Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 203
Filter
1.
J Forensic Leg Med ; 105: 102710, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38954889

ABSTRACT

This short report describes research on N-piperidinyl etonitazene, also known as etonitazepipne, in keratinous matrices (hair and nails) after death related to a suspected opioid overdose. Etonitazepipne belongs to the family of benzimidazole opioids, a class of new synthetic opioids that has penetrated the illicit drug market. Analysis in the case under study showed the presence of etonitazepipne in both hair and nails, confirming that the substance accumulates in the body with repeated intake.

2.
Am J Cancer Res ; 14(5): 2555-2569, 2024.
Article in English | MEDLINE | ID: mdl-38859869

ABSTRACT

The COVID-19 pandemic has caused hundreds million cases and millions death as well as continues to infect human life in the world since late of 2019. The breakthrough infection caused from mutation of SARS-CoV-2 is rising even the vaccinated population has been increasing. Currently, the severe threat posed by SARS-CoV-2 has been alleviated worldwide, and the situation has transitioned to coexisting with the virus. The dietary food with antiviral activities may improve to prevent virus infection for living with COVID-19 pandemic. Teas containing enriched phenolic ingredients such as tannins have been reported to be antitumor agents as well as be good inhibitors for coronavirus. This study developed a highly sensitive and selective ultra-high performance liquid chromatography-high resolution mass spectrometric method for quantification of tannic acids, a hydrolysable tannin, and proanthocyanidins, a condense tannin, in teas with different levels of fermentation. The in vitro pseudoviral particles (Vpp) infection assay was used to evaluate the inhibition activities of various teas. The results of current research demonstrate that the tannins in teas are effective inhibitors against infection of SARS-CoV-2 and its variants.

3.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891813

ABSTRACT

We investigated the pharmacokinetic pathway of berberine and its metabolites in vitro, in Caco-2 cells, and in human participants following the administration of dihydroberberine (DHB) and micellar berberine (LipoMicel®, LMB) formulations. A pilot trial involving nine healthy volunteers was conducted over a 24 h period; blood samples were collected and subjected to Ultra High-Performance Liquid Chromatography-High Resolution Mass Spectrometry (UHPLC-HRMS) analyses to quantify the concentrations of berberine and its metabolites. Pharmacokinetic correlations indicated that berberrubine and thalifendine follow distinct metabolic pathways. Additionally, jatrorrhizine sulfate appeared to undergo metabolism differently compared to the other sulfated metabolites. Moreover, berberrubine glucuronide likely has a unique metabolic pathway distinct from other glucuronides. The human trial revealed significantly higher blood concentrations of berberine metabolites in participants of the DHB treatment group compared to the LMB treatment group-except for berberrubine glucuronide, which was only detected in the LMB treatment group. Similarly, results from in vitro investigations showed significant differences in berberine metabolite profiles between DHB and LMB. Dihydroberberine, dihydroxy-berberrubine/thalifendine and jatrorrhizine sulfate were detected in LMB-treated cells, but not in DHB-treated cells; thalifendine and jatrorrhizine-glucuronide were detected in DHB-treated cells only. While DHB treatment provided higher blood concentrations of berberine and most berberine metabolites, both in vitro (Caco-2 cells) and in vivo human studies showed that treatment with LMB resulted in a higher proportion of unmetabolized berberine compared to DHB. These findings suggest potential clinical implications that merit further investigation in future large-scale trials.


Subject(s)
Berberine , Micelles , Humans , Berberine/analogs & derivatives , Berberine/pharmacokinetics , Berberine/blood , Berberine/metabolism , Caco-2 Cells , Pilot Projects , Male , Adult , Female , Chromatography, High Pressure Liquid
4.
Article in English | MEDLINE | ID: mdl-38920066

