Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.358
Filter
Add more filters








Publication year range
1.
Behav Brain Res ; 476: 115232, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236930

ABSTRACT

Anxiety disorders are among the most common mental disorders. Treatment guidelines recommend pharmacotherapy and cognitive behavioral therapy as standard treatment. Although cognitive behavioral therapy is an effective therapeutic approach, not all patients benefit sufficiently from it. In recent years, non-invasive brain stimulation techniques, such as transcranial magnetic stimulation, have been investigated as promising adjuncts in the treatment of affective disorders. The aim of this study is to investigate whether a combination of intermittent theta burst stimulation (iTBS) and virtual reality exposure therapy leads to a significantly greater reduction in acrophobia than virtual reality exposure with sham stimulation. In this randomized double-blind placebo-controlled study, 43 participants with acrophobia received verum or sham iTBS over the left dorsolateral prefrontal cortex prior to two sessions of virtual reality exposure therapy. Stimulation of the left dorsolateral prefrontal cortex with iTBS was motivated by an experimental study showing a positive effect on extinction memory retention. Acrophobic symptoms were assessed using questionnaires and two behavioral approach tasks one week before, after treatment and six months after the second diagnostic session. The results showed that two sessions of virtual reality exposure therapy led to a significant reduction in acrophobic symptoms, with an overall remission rate of 79 %. However, there was no additional effect of iTBS of the left dorsolateral prefrontal cortex on the therapeutic effects. Further research is needed to determine how exactly a combination of transcranial magnetic stimulation and exposure therapy should be designed to enhance efficacy.

2.
Brain Lang ; 257: 105459, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39241469

ABSTRACT

Transcranial direct current stimulation (tDCS) targeting Broca's area has shown promise for augmenting language production in post-stroke aphasia (PSA). However, previous research has been limited by small sample sizes and inconsistent outcomes. This study employed a double-blind, parallel, randomized, controlled design to evaluate the efficacy of anodal Broca's tDCS, paired with 20-minute speech and language therapy (SLT) focused primarily on expressive language, across 5 daily sessions in 45 chronic PSA patients. Utilizing the Western Aphasia Battery-Revised, which assesses a spectrum of linguistic abilities, we measured changes in both expressive and receptive language skills before and after intervention. The tDCS group demonstrated significant improvements over sham in aphasia quotient, auditory verbal comprehension, and spontaneous speech. Notably, tDCS improved both expressive and receptive domains, whereas sham only benefited expression. These results underscore the broader linguistic benefits of Broca's area stimulation and support the integration of tDCS with SLT to advance aphasia rehabilitation.

3.
Behav Brain Res ; 476: 115263, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39307285

ABSTRACT

Researchers are exploring non-invasive neuromodulation techniques like transcranial direct current stimulation (tDCS) and neurofeedback (NFB) for enhancing motor learning. While tDCS modulates brain excitability using exogenous electric fields, NFB is an endogenous brain stimulation technique that enables individuals to regulate brain excitability in a closed-loop system. Despite their differing mechanisms, a direct comparison of their effects on motor learning is lacking. This study aimed to compare tDCS and NFB on online learning, short-term offline learning, and long-term offline learning in healthy participants, seeking to identify the most effective method for motor learning enhancement. In this parallel, randomized, single-blinded, controlled trial, 100 healthy participants were randomly assigned to one of five groups: real tDCS, sham tDCS, real NFB, sham NFB, and passive control. Primary outcomes included normalized reaction time (NRT), normalized response accuracy (NRA), and normalized skill index (NSI), measured through a serial reaction time task. Secondary outcomes involved physical and mental fatigue, assessed using a visual analog scale. The study involved 14 blocks of 80 trials each. Online learning was assessed by changes in NRT, NRA, and NSI between Block 3 and Block 9. Short-term and long-term offline learning were evaluated by changes in these measures between Block 9 and Block 11, and between Block 9 and Block 13, respectively. RESULTS: showed a significant decrease in NRA in the sham tDCS and passive control groups from block 3-9, with no changes in other groups. NRT significantly decreased in all intervention groups from block 9-11, with no change in the control group. The NSI significantly increased across all intervention groups between blocks 9 and 11, with large to very large effect sizes, while the passive control group saw a medium effect size increase. Furthermore, NRA significantly increased in the real NFB and real tDCS groups from block 9 to block 13. NRT also significantly decreased in all intervention groups when comparing block 13 to block 9, while the passive control group showed no significant changes. Notably, the reduction in NRT from block 9 to block 13 was significantly greater in the real tDCS group than in the control group, with a mean difference of 0.087 (95 % CI: 0.004-0.169, p = 0.031). Additionally, NSI significantly increased in all intervention groups except the control group from block 9 to block 13. In conclusion, neither NFB nor tDCS had a significant positive impact on online learning. However, both real and sham versions of tDCS and NFB resulted in notable improvements in short-term offline learning. The difference in improvement between NFB and tDCS, as well as between real and sham interventions, was not statistically significant, suggesting that the placebo effect may play a significant role in enhancing short-term offline learning. For long-term offline learning, both brain stimulation methods, particularly tDCS, showed positive effects, although the placebo effect also appeared to contribute.

