Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters








Publication year range
1.
Stapp Car Crash J ; 67: 44-77, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38662621

ABSTRACT

The goal of this study was to gather and compare kinematic response and injury data on both female and male whole-body Post-mortem Human Surrogates (PMHS) responses to Underbody Blast (UBB) loading. Midsized males (50th percentile, MM) have historically been most used in biomechanical testing and were the focus of the Warrior Injury Assessment Manikin (WIAMan) program, thus this population subgroup was selected to be the baseline for female comparison. Both small female (5th percentile, SF) and large female (75th percentile, LF) PMHS were included in the test series to attempt to discern whether differences between male and female responses were predominantly driven by sex or size. Eleven tests, using 20 whole-body PMHS, were conducted by the research team. Preparation of the rig and execution of the tests took place at the Aberdeen Proving Grounds (APG) in Aberdeen, MD. Two PMHS were used in each test. The Accelerative Loading Fixture (ALF) version 2, located at APG's Bear Point range was used for all male and female whole-body tests in this series. The ALF was an outdoor test rig that was driven by a buried explosive charge, to accelerate a platform holding two symmetrically mounted seats. The platform was designed as a large, rigid frame with a deformable center section that could be tuned to simulate the floor deformation of a vehicle during a UBB event. PMHS were restrained with a 5-point harness, common in military vehicle seats. Six-degree-of-freedom motion blocks were fixed to L3, the sacrum, and the left and right iliac wings. A three-degree-of freedom block was fixed to T12. Strain gages were placed on L4 and multiple locations on the pelvis. Accelerometers on the floor and seat of the ALF provided input data for each PMHS' feet and pelvis. Time histories and mean peak responses in z-axis acceleration were similar among the three PMHS groups in this body region. Injury outcomes were different and seemed to be influenced by both sex and size contributions. Small females incurred pelvis injuries in absence of lumbar injures. Midsized males had lumbar vertebral body fractures without pelvis injuries. And large females with injuries had both pelvis and lumbar VB fractures. This study provides evidence supporting the need for female biomechanical testing to generate female response and injury thresholds. Without the inclusion of female PMHS, the differences in the injury patterns between the small female and midsized male groups would not have been recognized. Standard scaling methods assume equivalent injury patterns between the experimental and scaled data. In this study, small female damage occurred in a different anatomical structure than for the midsized males. This is an important discovery for the development of anthropomorphic test devices, injury criteria, and injury mitigating technologies. The clear separation of small female damage results, in combination with seat speeds, suggest that the small female pelvis injury threshold in UBB events lies between 4 - 5 m/s seat speed. No inference can be made about the small female lumbar threshold, other than it is likely at higher speeds and/or over longer duration. Male lumbar spine damage occurred in both the higher- and lower lower-rate tests, indicating the injury threshold would be below the seat pulses tested in these experiments. Large females exhibited injury patterns that reflected both the small female and midsized male groups - with damaged PMHS having fractures in both pelvis and lumbar, and in both higher- and lower- rate tests. The difference in damage patterns between the sex and size groups should be considered in the development of injury mitigation strategies to protect across the full population.


Subject(s)
Blast Injuries , Cadaver , Explosions , Lumbar Vertebrae , Humans , Male , Female , Blast Injuries/physiopathology , Biomechanical Phenomena , Lumbar Vertebrae/injuries , Middle Aged , Adult , Pelvis/injuries , Aged , Manikins , Sex Factors
2.
Int J Numer Method Biomed Eng ; 39(12): e3768, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37605360

ABSTRACT

This study focuses on evaluating the response of the Total Human Model for Safety™ lower extremity finite element model under blast loading. Biofidelity of the lower extremity model was evaluated against experiments with impact loading equivalent to underbody blast. The model response was found to match well with the experimental data for the average impactor speeds of 7 and 9.3 m/s resulting in an overall correlation and analysis rating of 0.86 and 0.82, respectively. The model response was then used to investigate response for antipersonnel mine explosion where the numerical setup consists of a charge mass of 40 g trinitrotoluene placed at a depth of 50 mm below the heel. The explosion was modeled using Multi Material-Arbitrary Lagrangian Eulerian method. The model was subjected to the graded input in terms of variation in standoff distance and mass of explosive to investigate the sensitivity of the model. The model found sensitive to the threat definition and predicted an increase of 110% in peak fluid-structure interaction force with 20% reduction in its time to peak and 29% increase in peak calcaneus axial force with a reduction of 33% in its time to peak when explosive mass varied from 40 g to 100 g. The location of the explosive below the foot was discovered to have significant effect on the injury pattern in near-field explosion. A comparative study suggested that the model predicted similar response and damage pattern compared to experimental data.


