Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters








Publication year range
1.
Chemosphere ; 364: 143291, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39243904

ABSTRACT

Nature iron is considered one of the promising catalysts in advanced oxidation processes (AOPs) that are utilized for soil remediation from polycyclic aromatic hydrocarbons (PAHs). However, the existence of anions, cations, and organic matter in soils considered impurities that restricted the utilization of iron that was harnessed naturally in the soil matrix and reduced the catalytic performance. In this regard, tropical soil naturally containing iron and relatively poor with impurities was artificially contaminated with 100 mg/50 g benzo[α]pyrene (B[α]P) and remediated using a slurry phase reactor supported with persulfate (PS). The results indicated that tropical soil containing iron and relatively poor with impurities capable of activating the oxidants and formation of radicals which successfully degraded B[α]P. The optimum removal result was 86% and obtained under the following conditions airflow = 260 mL/min, temperature 55 °C, pH 7, and [PS]0 = 1.0 g/L, at the same experimental conditions soil organic matter (SOM) mineralization was 48%. After the remediation process, there was a significant reduction in iron and aluminum contents, which considered the drawbacks of this system. Experiments to scavenge reactive species highlighted O2•- and SO4•- as the main radicals that oxidized B[α]P. Additionally, monitoring of by-products post-remediation aimed to assess toxicity and elucidate degradation pathways. Mutagenicity tests yielded positive results for two B[α]P by-products. The toxicity tests considered were the lethal concentration of 50% (LC50 96 h) for fat-head minnows revealed that all B[α]P by-products were less toxic than the parent pollutant itself. This research marks a significant advancement in soil remediation by advancing the use of the AOP method, removing the requirement for additional catalysts in the AOP system for the removal of B[α]P from soil.


Subject(s)
Benzo(a)pyrene , Environmental Restoration and Remediation , Iron , Soil Pollutants , Soil , Soil Pollutants/chemistry , Soil Pollutants/analysis , Environmental Restoration and Remediation/methods , Benzo(a)pyrene/chemistry , Benzo(a)pyrene/analysis , Iron/chemistry , Soil/chemistry , Oxidation-Reduction , Catalysis
2.
Sci Total Environ ; 945: 173583, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38851332

ABSTRACT

Accidental release of radiocaesium (137Cs) from nuclear power plants may result in long-term contamination of environmental and food production systems. Assessment of food chain contamination with 137Cs relies on 137Cs soil-to-plant transfer data and models mainly available for regions affected by the Chornobyl and Fukushima accidents. Similar data and models are lacking for other regions. Such information is needed given the global expansion of nuclear energy. We collected 38 soils worldwide of contrasting parent materials and weathering stages. The soils were spiked with 137Cs and sown with ryegrass in greenhouse conditions. The 137Cs grass-soil concentration ratio varied four orders of magnitude among soils. It was highest in Ferralsols due to the low 137Cs interception potential of kaolinite clay and the low exchangeable potassium in these soils. Our results demonstrate, for the first time, the high plant uptake of 137Cs in tropical soils. The most recent 137Cs transfer model, mainly calibrated to temperate soils dominated by weathered micas, poorly predicts the underlying processes in tropical soils but, due to compensatory effect, still reasonably well predicts 137Cs bioavailability across all soils (R2 = 0.8 on a log-log scale).


Subject(s)
Cesium Radioisotopes , Radiation Monitoring , Soil Pollutants, Radioactive , Soil , Cesium Radioisotopes/analysis , Soil Pollutants, Radioactive/analysis , Soil/chemistry , Radioactive Hazard Release , Lolium
3.
Sci Total Environ ; 926: 171843, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38521259

