Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.382
Filter
1.
World J Clin Cases ; 12(18): 3314-3320, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38983433

ABSTRACT

Insomnia, as one of the emotional diseases, has been increasing in recent years, which has a great impact on people's life and work. Therefore, researchers are eager to find a more perfect treatment. The microbiome-gut-brain axis is a new theory that has gradually become popular abroad in recent years and has a profound impact in the field of insomnia. In recent years, traditional Chinese medicine (TCM) has played an increasingly important role in the treatment of insomnia, especially acupuncture and Chinese herbal medicine. It is the main method of TCM in the treatment of insomnia. This paper mainly reviews the combination degree of "microorganism-gut-brain axis" theory with TCM and acupuncture under the system of TCM. To explore the mechanism of TCM and acupuncture in the treatment of insomnia under the guidance of "microorganism-gut-brain axis" theory, in order to provide a new idea for the diagnosis and treatment of insomnia.

2.
World J Clin Cases ; 12(18): 3482-3490, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38983436

ABSTRACT

BACKGROUND: Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is a serious complication of chronic obstructive pulmonary disease, often characterized by increased morbidity and mortality. In traditional Chinese medicine, AECOPD is linked to phlegm-heat and blood-stasis, presenting symptoms like thick sputum, fever, and chest pain. It has been shown that acetylcysteine inhalation in conjunction with conventional therapy significantly reduced inflammatory markers and improved lung function parameters in patients with AECOPD, suggesting that acetylcysteine may be an important adjunctive therapy for patients with phlegm-heat-blood stasis type AECOPD. AIM: To investigate the effect of acetylcysteine on microinflammation and lung ventilation in patients with phlegm-heat and blood-stasis-type AECOPD. METHODS: One hundred patients with phlegm-heat and blood-stasis-type AECOPD were randomly assigned to two groups. The treatment group received acetylcysteine inhalation (10% solution, 5 mL, twice daily) along with conventional therapy, whereas the control group received only conventional therapy. The treatment duration was 14 d. Inflammatory markers (C-reactive protein, interleukin-6, and tumor necrosis factor-alpha) in the serum and sputum as well as lung function parameters (forced expiratory volume in one second, forced vital capacity, and peak expiratory flow) were assessed pre- and post-treatment. Acetylcysteine inhalation led to significant reductions in inflammatory markers and improvements in lung function parameters compared to those in the control group (P < 0.05). This suggests that acetylcysteine could serve as an effective adjunct therapy for patients with phlegm-heat and blood-stasis-type AECOPD. RESULTS: Acetylcysteine inhalation significantly reduced inflammatory markers in the serum and sputum and improved lung ventilation function parameters in patients with phlegm-heat and blood-stasis type AECOPD compared with the control group. These differences were statistically significant (P < 0.05). The study concluded that acetylcysteine inhalation had a positive effect on microinflammation and lung ventilation function in patients with this type of AECOPD, suggesting its potential as an adjuvant therapy for such cases. CONCLUSION: Acetylcysteine inhalation demonstrated significant improvements in reducing inflammatory markers in the serum and sputum, as well as enhancing lung ventilation function parameters in patients with phlegm-heat and blood-stasis type AECOPD. These findings suggest that acetylcysteine could serve as a valuable adjuvant therapy for individuals with this specific type of AECOPD, offering benefits for managing microinflammation and optimizing lung function.

3.
Front Cell Dev Biol ; 12: 1396890, 2024.
Article in English | MEDLINE | ID: mdl-38983788

ABSTRACT

Background: The Juan-Bi decoction (JBD) is a classic traditional Chinese medicines (TCMs) prescription for the treatment of rheumatoid arthritis (RA). However, the active compounds of the JBD in RA treatment remain unclear. Aim: The aim of this study is to screen effective compounds in the JBD for RA treatment using systems pharmacology and experimental approaches. Method: Botanical drugs and compounds in the JBD were acquired from multiple public TCM databases. All compounds were initially screened using absorption, distribution, metabolism, excretion, and toxicity (ADMET) and physicochemical properties, and then a target prediction was performed. RA pathological genes were acquired from the DisGeNet database. Potential active compounds were screened by constructing a compound-target-pathogenic gene (C-T-P) network and calculating the cumulative interaction intensity of the compounds on pathogenic genes. The effectiveness of the compounds was verified using lipopolysaccharide (LPS)-induced RAW.264.7 cells and collagen-induced arthritis (CIA) mouse models. Results: We screened 15 potentially active compounds in the JBD for RA treatment. These compounds primarily act on multiple metabolic pathways, immune pathways, and signaling transduction pathways. Furthermore, in vivo and in vitro experiments showed that bornyl acetate (BAC) alleviated joint damage, and inflammatory cells infiltrated and facilitated a smooth cartilage surface via the suppression of the steroid hormone biosynthesis. Conclusion: We screened potential compounds in the JBD for the treatment of RA using systems pharmacology approaches. In particular, BAC had an anti-rheumatic effect, and future studies are required to elucidate the underlying mechanisms.