ABSTRACT

INTRODUCTION: Most COVID-19 survivors are troubled with chronic persistent symptoms, which have currently no definitive treatments. Bufei Huoxue (BFHX) capsule exerts clinical benefit, while the material basis and molecular mechanism remain unclear. AIM: The study aimed to elucidate the protective mechanisms of BFHX capsules against COVID-19 convalescence. UHPLC-HRMS and various databases were employed to explore potential compounds and targets. PPI, MCODE, transcription factor (TF), and miRNA analyses were conducted to receive hub targets and corresponding upstream regulators. METHOD: Molecular docking was applied to verify the binding activity of compound and target. Further, GO, KEGG, WIKI, and Reactome analyses were performed, and compound-targetsymptom and gene-disease networks were constructed. A total of 127 compounds and 313 targets were acquired. A sum of 10 hub targets were screened and showed good binding affinities with critical compounds. RESULT: MLLT1, CBFB, and EZH2 were identified as key TFs, and hsa-mir-146a-5p, hsa-mir- 26b-5p, and hsa-mir-24-3p were predicted to be important miRNAs. BFHX capsule may alleviate the symptoms by targeting TNF, IL-6, IFNG, and TGF-ß1. Besides, BFHX capsule may exert a therapeutic effect on respiratory disease (especially pulmonary fibrosis and lung infection) and multi-system damage during COVID-19 convalescence by regulating cytokine-cytokine receptor interaction, as well as TGF-ß, TNF, and Toll-like receptor signaling pathways. CONCLUSION: In summary, BFHX capsule may exert a therapeutic effect on multi-system damages during COVID-19 convalescence through multiple compounds (such as albiflorin, isopsoralen, and neobavaisoflavone), multiple targets (such as TNF, IL-6, and EGF) and multiple pathways (TGF-ß, TNF, and Toll-like receptor signaling pathways).

5.
Sci Total Environ ; 946: 174152, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906306

ABSTRACT

Biomass burning organic aerosols (BBOA) are key components of atmospheric particulate matter, yet the effects of aging process on their chemical composition and related properties remain poorly understood. In this study, fresh smoke emissions from the combustion of three types of agricultural biomass residues (rice, maize, and wheat straws) were photochemically aged in an oxidation flow reactor. The changes in BBOA composition were characterized by offline analysis using ultrahigh performance liquid chromatography coupled with Orbitrap mass spectrometry. The BBOA molecular composition varied dramatically with biomass type and aging process. Fresh and aged BBOA were predominated by CHO and nitrogen-containing CHON, CHN, and CHONS species, while with very few CHOS and other non­oxygen species. The signal peak area variations revealed that individual molecular species underwent dynamic changes, with 77-81 % of fresh species decreased or even disappeared and 33-46 % of aged species being newly formed. A notable increase was observed in the number and peak area of CxHyO≥6 compounds in aged BBOA, suggesting that photochemical process served as an important source of highly oxygenated species. Heterocyclic CxHyN2 compounds mostly dominated in fresh CHN species, whereas CxHyN1 were more abundant in aged ones. Fragmentation and homologs oxidation by addition of oxygen-containing functional groups were important pathways for the BBOA aging. The changes in BBOA composition with aging would have large impacts on particle optical properties and toxicity. This study highlights the significance of photochemical aging process in altering chemical composition and related properties of BBOA.

6.
Food Res Int ; 190: 114487, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945557

ABSTRACT

Phytocannabinoids occurring in Cannabis Sativa L. are unique secondary metabolites possessing interesting pharmacological activities. In this study, the dynamics of thermally induced (60 and 120 °C) phytocannabinoid reactions in four cannabis varieties were investigated. Using UHPLC-HRMS/MS, 40 phytocannabinoids were involved in target analysis, and an additional 281 compounds with cannabinoid-like structures and 258 non-cannabinoid bioactive compounds were subjected to suspect screening. As expected, the key reaction was the decarboxylation of acidic phytocannabinoids. Nevertheless, the rate constants differed among cannabis varieties, documenting the matrix-dependence of this process. Besides neutral counterparts of acidic species, ́new bioactive compounds such as hydroxyquinones were found in heated samples. In addition, changes in other bioactive compounds with both cannabinoid-like and non-cannabinoid structures were documented during cannabis heating at 120 °C. The data document the complexity of heat-induced processes and provide a further understanding of changes in bioactivities occurring under such conditions.


Subject(s)
Cannabinoids , Cannabis , Hot Temperature , Inflorescence , Cannabis/chemistry , Cannabinoids/analysis , Inflorescence/chemistry , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Phytochemicals/analysis
7.
Antioxidants (Basel) ; 13(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38929184