ABSTRACT

The catalysts derived from natural iron minerals in the advanced oxidation process offer several advantages. However, their utilization in soil remediation is restricted due to the presence of soil impurities, which can inhibit the catalytic activity of these minerals. The soils in tropical regions exhibit lower organic matter content, limited cation exchange capacity, and are non-saline, this enhances the efficiency of utilizing natural iron minerals from tropical soil as a catalyst. In this regard, the catalytic potential of naturally iron-bearing tropical soil was investigated to eliminate phenanthrene (PHE), pyrene (PYR), and benzo[α]pyrene (B[α]P) using an oxygenated reactor supported with persulfate (PS). The system showed an efficient performance, and the removal efficiencies under the optimum conditions were 81 %, 73 %, and 86 % for PHE, PYR, and B[α]P, respectively. This indicated that the catalytic activity of iron was working efficiently. However, there were changes in the soil characteristics after the remediation process such as a significant reduction in iron and aluminum contents. The scavenging experiments demonstrated that HO• had a minor role in the oxidation process, SO4•- and O2•- emerged as the primary reactive species responsible for the effective degradation of the PAHs. Moreover, the by-products were monitored after soil remediation to evaluate their toxicity and to propose degradation pathways. The Mutagenicity test showed that two by-products from each PHE and B[α]P had positive results, while only one by-product of PYR showed positive. The toxicity tests of oral rat LD50 and developmental toxicity tests revealed that certain PAHs by-products could be more toxic from the parent pollutant itself. This study represents a notable progression in soil remediation by providing a step forward in the application of the advanced oxidation process (AOP) without requiring additional catalysts to activate oxidants and degrade pollutant PAHs from the soil.

4.
Environ Monit Assess ; 196(2): 160, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231439

ABSTRACT

Environmental monitoring by measuring topsoil's magnetic and electrical properties is one practical, quick, and low-cost approach. This method has been used worldwide as a proxy for the presence of potentially toxic elements. However, additional research must be conducted on diverse soil types, geology, and climates. We determined the magnetic and electrical properties of urban and agricultural topsoils in a volcanic region and analyzed them as possible proxies of potentially toxic elements for environmental monitoring. To identify topsoil characteristics, we employed the measurements of magnetic susceptibility and hysteresis, electrical conductivity, total dissolved solids, power of hydrogen (pH), particle morphology, and element contents that were statistically analyzed to identify relevant properties. The result was able to differentiate volcanic soils from urban, industrial, and agricultural areas as well. The value of low-frequency magnetic susceptibility (χLF) in soils from urban areas is higher than 866.0±249.9 ×10-8 m3 kg-1, while the value of χLF in agricultural areas is 208.0±67.8 ×10-8 m3 kg-1. This is reinforced by the relationship between low-frequency and frequency-dependent magnetic susceptibility (χLF-χFD%) in samples from urban areas that fall within the same cluster dominated by coarse-grained magnetic minerals originating from anthropogenic processes. In contrast, the agricultural area forms a separate cluster primarily influenced by pedogenic processes from acid igneous rock minerals. Caution is required for interpreting the magnetic signal due to the high contents of lithogenic magnetic particles inherited from the parent materials of Andisols.


Subject(s)
Agriculture , Environmental Monitoring , Electric Conductivity , Soil , Minerals
5.
J Hazard Mater ; 457: 131805, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37301071

ABSTRACT

Accurate description of Cd micro-zone distribution and accumulation is the prerequisite for revealing Cd transfer and transformation processes. However, to date, the role of soil pores in the Cd micro-zone distribution characteristics in undisturbed soil is still unclear. In this study, the obvious heterogeneous distribution of Cd in and around the soil pores at the cross-sectional surface of the tropical undisturbed topsoil was visualized by the combination of X-ray micro-computed tomography and scanning electron microscope-energy dispersive spectroscopy. For both the air space and water-holding pores, the micro-zone distribution characteristics of Cd around the pores were dominated by pore sizes. For macropores and mesopores, Cd preferred to distribute in the micro-zone within 167.5-335 µm from pores. But for micropores, the highest content percentage of Cd was exhibited in the micro-zone within 67-167.5 µm from pores. The random forest model revealed that the occurrence of Fe (13.83%) and P (13.59%) contributed most to Cd micro-zone distribution around air space pores. While for water-holding pores, Fe occurrence (18.30%) contributed more significantly than P (11.92%) to Cd micro-zone distribution. Our study provided new insights into Cd retention mechanism, which is help for accessing Cd migration and transformation.