4.
Front Physiol ; 15: 1350832, 2024.
Article in English | MEDLINE | ID: mdl-39314625

ABSTRACT

Introduction: Neurovascular coupling (NVC) is an important mechanism for the regulation of cerebral perfusion during intensive cognitive activity. Thus, it should be examined in terms of its effects on the regulation dynamics of cerebral perfusion and its possible alterations during cognitive impairment. The dynamic dependence of continuous changes in cerebral blood velocity (CBv), which can be measured noninvasively using transcranial Doppler upon fluctuations in arterial blood pressure (ABP) and CO2 tension, using end-tidal CO2 (EtCO2) as a proxy, can be quantified via data-based dynamic modeling to yield insights into two key regulatory mechanisms: the dynamic cerebral autoregulation (dCA) and dynamic vasomotor reactivity (DVR), respectively. Methods: Using the Laguerre Expansion Technique (LET), this study extracted such models from data in supine resting vs cognitively active conditions (during attention, fluency, and memory tasks from the Addenbrooke's Cognitive Examination III, ACE-III) to elucidate possible changes in dCA and DVR due to cognitive stimulation of NVC. Healthy volunteers (n = 39) were recruited at the University of Leicester and continuous measurements of CBv, ABP, and EtCO2 were recorded. Results: Modeling analysis of the dynamic ABP-to-CBv and CO2-to-CBv relationships showed significant changes in dCA, but not DVR, under cognitively active conditions compared to resting state. Discussion: Interpretation of these changes through Principal Dynamic Mode (PDM) analysis is discussed in terms of possible associations between stronger NVC stimulation during cognitive tasks and enhanced sympathetic activation.

5.
Heliyon ; 10(18): e37773, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39315130

ABSTRACT

The minimally invasive surgery through transcranial endoscopic keyhole approach has become the main surgical method for treating cerebral hemorrhage. This method has the advantages of small trauma, short surgical time, low bleeding volume, and fast postoperative recovery. However, this method is not suitable for cases where cerebral hemorrhage occurs again after skull repair surgery. Our team used 3D Slicer reconstruction combined with virtual reality technology to find a suitable keyhole surgical approach and successfully completed a neuroendoscopic removal of basal ganglia hemorrhage through the eyebrow arch keyhole approach in a case of recurrent cerebral hemorrhage after cranioplasty.