4.
World J Diabetes ; 15(6): 1317-1339, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38983802

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) is the primary cause of visual problems in patients with diabetes. The Heyingwuzi formulation (HYWZF) is effective against DR. AIM: To determine the HYWZF prevention mechanisms, especially those underlying mitophagy. METHODS: Human retinal capillary endothelial cells (HRCECs) were treated with high glucose (hg), HYWZF serum, PX-478, or Mdivi-1 in vitro. Then, cell counting kit-8, transwell, and tube formation assays were used to evaluate HRCEC proliferation, invasion, and tube formation, respectively. Transmission electron microscopy was used to assess mitochondrial morphology, and Western blotting was used to determine the protein levels. Flow cytometry was used to assess cell apoptosis, reactive oxygen species (ROS) production, and mitochondrial membrane potential. Moreover, C57BL/6 mice were established in vivo using streptozotocin and treated with HYWZF for four weeks. Blood glucose levels and body weight were monitored continuously. Changes in retinal characteristics were evaluated using hematoxylin and eosin, tar violet, and periodic acid-Schiff staining. Protein levels in retinal tissues were determined via Western blotting, immunohistochemistry, and immunostaining. RESULTS: HYWZF inhibited excessive ROS production, apoptosis, tube formation, and invasion in hg-induced HRCECs via mitochondrial autophagy in vitro. It increased the mRNA expression levels of BCL2-interacting protein 3 (BNIP3), FUN14 domain-containing 1, BNIP3-like (BNIP3L, also known as NIX), PARKIN, PTEN-induced kinase 1, and hypoxia-inducible factor (HIF)-1α. Moreover, it downregulated the protein levels of vascular endothelial cell growth factor and increased the light chain 3-II/I ratio. However, PX-478 and Mdivi-1 reversed these effects. Additionally, PX-478 and Mdivi-1 rescued the effects of HYWZF by decreasing oxidative stress and apoptosis and increasing mitophagy. HYWZF intervention improved the symptoms of diabetes, tissue damage, number of acellular capillaries, and oxidative stress in vivo. Furthermore, in vivo experiments confirmed the results of in vitro experiments. CONCLUSION: HYWZF alleviated DR and associated damage by promoting mitophagy via the HIF-1α/BNIP3/NIX axis.

5.
Front Pharmacol ; 15: 1407869, 2024.
Article in English | MEDLINE | ID: mdl-38983910

ABSTRACT

Depression is a prevalent mental disorder that significantly diminishes quality of life and longevity, ranking as one of the primary causes of disability globally. Contemporary research has explored the potential pathogenesis of depression from various angles, encompassing genetics, neurotransmitter systems, neurotrophic factors, the hypothalamic-pituitary-adrenal axis, inflammation, and intestinal flora, among other contributing factors. In addition, conventional chemical medications are plagued by delayed onset of action, persistent adverse effects, and restricted therapeutic efficacy. In light of these limitations, the therapeutic approach of traditional Chinese medicine (TCM) has gained increasing recognition for its superior effectiveness. Numerous pharmacological and clinical studies have substantiated TCM's capacity to mitigate depressive symptoms through diverse mechanisms. This article attempts to summarize the mechanisms involved in the pathogenesis of depression and to describe the characteristics of herbal medicines (including compounded formulas and active ingredients) for the treatment of depression. It further evaluates their effectiveness by correlating with the multifaceted pathogenesis of depression, thereby furnishing a reference for future research endeavors.

6.
World J Clin Cases ; 12(19): 3767-3775, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38994311

ABSTRACT

BACKGROUND: Arthroscopic rotator cuff repair is a common surgical treatment for rotator cuff injuries (RCIs). Although this procedure has certain clinical advantages, it requires rehabilitation management interventions to ensure therapeutic efficacy. AIM: To investigate the effect of integrated traditional Chinese medicine and Western medicine (TCM-WM) under the multidisciplinary team (MDT) model on the postoperative recovery of patients undergoing arthroscopic surgery for RCIs. METHODS: This study enrolled 100 patients who underwent arthroscopic rotator cuff repair for RCIs at the Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine between June 2021 and May 2024. They were divided into a control group (n = 48) that received routine rehabilitation treatment and an experimental group (n = 52) that received TCM-WM under the MDT model (e.g., acupuncture, TCM traumatology and orthopedics, and rehabilitation). The results of the Constant-Murley Shoulder Score (CMS), Visual Analogue Scale (VAS), Shoulder Pain and Disability Index (SPADI), muscular strength evaluation, and shoulder range of motion (ROM) assessments were analyzed. RESULTS: After treatment, the experimental group showed significantly higher CMS scores in terms of pain, functional activity, shoulder joint mobility, and muscular strength than the baseline and those of the control group. The experimental group also exhibited significantly lower VAS and SPADI scores than the baseline and those of the control group. In addition, the experimental group showed significantly enhanced muscular strength (forward flexor and external and internal rotator muscles) and shoulder ROM (forward flexion, abduction, and lateral abduction) after treatment compared with the control group. CONCLUSION: TCM-WM under the MDT model improved shoulder joint function, relieved postoperative pain, promoted postoperative functional recovery, and facilitated the recovery of muscular strength and shoulder ROM in patients with RCIs who underwent arthroscopic rotator cuff repair.