6.
Microbiol Spectr ; 11(4): e0020023, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37310219

ABSTRACT

Petabases of environmental metagenomic data are publicly available, presenting an opportunity to characterize complex environments and discover novel lineages of life. Metagenome coassembly, in which many metagenomic samples from an environment are simultaneously analyzed to infer the underlying genomes' sequences, is an essential tool for achieving this goal. We applied MetaHipMer2, a distributed metagenome assembler that runs on supercomputing clusters, to coassemble 3.4 terabases (Tbp) of metagenome data from a tropical soil in the Luquillo Experimental Forest (LEF), Puerto Rico. The resulting coassembly yielded 39 high-quality (>90% complete, <5% contaminated, with predicted 23S, 16S, and 5S rRNA genes and ≥18 tRNAs) metagenome-assembled genomes (MAGs), including two from the candidate phylum Eremiobacterota. Another 268 medium-quality (≥50% complete, <10% contaminated) MAGs were extracted, including the candidate phyla Dependentiae, Dormibacterota, and Methylomirabilota. In total, 307 medium- or higher-quality MAGs were assigned to 23 phyla, compared to 294 MAGs assigned to nine phyla in the same samples individually assembled. The low-quality (<50% complete, <10% contaminated) MAGs from the coassembly revealed a 49% complete rare biosphere microbe from the candidate phylum FCPU426 among other low-abundance microbes, an 81% complete fungal genome from the phylum Ascomycota, and 30 partial eukaryotic MAGs with ≥10% completeness, possibly representing protist lineages. A total of 22,254 viruses, many of them low abundance, were identified. Estimation of metagenome coverage and diversity indicates that we may have characterized ≥87.5% of the sequence diversity in this humid tropical soil and indicates the value of future terabase-scale sequencing and coassembly of complex environments. IMPORTANCE Petabases of reads are being produced by environmental metagenome sequencing. An essential step in analyzing these data is metagenome assembly, the computational reconstruction of genome sequences from microbial communities. "Coassembly" of metagenomic sequence data, in which multiple samples are assembled together, enables more complete detection of microbial genomes in an environment than "multiassembly," in which samples are assembled individually. To demonstrate the potential for coassembling terabases of metagenome data to drive biological discovery, we applied MetaHipMer2, a distributed metagenome assembler that runs on supercomputing clusters, to coassemble 3.4 Tbp of reads from a humid tropical soil environment. The resulting coassembly, its functional annotation, and analysis are presented here. The coassembly yielded more, and phylogenetically more diverse, microbial, eukaryotic, and viral genomes than the multiassembly of the same data. Our resource may facilitate the discovery of novel microbial biology in tropical soils and demonstrates the value of terabase-scale metagenome sequencing.


Subject(s)
Microbiota , Soil , Microbiota/genetics , Bacteria/genetics , Metagenome , Genome, Viral , Metagenomics/methods
7.
J Hazard Mater ; 442: 130017, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36174311

ABSTRACT

The environmental behavior of Cd in soil has been widely studied because of its close relationship with food security and soil environmental pollution. In this study, the roles of P fractions and Fe oxides in the retention of Cd in typical tropical soil from five cropping patterns were investigated. Although there was no evident relationship between the Cd adsorption capacity and soil aggregate particle sizes, strong spatial associations of P, Fe, and Cd at the soil aggregates were observed via energy dispersive spectroscopy analysis. Among five cropping patterns, citrus plantations exhibited highest ratios (calculated by pixel area) of P overlapped with Cd (8.61%) and Fe overlapped with Cd (9.53%) in the microaggregates. Furthermore, the random forest model revealed that humic P and labile organic P greatly contributed to the sorptivity of Cd2+ by < 0.053 mm (13.3%) and 0.25-0.053 mm (13.4%) soil aggregates, respectively. Compared with the P fractions in different-sized soil aggregates, the contribution of Fe oxides to the sorption of Cd2+ by soil aggregates was more significant. Amorphous ferric oxide had the most significant contribution to the sorptivity of Cd2+ by < 0.053 mm (26.0%), 0.25-0.053 mm (23.0%), 2.0-0.25 mm (25.1%), and > 2.0 mm (33.9%) soil aggregates.


Subject(s)
Soil Pollutants , Soil , Soil/chemistry , Phosphorus/chemistry , Cadmium/analysis , Soil Pollutants/analysis , Oxides , Iron
8.
Arch Microbiol ; 205(1): 31, 2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36527495