6.
J Neuroeng Rehabil ; 21(1): 167, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300529

ABSTRACT

BACKGROUND: Disorders of Consciousness (DoC) caused by severe brain injuries represent a challenging clinical entity, which is easy to misdiagnosis and lacks effective treatment options. Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-invasive neuroelectric stimulation method that shows promise in improving consciousness for DoC, especially in minimally conscious state (MCS). However, there is little evidence of its effectiveness, especially in RCT studies. METHODS: Twenty MCS patients participated in a double-blind, randomized, crossover, sham-controlled clinical study to evaluate the safety and efficacy of rTMS for MCS. Subjects were randomized into two groups: one group received rTMS-active for 10 consecutive days (n = 10), and the other group received rTMS-sham for 10 consecutive days (n = 10). After a 10-day washout period, the two groups were crossed over and received the opposite treatment. the rTMS protocol consisted of 2,000 pulses per day in the left dorsolateral prefrontal cortex (L-DLPFC), sent at 10 Hz. The stimulation intensity was 90% of the resting motor threshold. Coma Recovery Scale Revised (CRS-R), the main evaluation index, was evaluated before and after each phase in a double-blind manner. Meanwhile RS-EEG and TMS-EEG data were acquired and relative alpha power (RAP), and perturbational complexity index based on state transitions (PCIst) were caculated. RESULTS: One-way ANOVA revealed significantly higher scores in rTMS-active treatment compared to rTMS-sham across various measures, including CRS-R total score, RAP, PCIst (all P < 0.05). Among the 20 MCS patients, 7 (35%) were identified as responders following rTMS treatment. Compared to rTMS-sham, responder scores for CRS-R, RAP, and PCIst (all P < 0.05) were significantly elevated after rTMS-active treatment. Conversely, there was no significant difference observed in non-responders. Furthermore, post-hoc analysis revealed that baseline PCIst was significantly higher in responders than non-responders. Upon a 6-month follow-up, CRS-R scores significantly increased in all 20 patients (P = 0.026). However, the responder group exhibited a more favorable prognosis compared to the non-responder group (P = 0.031). CONCLUSIONS: Applying 10 Hz rTMS to L-DLPFC significantly increased consciousness level in MCS patients. PCIst is a neurophysiological index that has the potential to evaluate and predict therapeutic efficacy. TRIAL REGISTRATION: www. CLINICALTRIALS: gov , identifier: NCT05187000.


Subject(s)
Consciousness Disorders , Cross-Over Studies , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Male , Female , Double-Blind Method , Middle Aged , Adult , Consciousness Disorders/therapy , Consciousness Disorders/diagnosis , Treatment Outcome , Aged , Persistent Vegetative State/therapy , Persistent Vegetative State/diagnosis , Electroencephalography , Young Adult
7.
Biochem Genet ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39304639

ABSTRACT

The aim of this study was to explore the molecular mechanisms underlying cerebellar transcranial direct current stimulation (ctDCS) as a rehabilitation intervention for patients with ischemic stroke, focusing on the role of microRNAs (miRNAs). Whole-transcriptome sequencing was employed to obtain circulating expression profiles of miRNAs, long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and mRNAs in patients with ischemic stroke before and after 3-week ctDCS. miRanda software was used to predict the target genes of miRNAs, while Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to identify biological functions and signaling pathways. Subsequently, competing endogenous RNA (ceRNA) regulatory networks comprising circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA interactions were constructed. Key miRNAs in blood samples were validated through quantitative RT-PCR. In total, 43 miRNAs, 807 lncRNAs, 1,111 circRNAs, and 201 mRNAs were differentially expressed after ctDCS compared with before ctDCS. Bioinformatics analyses revealed significant enrichment of target genes regulated by differentially expressed miRNAs across multiple biological pathways. CeRNA regulatory networks implied that several miRNAs were closely related to the ctDCS. Among them, hsa-miR-181a-5p, hsa-miR-224-5p, and hsa-miR-340-3p showed significantly downregulated expression levels as confirmed by qRT-PCR. This study conducted the first-ever assessment of miRNA expression patterns in patients with ischemic stroke undergoing ctDCS. The findings revealed that ctDCS induces alterations in miRNA levels, suggesting their potential utility as therapeutic markers.