7.
J Inflamm Res ; 17: 4389-4403, 2024.
Article in English | MEDLINE | ID: mdl-38994468

ABSTRACT

Background: The LuoBiTong (LBT) capsule, a novel traditional Chinese medicine formulation, is currently in Phase III clinical trials. Preliminary preclinical and Phase II clinical studies suggest its efficacy and safety in treating rheumatoid arthritis (RA). However, the underlying mechanisms of its action remain to be elucidated.This research aims to explore the effects and mechanisms of LBT in conjunction with a maintenance dose of methotrexate (M-MTX) on RA. Methods: A Collagen-Induced Arthritis (CIA) mouse model was used to evaluate the anti-RA effects of LBT combined with M-MTX. Assessments included foot swelling, arthritis scoring, serum inflammatory factor analysis, and histopathological examination of the foot. These effects were compared with those of high-dose MTX (H-MTX). Network pharmacology was employed to construct a compound-target network for RA, based on drug composition, to predict its potential mechanism of action. Flow cytometry, Western Blot, and immunohistochemical analyses in animal models identified multiple inflammatory pathways targeted by LBT to augment the anti-RA effects of MTX. Results: The study revealed that LBT combined with M-MTX significantly alleviated CIA-induced arthritis without adverse effects. The combination of LBT and M-MTX showed similar or superior efficacy in regulating macrophage polarization, NF-κB, MAPK signaling pathways, and in the suppression of TH-17 expression in proinflammatory cells. These findings suggest that LBT may exert a multi-pathway therapeutic effect in RA treatment. The predicted pharmacological targets and mechanisms align well with this hypothesis. Conclusion: LBT, when combined with MTX, enhances the anti-RA effect by targeting multiple inflammatory pathways, demonstrating significant therapeutic potential.

8.
J Pharm Anal ; 14(6): 100943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39005842

ABSTRACT

Structural and functional explorations on bio-soft matter such as micelles, vesicles, nanoparticles, aggregates or polymers derived from traditional Chinese medicine (TCM) has emerged as a new topic in the field of TCM. The discovery of such cross-scaled bio-soft matter may provide a unique perspective for unraveling the new effective material basis of TCM as well as developing innovative medicine and biomaterials. Despite the rapid rise of TCM-derived bio-soft matter, their hierarchical structure and assembly mechanism must be unambiguously probed for a further in-depth understanding of their pharmacological activity. In this review, the current emerged TCM-derived bio-soft matter assembled from either small molecules or macromolecules is introduced, and particularly the unambiguous elucidation of their hierarchical structure and assembly mechanism with combined electron microscopic and spectroscopic techniques is depicted. The pros and cons of each technique are also discussed. The future challenges and perspective of TCM-derived bio-soft matter are outlined, particularly the requirement for their precise in situ structural determination is highlighted.

9.
Heliyon ; 10(12): e33221, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39005893

ABSTRACT

Moxibustion has a long history of use as a traditional Chinese medicine therapy. Infrared radiation is an important and effective factor in moxibustion. Instead of the time-consuming and laborious process of holding moxa sticks in the hand, moxibustion devices are commonly used as moxibustion methods and tools in modern times. With the publication of the international standard of moxibustion devices (ISO18666:2021, Traditional Chinese Medicine - General requirements of moxibustion devices) published, moxibustion devices of various materials are now sold in the pharmacies and online stores. However, the influence of moxibustion devices on the therapeutic effect of moxibustion has not been studied. Therefore, this research was aimed to evaluate the infrared radiation of moxibustion devices, in order to select the moxibustion device that delivered infrared radiation closest to that of moxa stick combustion. The combination of combustion stability and infrared radiation intensity showed that cardboard tubes and silicone were better materials for moxibustion devices. In the mid-far infrared wave band, the moxibustion devices made from cardboard tubes and silica gels can better maintain the thermal effect generated by moxibustion and enable it to be more easily absorbed by the human body. The infrared radiation intensity of the cardboard moxibustion devices increased rapidly and steadily and could be maintained for the longest time. In conclusion, cardboard tubes are the better material for moxibustion devices with respect to infrared radiation.

