Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Virol Sin ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38679334

ABSTRACT

Ticks are a major parasite on the Qinghǎi-Tibet Plateau, western China, and represent an economic burden to agriculture and animal husbandry. Despite research on tick-borne pathogens that threaten humans and animals, the viromes of dominant tick species in this area remain unknown. In this study, we collected Dermacentor nuttalli ticks near Qinghǎi Lake and identified 13 viruses belonging to at least six families through metagenomic sequencing. Four viruses were of high abundance in pools, including Xinjiang tick-associated virus 1 (XJTAV1), and three novel viruses: Qinghǎi Lake virus 1, Qinghǎi Lake virus 2 (QHLV1, and QHLV2, unclassified), and Qinghǎi Lake virus 3 (QHLV3, genus Uukuvirus of family Phenuiviridae in order Bunyavirales), which lacks the M segment. The minimum infection rates of the four viruses in the tick groups were 8.2%, 49.5%, 6.2%, and 24.7%, respectively, suggesting the prevalence of these viruses in D. nuttalli ticks. A putative M segment of QHLV3 was identified from the next-generation sequencing data and further characterized for its signal peptide cleavage site, N-glycosylation, and transmembrane region. Furthermore, we probed the L, M, and S segments of other viruses from sequencing data of other tick pools by â€‹using the putative M segment sequence of QHLV3. By revealing the viromes of D. nuttalli ticks, this study enhances our understanding of tick-borne viral communities in highland regions. The putative M segment identified in a novel uukuvirus suggests that previously identified uukuviruses without M segments should have had the same genome organization as typical bunyaviruses. These findings will facilitate virus discovery and our understanding of the phylogeny of tick-borne uukuviruses.

2.
J Vet Med Sci ; 84(1): 82-89, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34819413

ABSTRACT

Kabuto Mountain virus (KAMV), the new member of the genus Uukuvirus, was isolated from the tick Haemaphysalis flava in 2018 in Japan. To date, there is no information on KAMV infection in human and animals. Therefore, serological surveillance of the infection among humans and wild mammals was conducted by virus-neutralization (VN) test and indirect immunofluorescence assay (IFA). Sera of 24 humans, 59 monkeys, 171 wild boars, 233 Sika deer, 7 bears, and 27 nutria in Yamaguchi Prefecture were analyzed by VN test. The positive ratio of humans, monkeys, wild boars, and Sika deer were 20.8%, 3.4%, 33.9% and 4.7%, respectively. No positive samples were detected in bears and nutria. The correlation coefficients between VN test and IFA in human, monkey, wild boar, and Sika deer sera were 0.5745, 0.7198, 0.9967 and 0.9525, respectively. In addition, KAMV was detected in one pool of Haemaphysalis formosensis ticks in Wakayama Prefecture. These results indicated that KAMV or KAMV-like virus is circulating among many wildlife and ticks, and that this virus incidentally infects humans.


Subject(s)
Bunyaviridae/classification , Ticks , Animals , Bunyaviridae/isolation & purification , Humans , Japan , Phylogeny , Ticks/virology
3.
Viruses ; 13(2)2021 02 14.
Article in English | MEDLINE | ID: mdl-33672975

ABSTRACT

Phenuiviridae is a large family of arthropod-borne viruses with over 100 species worldwide. Several cause severe diseases in both humans and livestock. Global warming and the apparent geographical expansion of arthropod vectors are good reasons to seriously consider these viruses potential agents of emerging diseases. With an increasing frequency and number of epidemics, some phenuiviruses represent a global threat to public and veterinary health. This review focuses on the early stage of phenuivirus infection in mammalian host cells. We address current knowledge on each step of the cell entry process, from virus binding to penetration into the cytosol. Virus receptors, endocytosis, and fusion mechanisms are discussed in light of the most recent progress on the entry of banda-, phlebo-, and uukuviruses, which together constitute the three prominent genera in the Phenuiviridae family.


Subject(s)
Bunyaviridae Infections/virology , Mammals/virology , Phlebovirus/physiology , Virus Internalization , Animals , Bunyaviridae Infections/physiopathology , Endocytosis , Humans , Phlebovirus/genetics , Virus Attachment
SELECTION OF CITATIONS
SEARCH DETAIL