Subject(s)
Blast Injuries , Humans , Finite Element Analysis , Leg , Explosions , Lower Extremity/physiology , Biomechanical Phenomena
3.
J Biomech Eng ; 145(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-36511105

ABSTRACT

This study has investigated the response of the Total Human Model for Safety (THUMS) lower extremity finite element model under blast loading. Response of the model was estimated in simulated underbody blast (UBB) loading using floorplate impact velocities of increasing severity. Correlation and analysis (CORA) ratings suggested a good match between numerical response and available experimental data. The model response was then investigated in an antipersonnel landmine explosion. The model was found stable in the nearfield blast and sensitive to the threat definition. The lower extremity injury was predicted when detonation occurred below the heel. The model predicted major injuries localized to the hindfoot and midfoot with minimal damage to the forefoot, consistent with the findings in the literature. The damage to the individual bones of the foot was measured in terms of percentage change in mass and element eroded.


Subject(s)
Blast Injuries , Explosions , Humans , Lower Extremity/physiology , Foot , Heel
4.
Ann Biomed Eng ; 49(11): 2990-3017, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34312778

ABSTRACT

Whole-body PMHS (Post Mortem Human Surrogate) testing was conducted on the Accelerative Loading Fixture (ALF), which is designed to generate floor and seat loading conditions at the level, rate, location, direction, and extent seen in UBB (Underbody Blast). The overarching goal of this research effort was to examine potential differences in the lower extremity response of females and males under UBB conditions. The ALF consists of an occupant platform that is driven upward by the detonation of an explosive charge. The floor plate undergoes plastic deformation. The occupant platform supports two rigid seats for surrogates. Twenty un-embalmed PMHS were tested, including 50th-percentile males, 75th-percentile females, and 5th-percentile females. Two test series were conducted. Series A had a target floor speed of 8 m/s (2-ms time-to-peak) with a target seat speed of 5 m/s (4-ms time-to-peak). Series B had a target floor speed of 20 m/s (2-ms time-to-peak) with a target seat speed of 4 m/s (7-ms time-to-peak). Major damage occurred to the femur, tibia, fibula, talus, and calcaneus. Lower extremity damage type, incidence, and extent varied between the two sexes. Fifty-percent probability of calcaneus fracture for less than 3-ms time-to-peak is associated with a 781-g peak tibia vertical acceleration for 50th-percentile males, 650-g for 75th-percentile females, and 396-g for 5th-percentile females. Fifty-percent probability of calcaneus fracture, regardless of time-to-peak, is associated with a 368-g peak femur vertical acceleration for 50th-percentile males, 332-g for 75th-percentile females, and 218-g for 5th-percentile females. These results show differences in kinematics and damage outcome between female and male PMHS in UBB conditions. These findings will inform future decisions regarding the requirements for test capabilities that incorporate the female Warfighter. Ultimately, advancements can be made in injury assessment tools such as improved physical surrogates, injury assessment and prediction criteria, modeling and simulation capabilities, test methods, and the optimization of military ground vehicles, personal protective equipment, and injury countermeasures.


Subject(s)
Blast Injuries , Fractures, Bone , Lower Extremity/injuries , Acceleration , Adolescent , Adult , Aged , Aged, 80 and over , Biomechanical Phenomena , Cadaver , Explosions , Female , Humans , Male , Middle Aged , Military Personnel , Sex Characteristics , Stress, Mechanical , Young Adult
5.
Ann Biomed Eng ; 49(11): 3118-3127, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34117584