10.
Front Pharmacol ; 15: 1406188, 2024.
Article in English | MEDLINE | ID: mdl-39005933

ABSTRACT

Introduction: As a new discipline, network pharmacology has been widely used to disclose the material basis and mechanism of Traditional Chinese Medicine in recent years. However, numerous researches indicated that the material basis of TCMs identified based on network pharmacology was the mixtures of beneficial and harmful substances rather than the real material basis. In this work, taking the anti-NAFLD (non-alcoholic fatty liver disease) effect of Bai Shao (BS) as a case, we attempted to propose a novel bioinformatics strategy to uncover the material basis and mechanism of TCMs in a precise manner. Methods: In our previous studies, we have done a lot work to explore TCM-induced hepatoprotection. Here, by integrating our previous studies, we developed a novel computational pharmacology method to identify hepatoprotective ingredients from TCMs. Then the developed method was used to discover the material basis and mechanism of Bai Shao against Non-alcoholic fatty liver disease by combining with the techniques of molecular network, microarray data analysis, molecular docking, and molecular dynamics simulation. Finally, literature verification method was utilized to validate the findings. Results: A total of 12 ingredients were found to be associated with the anti-NAFLD effect of BS, including monoterpene glucosides, flavonoids, triterpenes, and phenolic acids. Further analysis found that IL1-ß, IL6, and JUN would be the key targets. Interestingly, molecular docking and molecular dynamics simulation analysis showed that there indeed existed strong and stable binding affinity between the active ingredients and the key targets. In addition, a total of 23 NAFLD-related KEGG pathways were enriched. The major biological processes involved by these pathways including inflammation, apoptosis, lipid metabolism, and glucose metabolism. Of note, there was a great deal of evidence available in the literature to support the findings mentioned above, indicating that our method was reliable. Discussion: In summary, the contributions of this work can be summarized as two aspects as follows. Firstly, we systematically elucidated the material basis and mechanism of BS against NAFLD from multiple perspectives. These findings further enhanced the theoretical foundation of BS on NAFLD. Secondly, a novel computational pharmacology research strategy was proposed, which would assist network pharmacology to uncover the scientific connotation TCMs in a more precise manner.

11.
Am J Transl Res ; 16(6): 2248-2262, 2024.
Article in English | MEDLINE | ID: mdl-39006272

ABSTRACT

BACKGROUND: Huangtu decoction (HTD), a traditional Chinese medicine recipe, warms the spleen, nourishes the blood, and stops bleeding. It has been used to treat dysentery, gastrointestinal bleeding, diarrhea, and other symptoms caused by spleen-yang deficiency for more than 2,000 years in China. However, the mechanism underlying the treatment of chronic diarrhea due to spleen-yang deficiency (CDSD) using HTD remains unclear. AIMS: This study investigated whether HTD could mediate intestinal flora and serum metabolites to improve CDSD symptoms using a mouse model. METHODS: A CDSD mouse model induced by senna and an abnormal diet was constructed. The regulatory effects of HTD at 12.5, 25.0, and 50.0 g/kg/d on CDSD mice were assessed by measuring their bodyweight, diarrhea rate, loose stool rate, and histopathology. Changes in the intestinal flora of CDSD mice were analyzed by 16S rRNA gene sequencing. Untargeted serum metabolomic analysis was performed using ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS). RESULTS: HTD had a modulating effect on CDSD by reducing the weight loss, diarrhea rate, loose stool rate, and pathologic damage. Intestinal flora analysis showed that HTD altered the community composition by decreasing the abundance of Allobaculum, Lactobacillus, and Ruminococcus. Serum metabolomics revealed that ascorbate and aldarate metabolism, aldosterone synthesis and secretion, platelet activation, hypoxia-inducible factor 1 signaling pathway, inositol phosphate metabolism, phosphatidylinositol signaling, galactose metabolism, and alpha-linolenic acid metabolism were modulated after HTD treatment. CONCLUSION: HTD may alleviate CDSD symptoms by reducing weight loss, diarrhea rate, loose stool rate, and pathologic damage caused by modeling and regulating intestinal flora and serum metabolites in CDSD mice.