ABSTRACT

We evaluated the co-occurrence of archaeal taxonomic groups and soil physicochemical characteristics in relation to the structuring of the archaeal community in Amazonian soil under different land use systems. Soil samples were collected in primary forest (PF), secondary forest (SF), agricultural systems (AG) and cattle pastures (PA). Archaeal community composition was revealed based on high-throughput amplicon sequencing of the 16S rRNA gene. The results revealed co-occurrence of archaeal classes, with two groups formed: Thaumarchaeota classes, including South Africa Gold Mine-Group 1 (SAGMG-1), Crenarchaeotic group (SCG) and Crenarchaeota candidate division YNPFFA, with predominance in PF and SF; and Bathyarchaeota_unclassified, Methanomicrobia and Methanobacteria (Euryarchaeota) with the FHMa11 terrestrial group, with predominance in PA. The number of co-occurrences between groups was lower in SF, AG and PA (approximately 30%) than in PF. The qPCR analysis revealed that PF also had the largest number of archaeal representatives. Soil texture may be a limiting factor of interactions between groups since the most representative groups, SAGMG-1 and the SCG (over 20% in all sites), were positively associated with coarse sand, the soil factor most correlated with the groups (33% of the total). These results suggest that interactions between archaeal classes belonging to different phyla may be dependent on the number of individuals in the soil environment. In this context, differences in soil physical structure among the land use systems can reduce the representatives of key groups and consequently the co-occurrence of Archaea, which could compromise the natural dynamics of this complex environment.


Subject(s)
Archaea , Euryarchaeota , Cattle , Animals , Archaea/genetics , Soil/chemistry , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Forests , Euryarchaeota/genetics , Phylogeny
9.
Plants (Basel) ; 11(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36365370

ABSTRACT

Fruticulture in the Amazonian Rainforest is one of the main causes of deforestation, biodiversity loss, and soil erosion. Fruticulture plays a key role in the soil traits and soil organic matter (SOM) compartments by altering the soil ecosystem. Our aim was to assess the influence of Forest-Fruticulture conversion on soil traits, and SOM fractions in Brazil's Legal Amazon. The experiment was carried out in field conditions using four land uses as main treatments: Bixa orellana, Theobroma grandiflorum, Paullinia cupana, and the Amazon Rainforest. The soil physicochemical traits were analyzed using samples that were collected from 0-5, 5-10, and 10-20 cm soil depth by using grids (10 × 10 m) with 36 sampling points. Our results showed that the Fruticulture promoted an increase in bulk density, GMD, aggregate diameter, soil porosity, gravimetric moisture, sand, clay, carbon associated with humic acid, and, the sum of bases (K+, Ca2+, and Mg2+), while the Amazon Rainforest showed the highest values of silt, soil P content, SOC, p-SOC, m-SOC, carbon associated with fulvic acid, humine, and soil C stock. Overall, the fruticulture farming systems have negative effects on SOM compartments. The results of our study highlight the importance of considering fruticulture with endemic plant species by promoting soil fertility and soil aggregation.

10.
Article in English | MEDLINE | ID: mdl-35682013

ABSTRACT

Sandy soils in tropical areas are more vulnerable to potential toxic elements as a result of their low nutrition. The composite addition of biochar and phosphate material is considered a promising method of immobilizing toxic metals in sandy soils, but the synergistic effects of this process still need to be further explored, especially in typical tropical vegetables. In this study, a pot experiment was conducted to evaluate the agronomic and toxic metal-immobilization effects of single amendments (phosphate rock, activated phosphate rock, and biochar) and combined amendments, including biochar mixed with phosphate rock (BCPR) and biochar mixed with activated phosphate rock (BCAPR), on vegetables grown in tropical sandy soil. Among these amendments, the composite amendment BCAPR was the most effective for increasing Ca, Mg, and P uptake based on water spinach (Ipomoea aquatica L.) and pepper (Capsicum annuum L.), showing increased ratios of 22.5%, 146.0%, and 136.0%, respectively. The SEM-EDS and FTIR analysis verified that the activation process induced by humic acid resulted in the complexation and chelation of the elements P, Ca, and Mg into bioavailable forms. Furthermore, the retention of available nutrition elements was enhanced due to the strong adsorption capacity of the biochar. In terms of cadmium (Cd) and lead (Pb) passivation, the formation of insoluble mineral precipitates reduced the mobility of these metals within the BCAPR treatments, with the maximum level of extractable Cd (86.6%) and Pb (39.2%) reduction being observed in the tropical sandy soil. These results explore the use of sustainable novel cost-effective and highly efficient bi-functional mineral-based soil amendments for metal passivation and plant protection.