8.
J Oral Rehabil ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39305048

ABSTRACT

BACKGROUND: Neuroplasticity induced by mandibular advancement appliance (MAD) in patients with obstructive sleep apnoea (OSA) is poorly documented. OBJECTIVE: This randomised placebo-controlled crossover mechanistic study assessed the effects of short-term use of a MAD on corticomotor excitability of the masseter and tongue in patients with OSA. METHODS: Adults (n = 28) with mild or moderate OSA were randomly allocated to sleep with a MAD for 2-weeks with 40% of the maximal protrusion (MAD active position) and without any jaw protrusion (MAD placebo position). The outcomes were assessed at baseline, and after 2 and 6 weeks, with a 2-week washout period. The primary outcome was the amplitude of motor evoked potential (MEP) assessed on the right masseter, right side of tongue and right first dorsal interosseous with transcranial magnetic stimulation. Corticomotor map volume of the same muscles was also assessed. Repeated-measures ANOVAs followed by Tukey test were applied to the data (p < .050). RESULTS: There was a significant increase in the MEP amplitude of the masseter and tongue following the MAD active position compared with the baseline and MAD placebo (Tukey: p < .001). There were no significant MEP amplitude differences between the baseline and placebo positions (p > .050). Moreover, there was a significant increase in corticomotor map volume for the masseter and tongue muscles following the MAD active position compared with baseline and MAD placebo (Tukey: p < .003). CONCLUSION: Excitability of the masseter and tongue motor pathways is, at least transiently, increased in patients with OSA following a short-term use of MAD. This novel finding of MAD-induced neuroplasticity in corticomotor pathways may contribute to a further understanding of the mechanisms of oral appliances for treating OSA.

9.
Eur J Appl Physiol ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305369

ABSTRACT

INTRODUCTION: Cerebrovascular reactivity (CVR) describes the vasculature's response to vasoactive stimuli, where prior investigations relied solely on mean data, rather than exploring cardiac cycle differences. METHODS: Seventy-one participants (46 females and 25 males) from two locations underwent TCD measurements within the middle or posterior cerebral arteries (MCA, PCA). Females were tested in the early-follicular phase. The hypercapnia response was assessed using a rebreathing protocol (93% oxygen and 7% carbon dioxide) or dynamic end-tidal forcing as a cerebral blood velocity (CBv) change from 40 to 55-Torr. The hypocapnia response was quantified using a hyperventilation protocol as a CBv change from 40 to 25-Torr. Absolute and relative CVR slopes were compared across cardiac cycle phases, vessels, and biological sexes using analysis of covariance with Tukey post-hoc comparisons. RESULTS: No differences were found between hypercapnia methods used (p > 0.050). Absolute hypercapnic slopes were highest in systole (p < 0.001), with no cardiac cycle differences for absolute hypocapnia (p > 0.050). Relative slopes were largest in diastole and smallest in systole for both hypercapnia and hypocapnia (p < 0.001). Females exhibited greater absolute CVR responses (p < 0.050), while only the relative systolic hypercapnic response was different between sexes (p = 0.001). Absolute differences were present between the MCA and PCA (p < 0.001), which vanished when normalizing data to baseline values (p > 0.050). CONCLUSION: Cardiac cycle variations impact CVR responses, with females displaying greater absolute CVR in some cardiac phases during the follicular window. These findings are likely due to sex differences in endothelial receptors/signalling pathways. Future CVR studies should employ assessments across the cardiac cycle.

10.
Res Sq ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39281864

ABSTRACT

Background: In individuals with chronic stroke and hemiparesis, noninvasive brain stimulation (NIBS) may be used as an adjunct to therapy for improving motor recovery. Specific states of movement during motor recovery are more responsive to brain stimulation than others, thus a system that could auto-detect movement state would be useful in correctly identifying the most effective stimulation periods. The aim of this study was to compare the performance of different machine learning models in classifying movement periods during EEG recordings of hemiparetic individuals receiving noninvasive brain stimulation. We hypothesized that transcranial direct current stimulation, a form of NIBS, would modulate brain recordings correlating with movement state and improve classification accuracies above those receiving sham stimulation. Methods: Electroencephalogram data were obtained from 10 participants with chronic stroke and 11 healthy individuals performing a motor task while undergoing transcranial direct current stimulation. Eight traditional machine learning algorithms and five ensemble methods were used to classify two movement states (a hold posture and an arm reaching movement) before, during and after stimulation. To minimize compute times, preprocessing and feature extraction were limited to z-score normalization and power binning into five frequency bands (delta through gamma). Results: Classification of disease state produced significantly higher accuracies in the stimulation (versus sham) group at 78.9% (versus 55.6%, p < 0.000002). We observed significantly higher accuracies when classifying stimulation state in the chronic stroke group (77.6%) relative to healthy controls (64.1%, p < 0.0095). In the chronic stroke cohort, classification of hold versus reach was highest during the stimulation period (75.2%) as opposed to the pre- and post-stimulation periods. Linear discriminant analysis, logistic regression, and decision tree algorithms classified movement state most accurately in participants with chronic stroke during the stimulation period (76.1%). For the ensemble methods, the highest classification accuracy for hold versus reach was achieved using low gamma frequency (30-50 Hz) as a feature (74.5%), although this result did not achieve statistical significance. Conclusions: Machine learning algorithms demonstrated sufficiently high movement state classification accuracy in participants with chronic stroke performing functional tasks during noninvasive brain stimulation. tDCS improved disease state and movement state classification in participants with chronic stroke.