ABSTRACT

Selenosugars are gaining growing interest due to their antioxidant efficacy, and their ability to inhibit glycosidases, repair skin tissue or reduce endothelial dysfunction. Among selenosugars, those in which selenium replaces heterocyclic oxygen in a 5-membered sugar were our focus, and their coupling with phenolic compounds appears to be a strategy aimed at producing new compounds with enhanced antioxidant efficacy. In this context, the Mitsunobu reaction has been advantageously explored to obtain trans-p-coumaroyl-1,4-deoxy-2,3-O-isopropylidene-4-seleno-d-ribose, trans-caffeoyl-1,4-deoxy-2,3-O-isopropylidene-4-seleno-d-ribose, and trans-feruloyl-1,4-deoxy-2,3-O-isopropylidene-4-seleno-d-ribose. These compounds underwent removal of the iso-propylidene group, to provide the corresponding hydroxycinnamoyl-1,4-deoxy-4-seleno-d-ribose. All compounds were characterized by Nuclear Magnetic Resonance (NMR) spectroscopy and High-Resolution Mass Spectrometry (HRMS). This latter technique was pivotal for ensuing cellular metabolomics analyses. In fact, after evaluating the anti-radical efficacy through 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods, which underline the massive role of the phenolic moiety in establishing efficacy, the compounds, whose cytotoxicity was first screened in two highly oxidative-stress-sensitive cells, were tested for their wound healing properties towards human HaCaT keratinocytes cells. Caffeoyl- and feruloyl selenosugars exerted a dose-dependent repair activity, while, as highlighted by the metabolomic approach, they were poorly taken up within the cells.

8.
Fitoterapia ; 176: 106003, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729247

ABSTRACT

Sambucus williamsii Hance var. miquelii(SWH) is a precious wild Chinese herb whose fruit, rhizome, leaves and root bark can be used as medicine. Sambucus Linn has pharmacological effects such as anti-osteoporosis, promoting fracture healing, anti-viral and anti-inflammatory. In this study, the main chemical components of the alcoholic extracts from SWH were rapidly identified by ultra-high performance liquid chromatography-quadrupole orbit trap high-resolution mass spectrometry (UHPLC- HRMS MS), and a total of 42 compounds were characterized from the alcoholic extracts of SWH. The results of network pharmacological validation showed that kaempferol, quercetin, luteolin, isorhamnetin and morroniside were the main active components, and KEGG enrichment demonstrated that SWH mainly affected the signaling pathways such as PI3K-Akt, TNF and FoxO by modulating the related targets such as AKT1, PIK3R1, EGFR, RELA SRC and PTGS2. The molecular docking results showed binding solid activity between the main active components of SWH and the targets. The network pharmacology was validated by establishing an animal model of osteoporosis (OP) in rats by gavage administration of vitamin A acid. The results of the pharmacological experiments showed that SWH could improve the degree of bone loss in the femur of osteoporotic rats, increase the number of trabeculae and decrease trabeculae porosity, up-regulate the Ca and P content in the serum of OP rats, down-regulate the scope of ALP and BGP in the serum, and promote the calcification of the bone matrix, and then exert the anti-OP efficacy. In this study, network pharmacology and pharmacological experiments verified the pharmacological mechanism of SWH in anti-OP rats. This provides a theoretical basis for the research and development of anti-OP drugs and a reference for the application of other traditional Chinese medicines in treating OP diseases.


Subject(s)
Molecular Docking Simulation , Network Pharmacology , Osteoporosis , Rats, Sprague-Dawley , Sambucus , Animals , Rats , Osteoporosis/drug therapy , Chromatography, High Pressure Liquid , Sambucus/chemistry , Female , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Molecular Structure , Disease Models, Animal , Signal Transduction/drug effects , Tandem Mass Spectrometry
9.
Microbiol Spectr ; 12(6): e0403123, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38738925