Subject(s)
Ipomoea , Metals, Heavy , Soil Pollutants , Cadmium/analysis , Charcoal , Lead/analysis , Metals, Heavy/analysis , Phosphates/analysis , Sand , Soil , Soil Pollutants/analysis , Vegetables
11.
Data Brief ; 41: 107842, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35128002

ABSTRACT

The data included in this article supplement the research article titled "Forest-to-pasture conversion modifies the soil bacterial community in Brazilian dry forest Caatinga (manuscript ID: STOTEN-D-21-19067R1)". This data article included the analysis of 18 chemical variables in 36 composite samples (included 4 replicates) of soils from the Microregion of Garanhuns (Northeast Brazil) and also partial 16S rRNA gene sequences from genomic DNA extracted from 27 of these samples (included 3 best quality replicates) for paired-end sequencing (up to 2 × 300 bp) in Illumina MiSeq platform (NCBI - BioProject accession: PRJNA753707). Soils were collected in August 2018 in a tropical subhumid region from the Brazilian Caatinga, along with 27 composite samples from the aboveground part of pastures to determine nutritional quality based on leaf N content. The analysis of variance (ANOVA) and post-hoc tests of environmental data and the main alpha-diversity indices based on linear mixed models (LMM) were represented in the tables. In this case, the collection region (C1 - Brejão, C2 - Garanhuns, and C3 - São João) was the random-effect variable and adjacent habitats formed by a forest (FO) and two pastures (PA and PB succeeded by this forest) composed the fixed-effect variable (land cover), both nested within C. In addition, a table with similarity percentages breakdown (SIMPER) was also shown, a procedure to assess the average percent contribution of individual phyla and bacterial classes. The figures showed the details of the study location, sampling procedure, vegetation status through the Normalized Difference Vegetation Index (NDVI), in addition to the general abundance and composition of the main bacterial phyla.

12.
Sci Total Environ ; 810: 151943, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34864020

ABSTRACT

Soils comprise a huge fraction of the world's biodiversity, contributing to several crucial ecosystem functions. However, how the forest-to-pasture conversion impact soil bacterial diversity remains poorly understood, mainly in the Caatinga biome, the largest tropical dry forest of the world. Here, we hypothesized that forest-to-pasture conversion would shape the microbial community. Thus, the soil bacterial community was assessed using the 16S rRNA gene sequencing into the Illumina MiSeq platform. Then, we analyzed ecological patterns and correlated the bacterial community with environmental parameters in forest, and two distinct pastures areas, one less productive and another more productive. The variation in soil properties in pastures and forest influenced the structure and diversity of the bacterial community. Thus, the more productive pasture positively influenced the proportion of specialists and the co-occurrence network compared to the less productive pasture. Also, Proteobacteria, Acidobacteria, and Verrucomicrobia were abundant under forest, while Actinobacteria, Firmicutes, and Chloroflexi were abundant under pastures. Also, the more productive pasture presented a higher bacterial diversity, which is important since that a more stable and connected bacterial community could benefit the agricultural environment and enhance plant performance, as can be observed by the highest network complexity in this pasture. Together, our findings elucidate a significant shift in soil bacterial communities as a consequence of forest-to-pasture conversion and bring important information for the development of preservation strategies.


Subject(s)
Microbiota , Soil , Biodiversity , Forests , RNA, Ribosomal, 16S/genetics , Soil Microbiology
13.
Microb Ecol ; 84(4): 1154-1165, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34716776

ABSTRACT

Oil palm (OP) plantations are gradually replacing tropical rainforest in Malaysia, one of the largest palm oil producers globally. Conversion of lands to OP plantations has been associated with compositional shifts of the microbial community, with consequences on the greenhouse gas (GHG) emissions. While the impact of the change in land use has recently been investigated for microorganisms involved in N2O emission, the response of the aerobic methanotrophs to OP agriculture remains to be determined. Here, we monitored the bacterial community composition, focusing on the aerobic methanotrophs, in OP agricultural soils since 2012, 2006, and 1993, as well as in a tropical rainforest, in 2019 and 2020. High-affinity methane uptake was confirmed, showing significantly lower rates in the OP plantations than in the tropical rainforest, but values increased with continuous OP agriculture. The bacterial, including the methanotrophic community composition, was modified with ongoing OP agriculture. The methanotrophic community composition was predominantly composed of unclassified methanotrophs, with the canonical (Methylocystis) and putative methanotrophs thought to catalyze high-affinity methane oxidation present at higher relative abundance in the oldest OP plantation. Results suggest that the methanotrophic community was relatively more stable within each site, exhibiting less temporal variations than the total bacterial community. Uncharacteristically, a 16S rRNA gene-based co-occurrence network analysis revealed a more complex and connected community in the OP agricultural soil, which may influence the resilience of the bacterial community to disturbances. Overall, we provide a first insight into the ecology and role of the aerobic methanotrophs as a methane sink in OP agricultural soils.