11.
Article in English | MEDLINE | ID: mdl-39293504

ABSTRACT

Transcranial magnetic stimulation (TMS) is a safe non-invasive treatment technique. We systematically reviewed randomised controlled trials (RCTs) applying TMS in obsessive compulsive disorder (OCD) and post-traumatic stress disorder (PTSD) to analyse its therapeutic benefits and explore the relationship between cortical target and psychopathophysiology. We included 47 randomised controlled trials (35 for OCD) and found a 22.7 % symptom improvement for OCD and 29.4 % for PTSD. Eight cortical targets were investigated for OCD and four for PTSD, yielding similar results. Bilateral dlPFC-TMS exhibited the greatest symptom change (32.3 % for OCD, N = 4 studies; 35.7 % for PTSD, N = 1 studies), followed by right dlPFC-TMS (24.4 % for OCD, N = 8; 26.7 % for PTSD, N = 10), and left dlPFC-TMS (22.9 % for OCD, N = 6; 23.1 % for PTSD, N = 1). mPFC-TMS showed promising results, although evidence is limited (N = 2 studies each for OCD and PTSD) and findings for PTSD were conflicting. Despite clinical improvement, reviewed reports lacked a consistent and solid rationale for cortical target selection, revealing a gap in TMS research that complicates the interpretation of findings and hinders TMS development and optimisation. Future research should adopt a hypothesis-driven approach rather than relying solely on correlations from imaging studies, integrating neurobiological processes with affective, behavioural, and cognitive states, thereby doing justice to the complexity of human experience and mental illness.

13.
J Affect Disord ; 368: 487-492, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303885

ABSTRACT

BACKGROUND: Treatment outcomes of patients who had received T-PEMF as an augmenting therapy at Aalborg University Hospital, Aalborg, Denmark, was evaluated. METHODS: Patients diagnosed with unipolar depression or bipolar disorder who had received a self-administered 8-week T-PEMF series between November 2019 and April 2023 were included. Data were retrieved from the patients' records. The primary outcome was the Hamilton Rating Scale for Depression 17-item version (HAMD17), both as a continuous measure and with proportions of response and remission reported. RESULTS: A total of 57 patients (65.1 % females, 86.0 % unipolar depression, mean age, 48 ± 14 years) were included. Duration of current depressive episode was almost equally divided for <2 years (38.6 %), 2-5 years (38.6 %) and > 5 years (22.8 %). HAM-D17 decreased significantly from baseline (20.8 (SD: 3.3)) to week 8 (14.5 (SD: 6.2), p < 0.001). An episode duration of 2-5 years was associated with lower odds of response on HAM-D6 (adjusted OR = 0.15, 95 % CI: 0.03; 0.96, p < 0.05) and self-rated HAM-D6 (adjusted OR = 0.09, 95 % CI: 0.01; 0.99, p = 0.05) when compared to an episode duration <2 years. LIMITATIONS: This study is limited by a lack of a control group, limited controlling of confounders, small sample sizes, and an attrition rate of 29.8 % for the primary outcome. CONCLUSION: T-PEMF reduced depressive symptoms in a real-world clinical setting including patients with both unipolar depression and bipolar disorder. Receiving T-PEMF within the first 2 years of the depressive episode was associated with an improved outcome.