ABSTRACT

STW 5, a blend of nine medicinal plant extracts, exhibits promising efficacy in treating functional gastrointestinal disorders, notably irritable bowel syndrome (IBS). Nonetheless, its effects on the gastrointestinal microbiome and the role of microbiota on the conversion of its constituents are still largely unexplored. This study employed an experimental ex vivo model to investigate STW 5's differential effects on fecal microbial communities and metabolite production in samples from individuals with and without IBS. Using 560 fecal microcosms (IBS patients, n = 6; healthy controls, n = 10), we evaluated the influence of pre-digested STW 5 and controls on microbial and metabolite composition at time points 0, 0.5, 4, and 24 h. Our findings demonstrate the potential of this ex vivo platform to analyze herbal medicine turnover within 4 h with minimal microbiome shifts due to abiotic factors. While only minor taxonomic disparities were noted between IBS- and non-IBS samples and upon treatment with STW 5, rapid metabolic turnover of STW 5 components into specific degradation products, such as 18ß-glycyrrhetinic acid, davidigenin, herniarin, 3-(3-hydroxyphenyl)propanoic acid, and 3-(2-hydroxy-4-methoxyphenyl)propanoic acid occurred. For davidigenin, 3-(3-hydroxyphenyl)propanoic acid and 18ß-glycyrrhetinic acid, anti-inflammatory, cytoprotective, or spasmolytic activities have been previously described. Notably, the microbiome-driven metabolic transformation did not induce a global microbiome shift, and the detected metabolites were minimally linked to specific taxa. Observed biotransformations were independent of IBS diagnosis, suggesting potential benefits for IBS patients from biotransformation products of STW 5. IMPORTANCE: STW 5 is an herbal medicinal product with proven clinical efficacy in the treatment of functional gastrointestinal disorders, like functional dyspepsia and irritable bowel syndrome (IBS). The effects of STW 5 on fecal microbial communities and metabolite production effects have been studied in an experimental model with fecal samples from individuals with and without IBS. While only minor taxonomic disparities were noted between IBS- and non-IBS samples and upon treatment with STW 5, rapid metabolic turnover of STW 5 components into specific degradation products with reported anti-inflammatory, cytoprotective, or spasmolytic activities was observed, which may be relevant for the pharmacological activity of STW 5.


Subject(s)
Biotransformation , Feces , Gastrointestinal Microbiome , Irritable Bowel Syndrome , Plant Extracts , Irritable Bowel Syndrome/microbiology , Irritable Bowel Syndrome/metabolism , Irritable Bowel Syndrome/drug therapy , Gastrointestinal Microbiome/drug effects , Humans , Feces/microbiology , Adult , Plant Extracts/metabolism , Plant Extracts/pharmacology , Male , Female , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacteria/drug effects , Bacteria/genetics , Middle Aged , Plants, Medicinal/microbiology , Plants, Medicinal/chemistry
10.
Food Chem ; 453: 139691, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781904

ABSTRACT

Yeast extract is increasingly becoming an attractive source for unraveling novel umami peptides that are healthier and more nutritious than traditional seasonings. In the present study, a strategy for screening novel umami peptides was established using mass spectrometry-based peptidomics combined with molecular interaction modeling, emphasizing on smaller peptides than previously reported. Four representative novel umami peptides of FE, YDQ, FQEY, and SPFSQ from yeast extract (Saccharomyces cerevisiae) were identified and validated by sensory evaluation, with thresholds determined as 0.234 ± 0.045, 0.576 ± 0.175, 0.327 ± 0.057 and 0.456 ± 0.070 mmol/L, respectively. Hydrogen and ionic bonds were the main characteristic interactions between the umami peptides and the well-recognized receptor T1R1/T1R3, in which Asp 110, Thr 112, Arg 114, Arg 240, Lys 342, and Glu 264 were the key sites in ligand-receptor recognition. Our study provides accurate sequences of umami peptides and molecular interaction mechanism for the umami effect.


Subject(s)
Peptides , Saccharomyces cerevisiae , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Peptides/chemistry , Humans , Taste , Models, Molecular , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Male , Proteomics , Female , Amino Acid Sequence
11.
Foods ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731678

ABSTRACT

The profile of secondary metabolites present in the apple cuticular layer is not only characteristic of a particular apple cultivar; it also dynamically reflects various external factors in the growing environment. In this study, the possibility of authenticating apple samples by analyzing their cuticular layer extracts was investigated. Ultra-high-performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) was employed for obtaining metabolomic fingerprints. A total of 274 authentic apple samples from four cultivars harvested in the Czech Republic and Poland between 2020 and 2022 were analyzed. The complex data generated, processed using univariate and multivariate statistical methods, enabled the building of classification models to distinguish apple cultivars as well as their geographical origin. The models showed very good performance in discriminating Czech and Polish samples for three out of four cultivars: "Gala", "Golden Delicious" and "Idared". Moreover, the validity of the models was tested over several harvest seasons. In addition to metabolites of the triterpene biosynthetic pathway, the diagnostic markers were mainly wax esters. "Jonagold", which is known to be susceptible to mutations, was the only cultivar for which an unambiguous classification of geographical origin was not possible.