Subject(s)
Rainforest , Soil Microbiology , RNA, Ribosomal, 16S/genetics , Malaysia , Soil , Methane , Bacteria/genetics
14.
Ecotoxicol Environ Saf ; 207: 111222, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32890950

ABSTRACT

Sulfometuron-methyl is a broad-spectrum herbicide, used throughout Brazil; however, its environmental impacts in biochar (BC) amended soils is not fully understood. Biochar is known to enhance soil quality but can also have undesired effects such as altering the bioavailability and behavior of herbicides. Microbial communities can degrade herbicides such as sulfometuron-methyl in soils; however, they are known to be affected by BC. Therefore, it is important to understand the tripartite interaction between these factors. This research aimed to evaluate the sorption-desorption and biodegradation of sulfometuron-methyl in Amazonian soils amended with BC, and to assess the effects of the interactions between BC and sulfometuron-methyl on soil bacterial communities. Soil samples were collected from field plots amended with BC at three doses (0, 40 and 80 t ha-1) applied ten years ago. The herbicide sorption and desorption were evaluated using a batch equilibrium method. Mineralization and biodegradation studies were conducted in microcosms incubated with 14C-sulfometuron-methyl for 80 days. Systematic soil sampling, followed by DNA extraction, quantification (qPCR) and 16S rRNA amplicon sequencing were performed. The presence of BC increased the sorption of the herbicide to the soil by 11% (BC40) and 16% (BC80) compared to unamended soil. The presence of BC also affected the degradation of 14C-sulfometuron-methyl, reducing the mineralization rate and increasing the degradation half-life times (DT50) from 36.67 days in unamended soil to 52.11 and 55.45 days in BC40 and BC80 soils, respectively. The herbicide application altered the bacterial communities, affecting abundance and richness, and changing the taxonomic diversity (i.e., some taxa were promoted and other inhibited). A tripartite interaction was found between BC, the herbicide and soil bacterial communities, suggesting that it is important to consider the environmental impact of soil applied herbicides in biochar amended soils.


Subject(s)
Biodegradation, Environmental , Herbicides/analysis , Soil Pollutants/analysis , Sulfonylurea Compounds/analysis , Adsorption , Bacteria/metabolism , Biological Availability , Brazil , Charcoal , RNA, Ribosomal, 16S/metabolism , Soil
15.
Environ Geochem Health ; 42(11): 3965-3981, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32653967

ABSTRACT

To investigate the risks posed by trace and rare earth elements (REEs) in two tropical uranium ore fields, metal concentrations from 50 vegetable samples (corn and soybean) and their corresponding agricultural soils were evaluated in a U mining area and a U-rich coal mining area in Brazil. Samples from both areas had metal concentrations (REE: La to Lu, and trace elements: As, Pb, Cd, Ni, Cu, Cr, Mn, Zn, Ba, U, Sr) that were higher than the guidelines proposed by the Brazilian environmental agency. Soils from the U mining area (Poços de Caldas) generally had higher contents of trace elements than the coal mining area (Figueira), with the exception of Ni and Cr, indicating a higher risk of pollution, which was confirmed by a pollution load index that was greater than unity. For both sites, concentrations of uranium in the soil and plants, its hazard quotients and the soil contamination factor were higher in agricultural fields closer to the mines, indicating that contamination and the consequent risks to human health were distance dependent. REE concentrations averaged 52.8 mg kg-1 in the topsoils and 0.76 mg kg-1 in the grains for Figueira, whereas higher values of 371 mg kg-1 (topsoils) and 0.9 mg kg-1 (grains) were found in Poços de Caldas. Based upon corn and soybean consumption, the estimated intake dose of the REE was lower than the intake dose predicted to be problematic for human health for both sites, indicating limited risk related to the ingestion of REE.