12.
J Ethnopharmacol ; : 118553, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992401

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Functional dyspepsia (FD) is a prevalent gastrointestinal disorder characterised by high incidence and recurrence rates, posing significant health risks. Erpixing Granules (EPX), approved by the National Food and Drug Administration in 2002, are known for their spleen and stomach invigorating properties, effectively treating FD. However, its mechanism of action remains unclear. AIM OF THE STUDY: This study aims to elucidate EPX's mechanism of treating FD through network pharmacology, and experimental validation using FD animal models. METHODS: In this study, the chemical composition of EPX in positive and negative ion modes was analyzed by UHPLC-Q-TOF MS. The mass spectral data were processed and analyzed using MS-DIAL software to automatically match compound fragment information and identify the known components with the compound database to obtain the active components of EPX. SwissTargetPrediction was used to obtain EPX targets, while FD-related targets were sourced from GeneCards, OMIM and DisGeNET databases. A protein-protein interaction (PPI) network was constructed using the STRING platform, and potential signalling pathways of EPX were determined through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Finally, an FD model was established in rates by administering a 0.1% iodoacetamide sucrose solution, followed by tail clamp stimulation to experimentally validate the network pharmacology findings. RESULTS: Our results revealed 139 effective ingredients in EPX, targeting 60 core FD-related genes. PPI network analysis identified EGFR, CTNNB1 and NFκB1 as core target genes. The KEGG pathway analysis indicated that EPX can modulate FD progression through the PI3K/AKT signalling pathway. Animal experiments demonstrated EPX's capacity to increase body mass, food intake and food utilisation efficiency in FD rats, alongside increased gastric juice secretion, pepsin activity, trypsin activity, cholesterol, bile acid and bilirubin activity. HE examination revealed that EPX improved the inflammatory infiltration of gastric mucosal cells in rats. Furthermore, EPX also promoted gastric emptying and intestinal propulsion in mice. These results suggest that EPX improves spleen and stomach function, enhances the protective effect on the spleen and stomach and promotes food digestion and absorption. Immunofluorescence studies revealed upregulated expression of PI3K, AKT and ANO1 proteins in gastric tissue following EPX administration, while Western blotting indicated increased expression of SCF and C-kit proteins. CONCLUSION: Suggesting EPX's anti-FD effect may involve the regulation of the SCF/C-kit signalling pathway and activation of downstream PI3K/AKT signalling pathway, thereby promoting gastrointestinal motility and improving FD symptoms.

13.
Front Plant Sci ; 15: 1372127, 2024.
Article in English | MEDLINE | ID: mdl-38993944

ABSTRACT

Introduction: Camphora longepaniculata, a crucial commercial crop and a fundamental component of traditional Chinese medicine, is renowned for its abundant production of volatile terpenoids. However, the lack of available genomic information has hindered pertinent research efforts in the past. Methods: To bridge this gap, the present study aimed to use PacBio HiFi, short-read, and highthroughput chromosome conformation capture sequencing to construct a chromosome-level assembly of the C. longepaniculata genome. Results and discussion: With twelve chromosomes accounting for 99.82% (766.69 Mb) of the final genome assembly, which covered 768.10 Mb, it was very complete. Remarkably, the assembly's contig and scaffold N50 values are exceptional as well-41.12 and 63.78 Mb, respectively-highlighting its excellent quality and intact structure. Furthermore, a total of 39,173 protein-coding genes were predicted, with 38,766 (98.96%) of them being functionally annotated. The completeness of the genome was confirmed by the Benchmarking Universal Single-Copy Ortholog evaluation, which revealed 99.01% of highly conserved plant genes. As the first comprehensive assembly of the C. longepaniculata genome, it provides a crucial starting point for deciphering the complex pathways involved in terpenoid production. Furthermore, this excellent genome serves as a vital resource for upcoming research on the breeding and genetics of C. longepaniculata.

14.
Front Pharmacol ; 15: 1402763, 2024.
Article in English | MEDLINE | ID: mdl-38994201

ABSTRACT

Naoxintong Capsule (NXT), a renowned traditional Chinese medicine (TCM) formulation, has been broadly applied in China for more than 30 years. Over decades, accumulating evidences have proven satisfactory efficacy and safety of NXT in treating cardiovascular and cerebrovascular diseases (CCVD). Studies have been conducted unceasingly, while this growing latest knowledge of NXT has not yet been interpreted properly and summarized comprehensively. Hence, we systematically review the advancements in NXT research, from its chemical constituents, quality control, pharmacokinetics, to its profound pharmacological activities as well as its clinical applications in CCVD. Moreover, we further propose specific challenges for its future perspectives: 1) to precisely clarify bioactivities of single compound in complicated mixtures; 2) to evaluate the pharmacokinetic behaviors of NXT feature components in clinical studies, especially drug-drug interactions in CCVD patients; 3) to explore and validate its multi-target mechanisms by integrating multi-omics technologies; 4) to re-evaluate the safety and efficacy of NXT by carrying out large-scale, multicenter randomized controlled trials. In brief, this review aims to straighten out a paradigm for TCM modernization, which help to contribute NXT as a piece of Chinese Wisdom into the advanced intervention strategy for CCVD therapy.