12.
Plants (Basel) ; 13(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732407

ABSTRACT

The present study focuses on the chemical characterization of a dry extract obtained from the species Ajuga chamaepitys (L.) Schreb, evaluating its antioxidant properties, toxicity, and in silico profile. Quantitative analysis of the dry extract revealed a notable amount of phytochemical compounds: 59.932 ± 21.167 mg rutin equivalents (mg REs)/g dry weight, 45.864 ± 4.434 mg chlorogenic acid equivalents (mg ChAEs)/g dry weight and, respectively, 83.307 ± 3.989 mg tannic acid equivalents (TAEs)/g dry weight. By UHPLC-HRMS/MS, the following were quantified as major compounds: caffeic acid (3253.8 µg/g extract) and kaempherol (3041.5 µg/g extract); more than 11 types of polyphenolic compounds were quantified (genistin 730.2 µg/g extract, naringenin 395 µg/g extract, apigenin 325.7 µg/g extract, galangin 283.3 µg/g extract, ferulic acid 254.3 µg/g extract, p-coumaric acid 198.2 µg/g extract, rutin 110.6 µg/g extract, chrysin 90.22 µg/g extract, syringic acid 84.2 µg/g extract, pinocembrin 32.7 µg/g extract, ellagic acid 18.2 µg/g extract). The antioxidant activity was in accordance with the amount of phytochemical compounds: IC50DPPH = 483.6 ± 41.4 µg/mL, IC50ABTS•+ = 127.4 ± 20.2 µg/mL, and EC50FRAP = 491.6 ± 2 µg/mL. On the larvae of Artemia sp., it was found that the extract has a low cytotoxic action. In silico studies have highlighted the possibility of inhibiting the activity of protein kinases CDK5 and GSK-3b for apigenin, galangin, and kaempferol, with possible utility for treating neurodegenerative pathologies and neuropathic pain. Further studies are warranted to confirm the predicted molecular mechanisms of action and to further investigate the therapeutic potential in animal models of neurological disorders.

13.
BMC Cancer ; 24(1): 644, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802800

ABSTRACT

BACKGROUND: Understanding the metabolic changes in colorectal cancer (CRC) and exploring potential diagnostic biomarkers is crucial for elucidating its pathogenesis and reducing mortality. Cancer cells are typically derived from cancer tissues and can be easily obtained and cultured. Systematic studies on CRC cells at different stages are still lacking. Additionally, there is a need to validate our previous findings from human serum. METHODS: Ultrahigh-performance liquid chromatography tandem high-resolution mass spectrometry (UHPLC-HRMS)-based metabolomics and lipidomics were employed to comprehensively measure metabolites and lipids in CRC cells at four different stages and serum samples from normal control (NR) and CRC subjects. Univariate and multivariate statistical analyses were applied to select the differential metabolites and lipids between groups. Biomarkers with good diagnostic efficacy for CRC that existed in both cells and serum were screened by the receiver operating characteristic curve (ROC) analysis. Furthermore, potential biomarkers were validated using metabolite standards. RESULTS: Metabolite and lipid profiles differed significantly among CRC cells at stages A, B, C, and D. Dysregulation of glycerophospholipid (GPL), fatty acid (FA), and amino acid (AA) metabolism played a crucial role in the CRC progression, particularly GPL metabolism dominated by phosphatidylcholine (PC). A total of 46 differential metabolites and 29 differential lipids common to the four stages of CRC cells were discovered. Eight metabolites showed the same trends in CRC cells and serum from CRC patients compared to the control groups. Among them, palmitoylcarnitine and sphingosine could serve as potential biomarkers with the values of area under the curve (AUC) more than 0.80 in the serum and cells. Their panel exhibited excellent performance in discriminating CRC cells at different stages from normal cells (AUC = 1.00). CONCLUSIONS: To our knowledge, this is the first research to attempt to validate the results of metabolism studies of serum from CRC patients using cell models. The metabolic disorders of PC, FA, and AA were closely related to the tumorigenesis of CRC, with PC being the more critical factor. The panel composed of palmitoylcarnitine and sphingosine may act as a potential biomarker for the diagnosis of CRC, aiding in its prevention.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Metabolomics , Humans , Colorectal Neoplasms/blood , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Metabolomics/methods , Chromatography, High Pressure Liquid/methods , Lipidomics/methods , Male , Female , Middle Aged , ROC Curve , Metabolome , Tandem Mass Spectrometry/methods , Neoplasm Staging , Aged , Fatty Acids/metabolism , Fatty Acids/blood , Multiomics
14.
Nat Prod Res ; : 1-5, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767203