Subject(s)
Crops, Agricultural/chemistry , Metals, Rare Earth/analysis , Soil Pollutants/analysis , Uranium/analysis , Agriculture , Brazil , Coal Mining , Dietary Exposure/adverse effects , Dietary Exposure/analysis , Environmental Monitoring , Humans , Mining , No-Observed-Adverse-Effect Level , Risk Assessment , Soil/chemistry , Trace Elements/analysis , Zea mays/chemistry
16.
Glob Chang Biol ; 26(9): 5303-5319, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32458420

ABSTRACT

Soil CO2 concentrations and emissions from tropical forests are modulated seasonally by precipitation. However, subseasonal responses to meteorological events (e.g., storms, drought) are less well known. Here, we present the effects of meteorological variability on short-term (hours to months) dynamics of soil CO2 concentrations and emissions in a Neotropical wet forest. We continuously monitored soil temperature, moisture, and CO2 for a three-year period (2015-2017), encompassing normal conditions, floods, a dry El Niño period, and a hurricane. We used a coupled model (Hydrus-1D) for soil water propagation, heat transfer, and diffusive gas transport to explain observed soil moisture, soil temperature, and soil CO2 concentration responses to meteorology, and we estimated soil CO2 efflux with a gradient-flux model. Then, we predicted changes in soil CO2 concentrations and emissions under different warming climate change scenarios. Observed short-term (hourly to daily) soil CO2 concentration responded more to precipitation than to other meteorological variables (including lower pressure during the hurricane). Observed soil CO2 failed to exhibit diel patterns (associated with diel temperature fluctuations in drier climates), except during the drier El Niño period. Climate change scenarios showed enhanced soil CO2 due to warmer conditions, while precipitation played a critical role in moderating the balance between concentrations and emissions. The scenario with increased precipitation (based on a regional model projection) led to increases of +11% in soil CO2 concentrations and +4% in soil CO2 emissions. The scenario with decreased precipitation (based on global circulation model projections) resulted in increases of +4% in soil CO2 concentrations and +18% in soil CO2 emissions, and presented more prominent hot moments in soil CO2 outgassing. These findings suggest that soil CO2 will increase under warmer climate in tropical wet forests, and precipitation patterns will define the intensity of CO2 outgassing hot moments.


Subject(s)
Carbon Dioxide , Soil , Carbon Dioxide/analysis , Climate Change , Droughts , Forests
17.
Environ Geochem Health ; 42(11): 3575-3595, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32409973

ABSTRACT

Worldwide, environmental tragedies involving mining dam ruptures have become more frequent. As occurred a few years ago in Brazil (on 5 November 2015, in Minas Gerais state) the Fundão Dam rupture released 60 million m3 of tailings into terrestrial and aquatic ecosystems. Since then, little information on the ecotoxicity of these tailings has been disclosed. In the laboratory, the acute, chronic and bioaccumulation effects of increased Fundão tailing concentrations on oribatid mites (Scheloribates praeincisus) were assessed. Additionally, the bioaccumulation of 11 trace metals (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn) and the total density of oribatid mites found in the areas contaminated by the Fundão tailings were determined. The percentages of mite survival and reproductive inhibition were higher than 60% and 80%, respectively, in all contaminated areas with the highest concentration (100% mine tailings). Field studies showed an expressive reduction in the total density of oribatids per m-2 (up to 54 times) in the contaminated areas compared with the reference area. Metal accumulations in the field were 5.4 and 3.2 higher (for Ni and Hg, respectively) and up to two times higher (for most metals) than those in the laboratory for 42 days. The mite responses to the Fundão tailings found in this study suggest long-term interference in their biological development. In this sense, we can conclude that the introduction of mine tailings onto soils tended to compromise the functionality of the mites in the ecosystem, which causes imbalances to cascade other organisms of the trophic web.


Subject(s)
Mites , Soil Pollutants/toxicity , Trace Elements/toxicity , Animals , Bioaccumulation , Brazil , Ecosystem , Ecotoxicology/methods , Environmental Monitoring , Metals/pharmacokinetics , Metals/toxicity , Mining , Mites/drug effects , Mites/physiology , Population Density , Soil , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics , Structure Collapse , Trace Elements/pharmacokinetics
18.
Sci Total Environ ; 722: 137856, 2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32208254