ABSTRACT

The lower extremity is the most frequently injured body region to mounted soldiers during underbody blast (UBB) events. UBB events often produce large deformations of the floor and subsequent acceleration of the lower limb that are not sufficiently mitigated by the combat boot, leaving the calcaneus bone vulnerable to injury. Biomechanical experiments simulating UBB loading scenarios were conducted in a laboratory environment using isolated postmortem human subject (PMHS) leg components. Each leg component was tested twice: one sub-injurious test followed by a injury-targeted test. This enabled the use of interval censoring for each specimen in the survival statistical analysis to generate the human injury probability curves (HIPCs). Foot contact forces were measured in both the hindfoot and forefoot. Strains and acoustic emission signals at the calcaneus and distal tibia were utilized to determine injury timing. The footplate velocities of the injury tests ranged 8-13 m/s with time-to-peak velocity of 1.8-2.5 ms while the velocities of non-injury tests ranged from 4 to 6 m/s with the same time-to-peak. The majority of the injuries were severe calcaneus fractures (Sanders III-IV). Secondary injuries included fractures to the distal tibia, talus, cuboid and cuneiform. These injury outcomes were found to be consistent with those reported in UBB injury literature. The HIPCs for the severe calcaneus fracture were developed using the vertical heel contact force as the injury correlation measure through survival analysis statistical method in the form of lognormal function. This work represents the first set of HIPCs dedicated to the severe calcaneus fracture using the biomechanical force measurement closest to the injury location. This injury probability curve will enable biomechanical response validation of computational models, development of ATD injury assessment reference curve, and injury prediction capability for computational models or ATDs in the UBB environment.


Subject(s)
Blast Injuries , Calcaneus/injuries , Foot Injuries , Fractures, Bone , Aged , Aged, 80 and over , Biomechanical Phenomena , Cadaver , Explosions , Humans , Middle Aged , Probability
6.
J Mech Behav Biomed Mater ; 118: 104457, 2021 06.
Article in English | MEDLINE | ID: mdl-33780859

ABSTRACT

Underbody blast attacks of military vehicles by improvised explosives have resulted in high incidence of lumbar spine fractures below the thorocolumbar junction in military combatants. Fracture risk curves related to vertical loading at individual lumbar spinal levels can be used to assess the protective ability of new injury mitigation equipment. The objectives of this study were to derive fracture risk curves for the lumbar spine under high rate compression and identify how specimen-specific attributes and lumbar spinal level may influence fracture risk. In this study, we tested a sample of three-vertebra specimens encompassing all spinal levels between T12 to S1 in high-rate axial compression. Each specimen was tested with a non-injurious load, followed by a compressive force sufficient to induce vertebral body fracture. During testing, bone fracture was identified using measurements from acoustic emission sensors and changes in load cell readings. Following testing, the fractures were assessed using computed tomographic (CT) imaging. The CT images showed isolated fractures of trabecular bone, or fractures involving both cortical and trabecular bone. Results from the compressive force measurements in conjunction with a survival analysis demonstrated that the compressive force corresponding to fracture increased inferiorly as a function of lumbar spinal level. The axial rigidity (EA) measured at the mid-plane of the centre vertebra or the volumetric bone mineral density (vBMD) of the vertebral body trabecular bone most greatly influenced fracture risk. By including these covariates in the fracture risk curves, no other variables significantly affected fracture risk, including the lumbar spinal level. The fracture risk curves presented in this study may be used to assess the risk of injury at individual lumbar vertebra when exposed to dynamic axial compression.


Subject(s)
Fractures, Bone , Spinal Fractures , Bone Density , Cancellous Bone , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/injuries , Spinal Fractures/diagnostic imaging
7.
Ann Biomed Eng ; 49(11): 3046-3079, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33723705

ABSTRACT

Fourteen simulated underbody blast impact sled tests were performed using a horizontal deceleration sled with the aim of evaluating the dynamic response of the spine in under various conditions. Conditions were characterized by input (peak velocity and time-to-peak velocity for the seat and floor), seat type (rigid or padded) and the presence of personnel protective equipment (PPE). A 50% (T12) and 30% (T8) reduction in the thoracic spine response for the specimens outfitted with PPE was observed. Longer duration seat pulses (55 ms) resulted in a 68-78% reduction in the magnitude of spine responses and a reduction in the injuries at the pelvis, thoracic and lumbar regions when compared to shorter seat pulses (10 ms). The trend analysis for the peak Z (caudal to cranial) acceleration measured along the spine showed a quadratic fit (p < 0.05), rejecting the hypothesis that the magnitude of the acceleration would decrease linearly as the load traveled caudal to cranial through the spine during an Underbody Blast (UBB) event. A UBB event occurs when an explosion beneath a vehicle propels the vehicle and its occupants vertically. Further analysis revealed a relationship (p < 0.01) between peak sacrum acceleration and peak spine accelerations measured at all levels. This study provides an initial analysis of the relationship between input conditions and spine response in a simulated underbody blast environment.