15.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 619-629, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948275

ABSTRACT

Objective: Based on the secreted frizzled-related protein 2 (SFRP2)-Wnt/ß-catenin signaling pathway, this study explored the effect and mechanism of Cuiru Keli (CRKL) in the treatment of postpartum hypogalactia. Methods: A rat model of postpartum hypogalactia was established by gavaging 2 mL of 1.6 mg/mL bromocriptine mesylate to female rats on the third day after delivery. Female rats with a delivery time difference of less than 48 hours were selected and randomly assigned to 7 groups, including a normal group (without any modeling or medication), a model group, a CRKL low-dose group of model group model rats receiving CRKL at the dose of 3 g/kg, a CRKL medium-dose group of model rats receiving CRKL at the dose of 6 g/kg, a CRKL high-dose group of model rats receiving CRKL at the dose of 9 g/kg, a positive drug group of model rats receiving domperidone at the dose of 3 mg/kg, and a negative control (NC) group of model rats receiving normal saline. Each group contained 6 rats. Except for the normal and model groups, the remaining 5 groups were continuously administered with the respective intervention drugs at the specified doses by gavage once a day for 10 days. Changes in the total litter mass of the offspring in the 7 groups within 10 days were measured, and HE staining was performed to identify pathological changes in the mammary tissue (MT). Six groups of rats (excluding the positive control group) were used to observe the pathological changes of eosinophils in pituitary tissue. ELISA was performed to determine the content of prolactin (PRL) in serum, immunohistochemical staining was used to determine the expression of prolactin receptor (PRLR) in MT, and RT-qPCR was used to determine the mRNA expression of genes related to lactation in MT. Network pharmacology and molecular docking were used to study the therapeutic effect and mechanism of CRKL on postpartum hypogalactia, particularly whether it acted through the SFRP2-Wnt/ß-catenin signaling pathway. The mechanism of CRKL treatment was further validated by detecting mRNA (RT-qPCR) and protein expression (Western blot) of related pathway genes. Cell experiments were conducted using primary culture rat mammary epithelial cells (RMEC) from rat MT. RMEC were divided into four groups, including a normal group (primary culture RMEC, untreated), SFRP2 overexpression group (primary cultured RMEC treated with SFRP2 overexpression vector), SFRP2 overexpression+CRKL group (receiving treatment for SFRP2 overexpression group plus 10% drug-containing serum), and negative control group (primary culture RMEC treated with empty vector). The effect of CRKL on the expression of lactation-related genes FASN, CSN2, and GLUT1 mRNA after SFRP2 overexpression was detected by RT-qPCR. Results: In this study, CRKL was administered at a dose of 3 g/kg in the CRKL low-dose group, 6 g/kg in the medium-dose group, and 9 g/kg in the high-dose group (P<0.05 or P<0.01). Compared with the model group, CRKL at all doses significantly increased the total litter weight gain of the offsprings within 10 days (P<0.05 or P<0.01), and effectively increased lactation (P<0.01), the area of mammary lobules, and the size and filling of acinar cavities. CRKL at all doses also increased the number of eosinophils that secreted PRL in the pituitary gland of the postpartum hypogalactia rat model, and increased the content of PRL in the serum (P<0.05 or P<0.01). CRKL promoted the secretion and expression of PRL in postpartum hypogalactic model rats. In addition, it significantly promoted the expression of genes related to milk fat, milk protein, and lactose synthesis in MT (P<0.05 or P<0.01). Network pharmacology predicted that the Wnt signaling pathway might be a key pathway for CRKL in treating postpartum hypogalactia. The molecular docking results showed that related chemical components in CRKL had good binding ability with CCND1 and SFRP2. Compared with the model group, CRKL at all doses inhibited the expression of SFRP2 gene in vivo (P<0.01) and activated the mRNA and protein expression of CCND1 and c-Myc in the Wnt/ß-catenin signaling pathway in MT (P<0.05 or P<0.01). Cell experiments showed that, compared to the normal group, SFRP2 overexpression reduced the mRNA expression of milk synthesis-related genes FASN, CSN2, and GLUT1 in RMEC (P<0.01). The CCK8 results indicated that 10% of the drug-containing serum was the effective concentration administered to cells (P<0.01). After administering drug-containing serum, the expression of the lactation-related genes FASN, CSN2, and GLUT1 were up-regulated (compared with the SFRP2 overexpression group, P<0.01). Conclusion: CRKL alleviates postpartum hypogalactia through the SFRP2-Wnt/ß-catenin signaling pathway. SFRP2 might be a potential new target for the diagnosis and treatment of postpartum hypogalactia. This reveals a new mechanism of CRKL in treating postpartum hypogalactia and promotes its clinical application.