14.
BMC Psychol ; 12(1): 480, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256851

ABSTRACT

AIM: In line with the publication of clinical information related to the therapeutic process of repetitive transcranial magnetic stimulation (rTMS) and the updating of relevant treatment guidelines, the present meta-analysis study was designed and conducted to determine the effect of repetitive transcranial magnetic stimulation (rTMS) on the Hamilton Depression Rating Scale-17 (HDRS-17) criterion in patients with major depressive disorder (MDD) without psychotic features. METHODS: In this study, a systematic search was conducted in electronic databases such as PubMed [Medline], Scopus, Web of Science, Embase, Ovid, Cochrane Library, and ClinicalTrials. gov using relevant keywords. The search period in this study was from January 2000 to January 2022, which was updated until May 2023. Randomized controlled trials (RCTs) that determined the effect of repetitive transcranial magnetic stimulation (rTMS) on the Hamilton Depression Rating Scale-17 (HDRS-17) criterion in patients with major depressive disorder (MDD) without psychotic features were included in the analysis. The quality of the included RCTs was assessed using the Cochrane Risk of Bias checklist. Statistical analyses were performed using STATA (Version 16) and RevMan (Version 5). RESULTS: Following the combination of results from 16 clinical trial studies in the present meta-analysis, it was found that the mean Hamilton Depression Rating Scale-17 (HDRS-17) in patients with major depressive disorder (MDD) decreases by an average of 1.46 units (SMD: -1.46; % 95 CI: -1.65, -1.27, I square: 45.74%; P heterogeneity: 0.56). Subgroup analysis results indicated that the standardized mean difference of Hamilton Depression Rating Scale-17 (HDRS-17) varied based on the number of treatment sessions: patients receiving 10 or fewer repetitive transcranial magnetic stimulation (rTMS) sessions showed a mean Hamilton Depression Rating Scale-17 (HDRS-17) reduction of 2.60 units (SMD: -2.60; % 95 CI: -2.86, -2.33, I square: 55.12%; P heterogeneity: 0.55), while those receiving 11 to 20 sessions showed a mean Hamilton Depression Rating Scale-17 (HDRS-17) reduction of 0.28 units (SMD: -0.28; % 95 CI: -0.65, -0.09, I square: 39.91%; P heterogeneity: 0.89). CONCLUSION: In conclusion, our meta-analysis demonstrates the efficacy of repetitive transcranial magnetic stimulation (rTMS) in reducing depressive symptoms in major depressive disorder (MDD) patients. The complex results of subgroup analysis revealed insight on the possible benefits of a more focused strategy with fewer sessions, as well as the impact of treatment session frequency. These findings add to our understanding of repetitive transcranial magnetic stimulation (rTMS) as a therapeutic intervention for the treatment of major depressive illnesses.


Subject(s)
Depressive Disorder, Major , Transcranial Magnetic Stimulation , Humans , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/psychology , Depressive Disorder, Major/therapy , Psychiatric Status Rating Scales , Randomized Controlled Trials as Topic , Transcranial Magnetic Stimulation/methods
15.
Front Hum Neurosci ; 18: 1427091, 2024.
Article in English | MEDLINE | ID: mdl-39310792

ABSTRACT

Introduction: In individuals with patellofemoral pain (PFP), addressing increased knee valgus during weight-bearing activities typically involves strengthening weak hip muscles. However, recent literature highlights the role of altered descending central control in abnormal movements associated with PFP. While transcranial direct current stimulation (tDCS) has demonstrated the capacity to enhance neuroplasticity, its application targeting the corticomotor function of gluteal muscles in PFP remains unexplored. This study aimed to investigate the effects of combining bimodal tDCS with exercise on frontal plane kinematics in individuals with PFP. The hypothesis was that bimodal tDCS, specifically targeting the corticomotor function of the gluteal muscles, would augment the effectiveness of exercise interventions in improving frontal plane kinematics compared to sham stimulation. Methods: Ten participants with PFP participated in two sessions involving either bimodal tDCS or sham stimulation, concurrently with hip strengthening exercises. Weight-bearing tasks, including single leg squat, single leg landing, single leg hopping, forward step-down, and lateral step-down, were performed and recorded before and after each session. Pain visual analog scale (VAS) scores were also documented. A one-way ANOVA with repeated measures was employed to compare kinematics, while a Friedman test was used to compare VAS across the three conditions (pre-test, post-tDCS, and post-Sham). Results: We observed no significant differences in trunk lean angle, hip and knee frontal plane projection angles, or dynamic valgus index among the three conditions during the five weight-bearing tasks. VAS scores did not differ across the three conditions. Discussion and conclusion: A single session of tDCS did not demonstrate immediate efficacy in enhancing frontal plane kinematics or relieving pain in individuals with PFP. Considering observed positive outcomes in other neurological and orthopedic populations with multi-session tDCS applications, suggesting potential cumulative effects, further research is essential to explore the effects of multi-session tDCS on weight-bearing movement and underlying neurophysiology in individuals with PFP.