Subject(s)
Blast Injuries , Explosions , Lumbar Vertebrae/injuries , Sacrum/injuries , Thoracic Vertebrae/injuries , Acceleration , Aged , Cadaver , Humans , Lumbosacral Region/injuries , Male , Middle Aged , Personal Protective Equipment
8.
J Mech Behav Biomed Mater ; 116: 104271, 2021 04.
Article in English | MEDLINE | ID: mdl-33517100

ABSTRACT

During an underbody blast (UBB) event, mounted occupants are exposed to high rate loading of the spine via the pelvis. The objective of this study was to simulate UBB loading conditions and examine mechanisms of injury in the thoracic, lumbar and sacral spine. Fourteen instrumented, whole-body, postmortem human subject (PMHS) experiments were performed using the WSU-decelerative horizontal sled system. The specimens were positioned supine on a decelerative sled, which then impacted an energy absorbing system mounted to a concrete barrier. Variables included the peak velocity and time-to-peak velocity for seat and floor, and the presence or absence of personal protective equipment (PPE) and seat padding. Post-test CT scans and autopsies were performed to identify the presence and severity of injuries. Acceleration and angular rate data collected at vertebra T1, T5, T8, T12, and S1 were used to assess injury timing and mechanisms. Additionally, joint time-frequency analysis (JTFA) of the spinal Z acceleration of the sacrum and vertebrae was developed with the aim of verifying spinal fracture timing. Injuries observed in the spine were attributed to axial compression applied through the pelvis, together with flexion moment due to the offset in the center of gravity of the torso, and are consistent with UBB-induced combat injuries reported in the literature. The injury timing estimation techniques discussed in this study provide a time interval when the fractures are predicted to have occurred. Furthermore, this approach serves as an alternative to the estimation methods using acoustic sensors, force and acceleration traces, and strain gauges.


Subject(s)
Accidents, Traffic , Explosions , Acceleration , Biomechanical Phenomena , Cadaver , Humans , Research Subjects
9.
J Biomech Eng ; 143(1)2021 01 01.
Article in English | MEDLINE | ID: mdl-33030214

ABSTRACT

Injury due to underbody loading is increasingly relevant to the safety of the modern warfighter. To accurately evaluate injury risk in this loading modality, a biofidelic anthropomorphic test device (e.g., dummy) is required. Finite element model counterparts to the physical dummies are also useful tools in the evaluation of injury risk, but require validated constitutive material models used in the dummy. However, material model fitting can result in models that are over-fit: they match well with the data they were trained on, but do not extrapolate well to new loading scenarios. In this study, we used a hierarchical approach. Material models created from coupon-level tests were evaluated at the component level, and then verified using blinded component and whole body (WB) tests to establish a material model of the anthropomorphic test device (ATD) neck that was not over-fit. Additionally, a combined metric is introduced that incorporates the well-known correlation analysis (CORA) score with peak characteristics to holistically evaluate the material model performance. A Bergstrom Boyce material model fit to one loop of combined compression and tension experimental data performed the best within the training datasets. Its combined metric scores were 2.51 and 2.18 (max score of 3) in a constrained neck and head neck setup, respectively. In the blinded evaluation including flexed, extended, and WB simulations, similar combined scores were observed with 2.44, 2.26, and 2.60, respectively. The agreement between the combined scores in the training and validation dataset indicated that model was not over-fit and can be extrapolated into untested, but similar loading scenarios.