ABSTRACT

Pesticide residues were assessed in rice-vegetable rotation topsoil from tropical riverside basin. The 256 tropical topsoil samples from the Nandu River Basin (NRB) and Wanquan River Basin (WRB) in Hainan (China) were taken from 2018 to 2019. A total of 32 current-use pesticides (CUPs) and nine legacy pesticides (LPs) were detected using a method based on a QuEChERS technique. The highest residues were from the fungicide carbendazim (257.2 µg/kg) and the insecticide imidacloprid (139.4 µg/kg). The nine LPs (8 organochlorine pesticides and chlorpyrifos) were detected in 84.4% of the samples with mean concentrations ranging from 0.02 to 675.4 µg/kg. The two most commonly detected pesticides were imidacloprid and emamectin benzoate with detection rates of 96.8% and 91.8%, respectively. The highest total concentration of pesticides from the NRB and WRB was detected in July. The highest average number of multi-residues (16) was recorded in January, compared to 14 and 12 in July and November, respectively. There was a significant correlation between the multiple pesticide residues in soil and vegetable planting types (p < 0.01). There was a significant positive correlation between the pesticide number in topsoil and the pesticide number in water (p < 0.01). The multiple pesticide residues found in surface water were consistent with those in topsoil, suggesting a potential risk of water contamination in the rice-vegetable rotation.

19.
Environ Monit Assess ; 192(4): 212, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32133572

ABSTRACT

The distribution of pesticides in soils with consequences for their mobility, bioavailability and water contamination is mainly ruled by sorption processes. Such processes are seldom investigated in tropical soils. Thus, specific interactions between tropical soils and most pesticides are widely unknown. Furthermore, the question arises whether the same factors govern adsorption in tropical and temperate soils. Thus, the sorption behaviour of five phenylurea herbicides (PUHs) was studied in eighteen differently composed soils originating from southwestern Nigeria. Sorption data were obtained by equilibrating the soil samples with 0.01 M CaCl2 solutions spiked with increasing concentrations of the target PUHs. The equilibrium data fitted well to the Freundlich isotherm equation (R2 ≥ 0.96), delivering the corresponding parameters (Kf and n). Linear distribution coefficients (Kd) were also calculated. The Pearson correlation was used to identify the specific soil and herbicide properties that have statistically significant correlations with sorption parameters. High correlations were established for various soil properties (pH, cation exchange capacity, organic carbon content, content of amorphous Fe and Mn oxides, clay/silt mass proportions) as well as molecular descriptors (octanol-water partition coefficient (log Kow) and molecular mass (Mw)) of the moderately hydrophobic herbicides. Monuron, chlorotoluron and isoproturon showed higher affinities for soil than previously reported. The gathered knowledge might assist in the assessment and in the precautionary avoidance of potential risks generated by these compounds in tropical soils.


Subject(s)
Herbicides , Phenylurea Compounds , Soil Pollutants , Adsorption , Environmental Monitoring , Herbicides/chemistry , Nigeria , Phenylurea Compounds/chemistry , Soil , Soil Pollutants/chemistry
20.
Environ Monit Assess ; 192(4): 254, 2020 Mar 29.
Article in English | MEDLINE | ID: mdl-32222881

ABSTRACT

The Cerrado soil is under constant modification, especially because of the use of agricultural systems, which affect soil carbon (C) and phosphorus (P) functioning. Thus, the objective of this study was to determine the C and P dynamics in Brazilian Cerrado Oxisol in Piauí State under natural and anthropic conditions, considering that conservational agricultural management and no-tillage systems can restore the C and P pools in that soil. Four soil samples with distinct characteristics (native Cerrado, NC; burned native Cerrado, BNC; conventional tillage agricultural system, CTS; and no-tillage agricultural system, NTS) were collected in the study area for chemical and physical laboratory analysis. The total organic carbon (TOC) concentrations found were 33 g kg-1, 27 g kg-1, 26 g kg-1, and 20 g kg-1 for CTS, NTS, NC, and BNC, respectively. The NTS had a total nitrogen (TN) concentration of 2.0 g kg-1. The CTS had 33.4 g kg-1 of soil-oxidizable C, followed by the NTS with 27.2 g kg-1. In both studied layers, the NTS had an organic P concentration > 200 mg kg-1. The higher TOC concentration in the CTS was because of the higher content of clay in comparison with that in the NTS. The organic P in the NTS was associated with a less labile fraction of C. Thus, despite the disturbance caused by agricultural systems, the adoption of the NTS could be an influential strategy in agricultural systems to restore soil organic functioning in the Brazilian Cerrado Oxisol in Piauí State.


Subject(s)
Agriculture/methods , Soil , Brazil , Carbon/analysis , Environmental Monitoring , Phosphorus/analysis
SELECTION OF CITATIONS
SEARCH DETAIL