Subject(s)
Drugs, Chinese Herbal , Postpartum Period , Wnt Signaling Pathway , Animals , Female , Rats , Wnt Signaling Pathway/drug effects , Drugs, Chinese Herbal/pharmacology , Postpartum Period/metabolism , Rats, Sprague-Dawley , Pregnancy , beta Catenin/metabolism , beta Catenin/genetics
16.
J Pharmacopuncture ; 27(2): 123-130, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948315

ABSTRACT

Objectives: Post-operative urinary retention (POUR) is a frequent complication following surgical procedures, characterized by an acute inability to void, leading to additional complications and extended hospitalization. Acupuncture has been shown to be effective in facilitating spontaneous urination and alleviating anxiety in patients experiencing poor urination. The present study aims to evaluate the effectiveness of electroacupuncture in the management of POUR in patients who have undergone lumbar spine surgery. Methods: This retrospective study conducted at the National Hospital of Acupuncture in Vietnam and reviewed the medical records of patients over 18 years old who underwent lumbar spine surgery and were diagnosed with POUR between January to December 2019. Electroacupuncture was administered at five specific acupuncture points Qugu (CV2), Zhongji (CV3), Zhibian (BL54), Pangguanshu (BL28), and Kunlun (BL60). This study monitored key parameters related to the effectiveness of the acupuncture treatment, including the number of acupuncture treatment sessions required until a patient was successfully treated was recorded, with a maximum of three acupuncture treatment sessions per patient, the time elapsed until urination following the treatment (minutes), and urinary bladder volume before and after treatment (mL). Results: The study demonstrated a 93.3% success rate in treating POUR with electroacupuncture. A significant reduction in post-void residual volume was noted, and patients could void within 30 minutes post-treatment. No significant differences in treatment effectiveness were observed across difference genders and age groups. Conclusion: Electroacupuncture proved to be a highly effective treatment for POUR in patients post-lumbar spine surgery, with a rapid response time and substantial reduction in PVR. However, the retrospective nature of the study and single-center focus limit its generalizability. Future research incorporating randomized controlled trials or multi-center observational studies are recommended to validate these findings and explore the potential of acupuncture in POUR management on a broader scale.

17.
Chin Med ; 19(1): 92, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956679

ABSTRACT

G protein-coupled receptors (GPCRs) widely exist in vivo and participate in many physiological processes, thus emerging as important targets for drug development. Approximately 30% of the Food and Drug Administration (FDA)-approved drugs target GPCRs. To date, the 'one disease, one target, one molecule' strategy no longer meets the demands of drug development. Meanwhile, small-molecule drugs account for 60% of FDA-approved drugs. Traditional Chinese medicine (TCM) has garnered widespread attention for its unique theoretical system and treatment methods. TCM involves multiple components, targets and pathways. Centered on GPCRs and TCM, this paper discusses the similarities and differences between TCM and GPCRs from the perspectives of syndrome of TCM, the consistency of TCM's multi-component and multi-target approaches and the potential of GPCRs and TCM in the development of novel drugs. A novel strategy, 'simultaneous screening of drugs and targets', was proposed and applied to the study of GPCRs. We combine GPCRs with TCM to facilitate the modernisation of TCM, provide valuable insights into the rational application of TCM and facilitate the research and development of novel drugs. This study offers theoretical support for the modernisation of TCM and introduces novel ideas for development of safe and effective drugs.

18.
Curr Drug Metab ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38982915

ABSTRACT

BACKGROUND: The global obese population is rapidly increasing, urgently requiring the development of effective and safe weight-loss medications. The classic Chinese medicine formulation Lingguizhugan De-coction has exerted a significant anti-obesity effect. However, the underlying mechanism is still unclear. OBJECTIVE: This study aimed to explore the mechanism of LGZGD in the treatment of obesity based on the gut microbiota and its metabolites. METHODS: Three different dosages of LGZGD were gavaged to ob/ob mice for 8 weeks. Body mass and visceral fat mass were evaluated. Additionally, the changes in gut microbiota, fecal and plasma metabolites in mice after LGZGD treatment were analyzed by metagenomics and non-targeted metabolomics. RESULTS: The results demonstrated a significant anti-obesity effect of LGZGD treatment in ob/ob mice. Fur-thermore, the metagenomic analysis revealed that LGZGD reduced the ratio of Firmicutes / Bacteroidetes (F to B) in the gut, restored gut microbiota diversity, and identified 3 enriched KEGG pathways, including energy metabolism, lipid metabolism, and energy production and conversion pathways. Based on non-targeted metab-olomics analysis, 20 key metabolites in the feces and 30 key metabolites in the plasma responding to LGZGD treatment were identified, and the levels of Eicosapentaenoic acid (EPA) and Myristoleic acid (MA) might be the metabolites related to gut microbiota after LGZGD treatment. Their biological functions were mainly re-lated to the metabolism pathway. CONCLUSIONS: These findings suggested that LGZGD had therapeutic potential for obesity. The mechanism of LGZGD alleviating obesity was associated with improving dysbiosis of the gut microbiota. LDZGD affected gut microbiota-derived metabolites of EPA and MA and may act on energy metabolism pathways.