ABSTRACT

Aqueous and hydroalcoholic extracts from the pulp of Ambelania acida Aubl. (Apocynaceae) fruits were subjected to analysis through UHPLC-HRMS and antioxidant potential using the TPC, DPPH, ABTS, FRAP, and ORAC assays. A putative identification of the compounds carried out by comparison of the fragmentation spectra revealed the predominance of the monoterpene indole alkaloids tabersonine, pseudocopsinine, ajmalicine, and strictosidine. Additionally, gallic acid, caffeic acid, citric acid, 3-O-p-coumaroylquinic acid, chlorogenic acid, catechin, ellagic acid, eschweilenol C (ellagic acid deoxyhexoside), and sucrose were identified. In face of the phenolic compounds observed, hydroalcoholic extract showed a higher antioxidant activity compared to the aqueous extract, observed at TPC (108.85 mg GAE/100g), FRAP (0.73 µmol Fe2SO4/g), DPPH (1221.76 µmol TE/g), ABTS (3460.00 µmol TE/g), and ORAC assays (120.47 µmol TE/g). These findings underscore the abundant presence of bioactive compounds, including phenolics and alkaloids, in an edible Amazonian fruit.

15.
J Agric Food Chem ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38605656

ABSTRACT

Atypical aging (ATA) is a well-known wine defect that leads to unacceptable off-odors of wet mop, soap, waxy, furniture varnish, and dish rag. The main compound that is responsible for these undesired scents, 2-aminoacetophenone (AAP), results from the oxidative degradation of 3-indole acetic acid. This study aimed to investigate different technological factors for a possible effect on the oxygen radical absorption capacity (ORAC) and ATA development in white wine. Oxygenation during fermentation did not result in a significant effect on the development of ORAC or ATA development. Instead, the addition of ascorbic acid after vinification led to increased ORAC and decreased AAP formation. The first evidence of a tendency toward a correlation between ORAC and potential ATA development was found, with r = 0.365. This study showed the potential of the ORAC assay for an early assessment of the possible formation of ATA during wine storage.

16.
Food Sci Biotechnol ; 33(7): 1685-1696, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38623439

ABSTRACT

American ginseng (Panax quinquefolium L.) is used as tonic plant and high-grade nourishment. Ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) method was established for identifying the chemical constituent in three morphological regions of American ginseng, including main root (MR), rhizome (RH) and lateral root (LR). The 63 saponins was identified in different morphological regions of 10 American ginseng samples. The chemical maker compounds in corresponding morphological region, while the major compounds of MR (malonyl-ginsenoside Rb1, ginsenoside Rd, Rs2 and pseudo-RC1), LR (stipuleanoside R2, ginsenoside Re and malonyl-ginsenoside Rc), and RH (malonyl-ginsenoside Rd, Rb3, and chikusetsu saponin II) were discovered. Correlation analysis showed that 11 compounds were positively correlated with the antioxidant activity of American ginseng. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01453-4.

17.
J Sep Sci ; 47(8): e2300848, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38682821

ABSTRACT

Disorders of lipid metabolism are a common cause of coronary heart disease (CHD) and its comorbidities. In this study, ultra-performance liquid chromatography-high-resolution mass spectrometry in data-independent acquisition (DIA) mode was applied to collect abundant tandem mass spectrometry data, which provided valuable information for lipid annotation. For the lipid isomers that could not be completely separated by chromatography, parallel reaction monitoring (PRM) mode was used for quantification. A total of 223 plasma lipid metabolites were annotated, and 116 of them were identified for their fatty acyl chain composition and location. In addition, 152 plasma lipids in patients with CHD and its comorbidities were quantitatively analyzed. Multivariate statistical analysis and metabolic pathway analysis demonstrated that glycerophospholipid and sphingolipid metabolism deserved more attention for CHD. This study proposed a method combining DIA and PRM for high-throughput characterization of plasma lipids. The results also improved our understanding of metabolic disorders of CHD and its comorbidities, which can provide valuable suggestions for medical intervention.