Subject(s)
Finite Element Analysis , Explosions , Head , Neck
10.
Ann Biomed Eng ; 49(11): 3099-3117, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33094416

ABSTRACT

It is critical to understand the relationship between under-body blast (UBB) loading and occupant response to provide optimal protection to the warfighter from serious injuries, many of which affect the spine. Previous studies have examined component and whole body response to accelerative based UBB loading. While these studies both informed injury prediction efforts and examined the shortcomings of traditional anthropomorphic test devices in the evaluation of human injury, few studies provide response data against which future models could be compared and evaluated. The current study examines four different loading conditions on a seated occupant that demonstrate the effects of changes in the floor, seat, personal protective equipment (PPE), and reclined posture on whole body post-mortem human surrogate (PMHS) spinal response in a sub-injurious loading range. Twelve PMHS were tested across floor velocities and time-to-peak (TTP) that ranged from 4.0 to 8.0 m/s and 2 to 5 ms, respectively. To focus on sub-injurious response, seat velocities were kept at 4.0 m/s and TTP ranged from 5 to 35 ms. Results demonstrated that spine response is sensitive to changes in TTP and the presence of PPE. However, spine response is largely insensitive to changes in floor loading. Data from these experiments have also served to develop response corridors that can be used to assess the performance and predictive capability of new test models used as human surrogates in high-rate vertical loading experiments.


Subject(s)
Models, Biological , Spine/physiology , Acceleration , Adult , Aged , Biomechanical Phenomena , Cadaver , Humans , Male , Manikins , Middle Aged , Personal Protective Equipment , Posture , Young Adult
11.
J Mech Behav Biomed Mater ; 108: 103780, 2020 08.
Article in English | MEDLINE | ID: mdl-32310106

ABSTRACT

Underbody blast (UBB) attacks on military vehicles can result in severe pelvic injuries to the vehicle occupants. The aim of this study was to evaluate the biomechanical responses of the pelvis to UBB-like vertical loading in different seated postures. High-rate axial loading were performed on six defleshed human cadaveric pelves, whilst a three-dimensional finite element model of a human pelvis was created and used to simulate the high-rate loading with the model responses validated against experimental measurements. Three pelvic orientation corresponding to normal, upright, and relaxed seated postures, along with three different sacral slope angles representing the range of relative pelvis and sacrum positions known to exist across the population, were studied. The results showed that a decrease in posterior pelvic tilt slightly reduced the severity of sacral fracture, while an increase in sacral angle extended the region of anterior sacral fracture but reduced the extent to which the dorsal sacrum fractured. Across all seated postures, the predicted fractures of the ischial tuberosity, ischium, pubic rami and sacrum coincided with the typical pelvic fracture patterns observed in UBB events. The present study suggests that adopting an upright initial seated posture prior to an UBB event may reduce the risk of pelvic injuries.


Subject(s)
Pelvic Bones , Sitting Position , Explosions , Humans , Pelvis , Posture
12.
J Biomech Eng ; 142(9)2020 09 01.
Article in English | MEDLINE | ID: mdl-32154843

ABSTRACT

Impact biomechanics research in occupant safety predominantly focuses on the effects of loads applied to human subjects during automotive collisions. Characterization of the biomechanical response under such loading conditions is an active and important area of investigation. However, critical knowledge gaps remain in our understanding of human biomechanical response and injury tolerance under vertically accelerated loading conditions experienced due to underbody blast (UBB) events. This knowledge gap is reflected in anthropomorphic test devices (ATDs) used to assess occupant safety. Experiments are needed to characterize biomechanical response under UBB relevant loading conditions. Matched pair experiments in which an existing ATD is evaluated in the same conditions as a post mortem human subject (PMHS) may be utilized to evaluate biofidelity and injury prediction capabilities, as well as ATD durability, under vertical loading. To characterize whole body response in the vertical direction, six whole body PMHS tests were completed under two vertical loading conditions. A series of 50th percentile hybrid III ATD tests were completed under the same conditions. Ability of the hybrid III to represent the PMHS response was evaluated using a standard evaluation metric. Tibial accelerations were comparable in both response shape and magnitude, while other sensor locations had large variations in response. Posttest inspection of the hybrid III revealed damage to the pelvis foam and skin, which resulted in large variations in pelvis response. This work provides an initial characterization of the response of the seated hybrid III ATD and PMHS under high rate vertical accelerative loading.