19.
BMC Infect Dis ; 24(1): 695, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997656

ABSTRACT

BACKGROUND: Sepsis is a life-threatening organ dysfunction, which seriously threatens human health. The clinical and experimental results have confirmed that Traditional Chinese medicine (TCM), such as Scutellariae Radix, has anti-inflammatory effects. This provides a new idea for the treatment of sepsis. This study systematically analyzed the mechanism of Scutellariae Radix treatment in sepsis based on network pharmacology, RNA sequencing and molecular docking. METHODS: Gene expression analysis was performed using Bulk RNA sequencing on sepsis patients and healthy volunteers. After quality control of the results, the differentially expressed genes (DEGs) were analyzed. The active ingredients and targets of Scutellariae Radix were identified using The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Gene Ontology (GO) and Protein-Protein Interaction (PPI) analysis were performed for disease-drug intersection targets. With the help of GEO database, Survival analysis and Meta-analysis was performed on the cross-targets to evaluate the prognostic value and screen the core targets. Subsequently, single-cell RNA sequencing was used to determine where the core targets are located within the cell. Finally, in this study, molecular docking experiments were performed to further clarify the interrelationship between the active components of Scutellariae Radix and the corresponding targets. RESULTS: There were 72 active ingredients of Scutellariae Radix, and 50 common targets of drug and disease. GO and PPI analysis showed that the intersection targets were mainly involved in response to chemical stress, response to oxygen levels, response to drug, regulation of immune system process. Survival analysis showed that PRKCD, EGLN1 and CFLAR were positively correlated with sepsis prognosis. Meta-analysis found that the three genes were highly expressed in sepsis survivor, while lowly in non-survivor. PRKCD was mostly found in Macrophages, while EGLN1 and CFLAR were widely expressed in immune cells. The active ingredient Apigenin regulates CFLAR expression, Baicalein regulates EGLN1 expression, and Wogonin regulates PRKCD expression. Molecular docking studies confrmed that the three active components of astragalus have good binding activities with their corresponding targets. CONCLUSIONS: Apigenin, Baicalein and Wogonin, important active components of Scutellaria Radix, produce anti-sepsis effects by regulating the expression of their targets CFLAR, EGLN1 and PRKCD.


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Scutellaria baicalensis , Sepsis , Sequence Analysis, RNA , Humans , Sepsis/drug therapy , Scutellaria baicalensis/chemistry , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Medicine, Chinese Traditional , Flavanones/therapeutic use , Flavanones/pharmacology , Protein Interaction Maps , Apigenin/therapeutic use , Apigenin/pharmacology , Gene Expression Profiling , Gene Ontology , Network Pharmacology
20.
Sensors (Basel) ; 24(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39000825

ABSTRACT

Intelligent Traditional Chinese Medicine can provide people with a convenient way to participate in daily health care. The ease of acceptance of Traditional Chinese Medicine is also a major advantage in promoting health management. In Traditional Chinese Medicine, tongue imaging is an important step in the examination process. The segmentation and processing of the tongue image directly affects the results of intelligent Traditional Chinese Medicine diagnosis. As intelligent Traditional Chinese Medicine continues to develop, remote diagnosis and patient participation will play important roles. Smartphone sensor cameras can provide irreplaceable data collection capabilities in enhancing interaction in smart Traditional Chinese Medicine. However, these factors lead to differences in the size and quality of the captured images due to factors such as differences in shooting equipment, professionalism of the photographer, and the subject's cooperation. Most current tongue image segmentation algorithms are based on data collected by professional tongue diagnosis instruments in standard environments, and are not able to demonstrate the tongue image segmentation effect in complex environments. Therefore, we propose a segmentation algorithm for tongue images collected in complex multi-device and multi-user environments. We use convolutional attention and extend state space models to the 2D environment in the encoder. Then, cross-layer connection fusion is used in the decoder part to fuse shallow texture and deep semantic features. Through segmentation experiments on tongue image datasets collected by patients and doctors in real-world settings, our algorithm significantly improves segmentation performance and accuracy.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Medicine, Chinese Traditional , Tongue , Tongue/diagnostic imaging , Humans , Medicine, Chinese Traditional/methods , Image Processing, Computer-Assisted/methods , Smartphone
SELECTION OF CITATIONS
SEARCH DETAIL