, including normal, salty, and humid conditions. The integrity and life of the hip implant were assessed using the Linear Elastic Fracture Mechanics (LEFM) approach. For this purpose, the conditional fracture toughness Kq using CT specimens from all three groups (normal, humid, salty conditions) were determined. This provided insight into how different aggressive environments affect the behavior of Ti-6Al-4V alloy; i.e., how much its resistance to crack growth would degrade depending on conditions corresponding to the real exploitation of hip implants. Next, analytical and XFEM analyses of fatigue behavior in terms of the number of cycles were performed for all three groups, and the obtained results showed good agreement, confirming the validity of the integrity assessment approach shown in this work, which also represented a novel approach since fatigue and corrosion effects were investigated simultaneously.

SELECTION OF CITATIONS
SEARCH DETAIL