Subject(s)
Explosions , Acceleration , Accidents, Traffic , Biomechanical Phenomena , Blast Injuries
13.
Mil Med ; 184(Suppl 1): 261-264, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30901412

ABSTRACT

BACKGROUND: To fully understand the injury mechanisms during an underbody blast (UBB) event with military vehicles and develop new testing standards specific to military vehicles, one must understand the injuries sustained by the occupants. METHODS: Injury data from Service Members (SM) involved in UBB theater events that occurred from 2010 to 2014 were analyzed. Analysis included the investigation of prominent skeletal and visceral torso injuries. Results were categorized by killed-in-action (n = 132 SM) and wounded-in-action (n = 1,887 SM). RESULTS: Over 90% (553/606 SM) of casualties in UBB events with Abbreviated Injury Scale (AIS) 2+ injury sustained at least one skeletal fracture, when excluding concussion. The most frequent skeletal injuries from UBB were foot fractures (13% of injuries) for wounded-in-action and tibia/fibula fractures (10% of injuries) for killed-in-action. Only 1% (11/1037 SM) of all casualties with AIS 2+ injuries had visceral torso injuries without also sustaining skeletal fractures. In these few casualties, the coded injuries were likely due to trauma from a loading path other than direct UBB loading. CONCLUSION: Skeletal fractures are the most frequent AIS 2+ injury resulting from UBB events. Visceral torso injuries are infrequent in individuals that survive and they generally occur in conjunction with skeletal injuries.


Subject(s)
Blast Injuries/complications , Military Personnel/statistics & numerical data , Off-Road Motor Vehicles/statistics & numerical data , Abdominal Injuries/epidemiology , Blast Injuries/epidemiology , Explosions/statistics & numerical data , Humans , Leg Injuries/epidemiology , Off-Road Motor Vehicles/standards , Registries/statistics & numerical data , Terrorism/statistics & numerical data , Thoracic Injuries/epidemiology , United States/epidemiology
14.
Ann Biomed Eng ; 47(1): 306-316, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30276492

ABSTRACT

Over 80% of wounded Service Members sustain at least one extremity injury. The 'deck-slap' foot, a product of the vehicle's floor rising rapidly when attacked by a mine to injure the limb, has been a signature injury in recent conflicts. Given the frequency and severity of these combat-related extremity injuries, they require the greatest utilisation of resources for treatment, and have caused the greatest number of disabled soldiers during recent conflicts. Most research efforts focus on occupants seated with both tibia-to-femur and tibia-to-foot angles set at 90°; it is unknown whether results obtained from these tests are applicable when alternative seated postures are adopted. To investigate this, lower limbs from anthropometric testing devices (ATDs) and post mortem human subjects (PMHSs) were loaded in three different seated postures using an under-body blast injury simulator. Using metrics that are commonly used for assessing injury, such as the axial force and the revised tibia index, the lower limb of ATDs were found to be insensitive to posture variations while the injuries sustained by the PMHS lower limbs differed in type and severity between postures. This suggests that the mechanism of injury depends on the posture and that this cannot be captured by the current injury criteria. Therefore, great care should be taken when interpreting and extrapolating results, especially in vehicle qualification tests, when postures other than the 90°-90° are of interest.


Subject(s)
Blast Injuries , Femur , Foot , Models, Biological , Postural Balance , Tibia , Blast Injuries/pathology , Blast Injuries/physiopathology , Female , Femur/pathology , Femur/physiopathology , Foot/pathology , Foot/physiopathology , Humans , Male , Tibia/pathology , Tibia/physiopathology
15.
J R Army Med Corps ; 165(1): 18-21, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29680818

ABSTRACT

INTRODUCTION: Death as a consequence of underbody blast (UBB) can most commonly be attributed to central nervous system injury. UBB may be considered a form of tertiary blast injury but is at a higher rate and somewhat more predictable than injury caused by more classical forms of tertiary injury. Recent studies have focused on the transmission of axial load through the cervical spine with clinically relevant injury caused by resultant compression and flexion. This paper seeks to clarify the pattern of head and neck injuries in fatal UBB incidents using a pragmatic anatomical classification. METHODS: This retrospective study investigated fatal UBB incidents in UK triservice members during recent operations in Afghanistan and Iraq. Head and neck injuries were classified by anatomical site into: skull vault fractures, parenchymal brain injuries, base of skull fractures, brain stem injuries and cervical spine fractures. Incidence of all injuries and of each injury type in isolation was compared. RESULTS: 129 fatalities as a consequence of UBB were identified of whom 94 sustained head or neck injuries. 87 casualties had injuries amenable to analysis. Parenchymal brain injuries (75%) occurred most commonly followed by skull vault (55%) and base of skull fractures (32%). Cervical spine fractures occurred in only 18% of casualties. 62% of casualties had multiple sites of injury with only one casualty sustaining an isolated cervical spine fracture. CONCLUSION: Improvement of UBB survivability requires the understanding of fatal injury mechanisms. Although previous biomechanical studies have concentrated on the effect of axial load transmission and resultant injury to the cervical spine, our work demonstrates that cervical spine injuries are of limited clinical relevance for UBB survivability and that research should focus on severe brain injury secondary to direct head impact.