Subject(s)
Biomarkers , Coronary Disease , Lipid Metabolism , Humans , Coronary Disease/blood , Coronary Disease/metabolism , Biomarkers/blood , Biomarkers/analysis , Chromatography, High Pressure Liquid , Lipids/blood , Tandem Mass Spectrometry , Comorbidity , Male , Middle Aged , Female
18.
Nat Prod Res ; : 1-14, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557224

ABSTRACT

The discovery of natural molecules with antimicrobial properties has become an urgent need for the global treatment of bacterium and virus infections. Cistus incanus, a Mediterranean shrub species, represents a valuable source of phytochemicals with an interesting wide-spectrum antimicrobial potential. In this study, we analysed the spectrum of molecules composing a commercial hydroalcoholic extract of C. incanus finding ellagitannins as the most abundant. The effect of the extract and its main constituents (gallic acid, ellagic acid and punicalin) was assessed as co-treatment during viral (HSV-1, HCoV-229E, SARS-CoV-2) and bacterial infection (Staphylococcus aureus and Escherichia coli) of cells and as pre-treatment before virus infections. The results indicated a remarkable antiviral activity of punicalin against SARS-CoV-2 by pre-treating both the viral and the host cells, and a major sensitivity of S. aureus to the C. incanus extract compared to E. coli. The present study highlights broad antimicrobial potential of C. incanus extract.

19.
Antioxidants (Basel) ; 13(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38539898

ABSTRACT

Mealworm, migratory locust, and house cricket have recently been recognized by the European Commission as novel foods, thus being suitable in different food applications. In this work, we tested their powders as meat extenders at 5% (w/w) inclusion in beef burgers, considering their ability to vehicle phenolic compounds during simulated in vitro static gastrointestinal digestion (INFOGEST). Insect powders were abundant in different phenolic classes, recording the highest values in locust (LP; 314.69 mg/kg), followed by cricket (CP; 113.3 mg/kg) and mealworm (MWP; 51.9 mg/kg). Following a pan-cooking process, LP burgers were confirmed as the best source of phenolics, with a marked abundance of flavonoids and phenolic acids. Interestingly, the insect powders were found to affect the in vitro gastrointestinal bioaccessibility of phenolic compounds when compared with the CTR burger, likely promoted by the interactions between the phenolic compounds and proteins characterizing the tested insect powders. Among the most discriminant phenolic metabolites at the gastrointestinal level, we found several phenolic acids (mainly hydroxycinnamics), recording the highest content for the digested CP-containing burgers. Finally, stilbenes showed significant correlation values at the intestinal level with both antioxidant and enzymatic activities, while total flavonoids were the most correlated with the inhibition of acetylcholinesterase. Taken together, our preliminary findings demonstrated that insect powders added to beef burgers can promote the bioaccessibility and potential bioavailability of phenolics in the distal tracts of the intestine.

20.
Environ Pollut ; 348: 123793, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38513944

ABSTRACT

Plastic debris in the environment are not only pollutants but may also be important sources of a variety of contaminants. This work simulated kinetics and potential of chemical leaching from plastic debris in animals' digestive systems by incubating polyvinyl chloride (PVC) cord particles in artificial digestive fluids combined with nontarget and suspect screening based on UHPLC-Orbitrap HRMS. Impacts of particle size, aging, and digestive fluid were investigated to elucidate mechanisms of chemical leaching. Thousands of chemical features were screened in the leachates of PVC cord particles in the artificial digestive fluids, among which >60% were unknown. Bisphenol A (BPA) and bis(2-ethylhexyl) phthalate (DEHP) were the dominant identified CL1 compounds. Finer size and aging of the PVC particles and prolonged incubation time enhanced chemical release, resulting in greater numbers, higher levels, and more complexity in components of the released chemicals. The gastrointestinal fluid was more favorable for chemical leaching than the gastric fluid, with greater numbers and higher levels. Hundreds to thousands of chemical features were screened and filtered in the leachates of consumer plastic products, including food contact products (FCPs) in the artificial bird gastrointestinal fluid. In addition to BPA and DEHP, several novel bisphenol analogues were identified in the leachate of at least one FCP. The results revealed that once plastic debris are ingested by animals, hundreds to thousands of chemicals may be released into animals' digestive tracts in hours, posing potential synergistic risks of plastic debris and chemicals to plastic-ingesting animals. Future research should pay more attentions to identification, ecotoxicities, and environmental fate of vast amounts of unknown chemicals potentially released from plastics in order to gain full pictures of plastic pollution in the environment.


Subject(s)
Benzhydryl Compounds , Diethylhexyl Phthalate , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Plastics/chemistry , Phenols
SELECTION OF CITATIONS
SEARCH DETAIL