Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Ticks Tick Borne Dis ; 16(1): 102399, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39321670

ABSTRACT

The islands of Brittany provide unique ecosystems for ticks and tick-borne diseases owing to their oceanic climate, influencing interactions among ticks, hosts, and pathogens. We conducted a preliminary investigation on Belle-Île-en-Mer, an island off the Atlantic coast of Brittany in western France, to assess the prevalence of questing adult ticks and associated human pathogenic bacteria. Dermacentor spp. were found to dominate the tick population (61 %): 23 % Dermacentor reticulatus and 77 % D. marginatus. Haemaphysalis punctata (27 %) was also prevalent on the island, and Ixodes ricinus (12 %) was detected for the first time on Belle-Île-en-Mer. Both Dermacentor species harbored either Rickettsia slovaca (24 %) or Rickettsia raoultii (20 %), whereas I. ricinus carried Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum but not Borrelia miyamotoi or Neoehrlichia mikurensis. Detection of two potentially pathogenic species in the B. burgdorferi sensu lato complex, B. afzelii and B. lusitaniae, along with A. phagocytophilum underscores the current risk of Lyme borreliosis and anaplasmosis. The high prevalence of Rickettsia infection in Dermacentor indicates an additional risk of human rickettsioses.

2.
Pathogens ; 11(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36015049

ABSTRACT

Ticks are hematophagous ectoparasites that are capable of infesting a wide range of mammals, including domestic animals, ruminants, wildlife, and humans across the world, and they transmit disease-causing pathogens. Numerous individual epidemiological studies have been conducted on the distribution and prevalence of ticks and tick-borne diseases (TBDs) in the Southern African Developing Community (SADC) region, but no effort has been undertaken to synchronize findings, which would be helpful in the implementation of consolidated tick control measures. With the aim of generating consolidated pooled prevalence estimates of ticks and TBDs in the SADC region, we performed a systematic review and meta-analysis of published articles using the PRISMA 2020 guidelines. A deep search was performed on five electronic databases, namely, PubMed, ScienceDirect, Google Scholar, AJOL, and Springer Link. Of the 347 articles identified, only 61 of the articles were eligible for inclusion. In total, 18,355 tick specimens were collected, belonging to the genera Amblyomma, Haemaphysalis, Hyalomma, and Rhipicephalus (including Boophilus) across several countries, including South Africa (n = 8), Tanzania (n = 3), Zambia (n = 2), Zimbabwe (n = 2), Madagascar (n = 2), Angola (n = 2), Mozambique (n = 1), and Comoros (n = 1). The overall pooled prevalence estimate (PPE) of TBPs in livestock was 52.2%, with the highest PPE in cattle [51.2%], followed by sheep [45.4%], and goats [29.9%]. For bacteria-like and rickettsial TBPs, Anaplasma marginale had the highest PPE of 45.9%, followed by A. centrale [14.7%], A. phagocytophilum [2.52%], and A. bovis [0.88%], whilst Ehrlichia ruminantium had a PPE of 4.2%. For piroplasmids, Babesia bigemina and B. bovis had PPEs of 20.8% and 20.3%, respectively. Theileria velifera had the highest PPE of 43.0%, followed by T. mutans [29.1%], T. parva [25.0%], and other Theileria spp. [14.06%]. Findings from this study suggest the need for a consolidated scientific approach in the investigation of ticks, TBPs, and TBDs in the whole SADC region, as most of the TBDs are transboundary and require a regional control strategy.

3.
Front Vet Sci ; 7: 561592, 2020.
Article in English | MEDLINE | ID: mdl-33195537

ABSTRACT

In 2019, in the United States, over 220,000 and 350,000 dogs tested positive for exposure to Anaplasma spp. and Borrelia burgdorferi, respectively. To evaluate regional and local temporal trends of pathogen exposure we used a Bayesian spatio-temporal binomial regression model, analyzing serologic test results for these pathogens from January 2013 to December 2019. Regional trends were not static over time, but rather increased within and beyond the borders of historically endemic regions. Increased seroprevalence was observed as far as North Carolina and North Dakota for both pathogens. Local trends were estimated to evaluate the heterogeneity of underlying changes. A large cluster of counties with increased B. burgdorferi seroprevalence centered around West Virginia, while a similar cluster of counties with increased Anaplasma spp. seroprevalence centered around Pennsylvania and extended well into Maine. In the Midwest, only a small number of counties experienced an increase in seroprevalence; instead, most counties had a decrease in seroprevalence for both pathogens. These trends will help guide veterinarians and pet owners in adopting the appropriate preventative care practices for their area. Additionally, B. burgdorferi and A. phagocytophilum cause disease in humans. Dogs are valuable sentinels for some vector-borne pathogens, and these trends may help public health providers better understand the risk of exposure for humans.

SELECTION OF CITATIONS
SEARCH DETAIL