Subject(s)
Blast Injuries , Craniocerebral Trauma , Military Personnel , Neck Injuries , Adult , Afghan Campaign 2001- , Afghanistan , Blast Injuries/epidemiology , Blast Injuries/mortality , Craniocerebral Trauma/epidemiology , Craniocerebral Trauma/mortality , Female , Humans , Iraq , Iraq War, 2003-2011 , Male , Neck Injuries/epidemiology , Neck Injuries/mortality , Retrospective Studies , United Kingdom , Young Adult
16.
J Biomech ; 81: 104-112, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30316546

ABSTRACT

Improvised explosive devices (IEDs) were used extensively to target occupants of military vehicles during the conflicts in Iraq and Afghanistan (2003-2011). War fighters exposed to an IED attack were highly susceptible to lower limb injuries. To appropriately assess vehicle safety and make informed improvements to vehicle design, a novel Anthropomorphic Test Device (ATD), called the Warrior Injury Assessment Manikin (WIAMan), was designed for vertical loading. The main objective of this study was to develop and validate a Finite Element (FE) model of the WIAMan lower limb (WIAMan-LL). Appropriate materials and contacts were applied to realistically model the physical dummy. Validation of the model was conducted based on experiments performed on two different test rigs designed to simulate the vertical loading experienced during an under-vehicle explosion. Additionally, a preliminary evaluation of the WIAMan and Hybrid-III test devices was performed by comparing force responses to post-mortem human surrogate (PMHS) corridors. The knee axial force recorded by the WIAMan-LL when struck on the plantar surface of the foot (2 m/s) fell mostly within the PMHS corridor, but the corresponding data predicted by the Hybrid-III was almost 60% higher. Overall, good agreements were observed between the WIAMan-LL FE predictions and experiments at various pre-impact speeds ranging from 2 m/s up to 5.8 m/s. Results of the FE model were backed by mean objective rating scores of 0.67-0.76 which support its accuracy relative to the physical lower limb dummy. The observations and objective rating scores show the model is validated within the experimental loading conditions. These results indicate the model can be used in numerical studies related to possible dummy design improvements once additional PMHS data is available. The numerical lower limb is currently incorporated into a whole body model that will be used to evaluate the vehicle design for underbody blast protection.


Subject(s)
Blast Injuries , Explosions , Lower Extremity/physiology , Models, Biological , Acceleration , Biomechanical Phenomena , Cadaver , Finite Element Analysis , Humans , Male , Manikins
17.
J Mech Behav Biomed Mater ; 79: 9-19, 2018 03.
Article in English | MEDLINE | ID: mdl-29248744

ABSTRACT

Explosion from an anti-tank landmine under a military vehicle, known as underbody blast (UBB), may cause severe injury or even death for the occupants inside the vehicle. Severity and patterns of lower extremity, pelvis and lumbar spine injuries subjected to UBB have been found highly related to loading conditions, i.e. the vertical acceleration pulse. A computational human model has been developed and successfully simulated the tibia fracture under UBB in the previous study. In the present study, it was further improved by building a detailed lumbar spine and pelvis model with high biofidelity. The newly developed pelvis and lumbar spine were validated against component level test data in the literature. Then, the whole body model was validated with the published cadaver sled test data. Using the validated whole body model, parametric studies were conducted by adjusting the peak acceleration and time duration of pulses produced in the UBB to investigate the effect of waveform on the injury response. The critical values of these two parameters for pelvis and lumbar spine fracture were determined, and the relationship between injury pattern and loading conditions was established.