16.
J Med Ultrasound ; 32(3): 233-237, 2024.
Article in English | MEDLINE | ID: mdl-39310866

ABSTRACT

Background: Transcranial grayscale neurosonography (NSG) and Doppler studies have major role in diagnosing neonate intracranial pathologies. The aim of the study is to evaluate the role of NSG and Doppler studies in correlation with clinical hypotonia and seizures in preterm neonates and high-risk term neonates. The prevalence of intracranial pathology is the second aim of this study. Methods: The present cross-sectional study was done in a tertiary care teaching hospital for 2 years. The study population of 120 cases comprised two groups: one group of 60 preterm neonates and the other of 60 high-risk term neonates with a history of well-defined episode of fetal distress. The NSG and Doppler findings (resistance index ≤0.62 is the optimum cutoff point for diagnosing perinatal asphyxia) are recorded. The sensitivity and specificity values for the NSG study alone, the Doppler study alone, and the combined NSG and Doppler studies are calculated. Results: The majority (46%) of preterm neonates had presented with germinal matrix hemorrhage, whereas a majority (46%) of high-risk term neonates had presented with periventricular and subcortical cysts. Comparison of the sensitivity of NSG versus Doppler versus combined NSG and Doppler in evaluating hypotonia and seizures in preterm (P = 0.0442) and high-risk term neonates (P = 0.0399) was significant. Conclusion: NSG combined with the Doppler study has significantly higher sensitivity than NSG alone in both groups. The specificity of the Doppler study is also high in both groups. Thus, it is strongly recommended to include Doppler during every NSG study to increase the detection rate.

17.
Comput Methods Programs Biomed ; 257: 108429, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39312820

ABSTRACT

BACKGROUND: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that uses weak electrical currents to modulate brain activity, thus potentially aiding the treatment of brain diseases. Although tDCS offers convenience, it yields inconsistent electric-field distributions among individuals. This inconsistency may be attributed to certain factors, such as brain atrophy. Brain atrophy is accompanied by increased cerebrospinal fluid (CSF) volume. Owing to the high electrical conductivity of CSF, its increased volume complicates current delivery to the brain, thus resulting in greater inter-subject variability. OBJECTIVE: We aim to investigate the differences in tDCS-induced electric fields between groups with different severities of brain atrophy. METHODS: We classified 180 magnetic resonance images into four groups based on the presence of Alzheimer's disease and sex. We used two montages, i.e., F-3 & Fp-2 and TP-9 & TP-10, to target the left rostral middle frontal gyrus and the hippocampus/amygdala complex, respectively. Differences between the groups in terms of regional volume variation, stimulation effect, and correlation were analyzed. RESULTS: Significant differences were observed in the geometrical variations of the CSF and two target regions. Electric fields induced by tDCS were similar in both sexes. Unique patterns were observed in each group in the correlation analysis. CONCLUSION: Our findings show that factors such as brain atrophy affect the tDCS results and that the factors present complex relationships. Further studies are necessary to better understand the relationships between these factors and optimize tDCS as a therapeutic tool.

18.
J Biophotonics ; : e202400171, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39315637

ABSTRACT

Fluorescence imaging (FI) employing near-infrared (NIR) light within the range of ~750-1350 nm enables biomedical imaging several millimeters beneath the tissue surface. More recent investigations into the short-wave IR (SWIR) transparency windows between ~1550-1870 and 2100-2300 nm highlight their superior capabilities. This research presents a comparison of IR-FI of PbS quantum dots, emitting at 990, 1310, and 1580 nm, through the mouse scalp skin, skull, and brain. The SWIR fluorescence is the most effectively transmitted signal, showing particularly significant enhancement when passing through the skull, which causes high light scattering. For the analysis of the imaging results and light propagation through the organs, their spectra of attenuation, absorption, and scattering coefficients are measured. In view of biomedical imaging, attenuation due to light scattering is a more destructive factor. Hence, the spatial resolution and imaging contrast can be improved by operating in SWIR due to decreased light scattering.

19.
Alzheimers Res Ther ; 16(1): 203, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39267112

ABSTRACT

BACKGROUND: The mechanistic effects of gamma transcranial alternating current stimulation (tACS) on hippocampal gamma oscillation activity in Alzheimer's Disease (AD) remains unclear. This study aimed to clarify beneficial effects of gamma tACS on cognitive functioning in AD and to elucidate effects on hippocampal gamma oscillation activity. METHODS: This is a double-blind, randomized controlled single-center trial. Participants with mild AD were randomized to tACS group or sham group, and underwent 30 one-hour sessions of either 40 Hz tACS or sham stimulation over consecutive 15 days. Cognitive functioning, structural magnetic resonance imaging (MRI), and simultaneous electroencephalography-functional MRI (EEG-fMRI) were evaluated at baseline, the end of the intervention and at 3-month follow-up from the randomization. RESULTS: A total of 46 patients were enrolled (23 in the tACS group, 23 in the sham group). There were no group differences in the change of the primary outcome, 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog) score after intervention (group*time, p = 0.449). For secondary outcomes, compared to the control group, the intervention group showed significant improvement in MMSE (group*time, p = 0.041) and MoCA scores (non-parametric test, p = 0.025), which were not sustained at 3-month follow-up. We found an enhancement of theta-gamma coupling in the hippocampus, which was positively correlated with improvements of MMSE score and delayed recall. Additionally, fMRI revealed increase of the local neural activity in the hippocampus. CONCLUSION: Effects on the enhancement of theta-gamma coupling and neural activity within the hippocampus suggest mechanistic models for potential therapeutic mechanisms of tACS. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03920826; Registration Date: 2019-04-19.


Subject(s)
Alzheimer Disease , Electroencephalography , Hippocampus , Magnetic Resonance Imaging , Transcranial Direct Current Stimulation , Humans , Alzheimer Disease/therapy , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnostic imaging , Male , Female , Transcranial Direct Current Stimulation/methods , Aged , Double-Blind Method , Hippocampus/diagnostic imaging , Hippocampus/physiopathology , Electroencephalography/methods , Treatment Outcome , Middle Aged , Gamma Rhythm/physiology , Neuropsychological Tests , Cognition/physiology
20.
Article in English | MEDLINE | ID: mdl-39275796

ABSTRACT

Emotional experiences deeply impact our bodily states, such as when we feel 'anger', our fists close and our face burns. Recent studies have shown that emotions can be mapped onto specific body areas, suggesting a possible role of the primary somatosensory system (S1) in emotion processing. To date, however, the causal role of S1 in emotion generation remains unclear. To address this question, we applied transcranial alternating current stimulation (tACS) on the S1 at different frequencies (beta, theta and sham) while participants saw emotional stimuli with different degrees of pleasantness and level of arousal. Results showed that modulation of S1 influenced subjective emotional ratings as a function of the frequency applied. While theta and beta-tACS made participants rate the emotional images as more pleasant (higher valence), only theta-tACS lowered the subjective arousal ratings (more calming). Skin conductance responses recorded throughout the experiment confirmed a different arousal for pleasant vs unpleasant stimuli. Our study revealed that S1 has a causal role in the feeling of emotions, adding new insight into the embodied nature of emotions. Importantly, we provided causal evidence that beta and theta frequencies contribute differently to the modulation of two dimensions of emotions - arousal and valence - corroborating the view of a dissociation between these two dimensions of emotions.

SELECTION OF CITATIONS
SEARCH DETAIL