Subject(s)
Blast Injuries/pathology , Lumbar Vertebrae/injuries , Models, Theoretical , Pelvis/injuries , Spinal Injuries/pathology , Explosions , Humans
18.
J Neurotrauma ; 34(11): 1972-1980, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28322622

ABSTRACT

Blast-related traumatic brain injury (bTBI) resulting from improvised explosive devices is the hallmark injury of recent wars, and affects many returning veterans who experienced either direct or indirect exposure. Many of these veterans have long-term neurocognitive symptoms. However, there is very little evidence to show whether blast-induced acceleration alone, in the absence of secondary impacts, can cause mild TBI. In this study, we examine the effect of under-vehicle blast-induced hyperacceleration (uBIH) of ∼1700 g on the biochemical and microstrucutral changes in the brain using diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS). Two groups of adult male Sprague-Dawley (SD) rats were subjected to a sham procedure and uBIH, respectively. Axonal and neurochemical alterations were assessed using in vivo DTI and MRS at 2 h, 24 h, and 7 days after uBIH. Significant reduction in mean diffusivity, axial diffusivity, and radial diffusivity were observed in the hippocampus, thalamus, internal capsule, and corpus callosum as early as 2 h, and sustained up to 7 days post-uBIH. Total creatine (Cr) and glutamine (Gln) were reduced in the internal capsule at 24 h post-uBIH. The reductions in DTI parameters, Cr and Gln in vivo suggest potential activation of astrocytes and diffuse axonal injury following a single underbody blast, confirming previous histology reports.


Subject(s)
Acceleration/adverse effects , Blast Injuries/diagnostic imaging , Diffusion Tensor Imaging/trends , Hippocampus/diagnostic imaging , Internal Capsule/diagnostic imaging , Magnetic Resonance Spectroscopy , Animals , Blast Injuries/metabolism , Central Nervous System/diagnostic imaging , Central Nervous System/metabolism , Diffusion Tensor Imaging/methods , Hippocampus/metabolism , Internal Capsule/metabolism , Magnetic Resonance Spectroscopy/methods , Male , Rats , Rats, Sprague-Dawley
19.
Clin Biomech (Bristol, Avon) ; 28(6): 602-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23796847

ABSTRACT

BACKGROUND: While cervical spine injury biomechanics reviews in motor vehicle and sports environments are available, there is a paucity of studies in military loadings. This article presents an analysis on the biomechanics and applications of cervical spine injury research with an emphasis on human tolerance for underbody blast loadings in the military. METHODS: Following a brief review of published military studies on the occurrence and identification of field trauma, postmortem human subject investigations are described using whole body, intact head-neck complex, osteo-ligamentous cervical spine with head, subaxial cervical column, and isolated segments subjected to differing types of dynamic loadings (electrohydraulic and pendulum impact devices, free-fall drops). FINDINGS: Spine injuries have shown an increasing trend over the years, explosive devices are one of the primary causal agents and trauma is attributed to vertical loads. Injuries, mechanisms and tolerances are discussed under these loads. Probability-based injury risk curves are included based on loading rate, direction and age. INTERPRETATION: A unique advantage of human cadaver tests is the ability to obtain fundamental data to delineate injury biomechanics and establish human tolerance and injury criteria. Definitions of tolerances of the spine under vertical loads based on injuries have implications in clinical and biomechanical applications. Primary outputs such as forces and moments can be used to derive secondary variables such as the neck injury criterion. Implications are discussed for designing anthropomorphic test devices that may be used to predict injuries in underbody blast environments and improve the safety of military personnel.


Subject(s)
Blast Injuries/physiopathology , Cervical Vertebrae/injuries , Cervical Vertebrae/physiopathology , Military Personnel , Neck Injuries/physiopathology , Spinal Injuries/physiopathology , Biomechanical Phenomena , Blast Injuries/epidemiology , Blast Injuries/prevention & control , Cadaver , Humans , Incidence , Manikins , Models, Anatomic , Neck Injuries/epidemiology , Neck Injuries/prevention & control , Posture/physiology , Spinal Fractures/epidemiology , Spinal Fractures/physiopathology , Spinal Fractures/prevention & control , Spinal Injuries/epidemiology , Spinal Injuries/prevention & control , United States/epidemiology , Weight-Bearing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL