Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
Eur J Med Chem ; 249: 115136, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36708678

ABSTRACT

Viruses have been recognized as the etiological agents responsible for many pathological conditions ranging from asymptomatic infections to serious diseases, even leading to death. For this reason, many efforts have been made to identify selective viral targets with the aim of developing efficient therapeutic strategies, devoid of drug-resistance issues. Considering their crucial role in the viral life cycle, polymerases are very attractive targets. Among the classes of compounds explored as viral polymerases inhibitors, here we present an overview of non-nucleoside triazole-based compounds identified in the last fifteen years. Furthermore, the structure-activity relationships (SAR) of the different chemical entities are described in order to highlight the key chemical features required for the development of effective antiviral agents.


Subject(s)
Triazoles , Viruses , Triazoles/pharmacology , Nucleosides/chemistry , Antiviral Agents/chemistry , Nucleotidyltransferases
2.
mBio ; 13(1): e0322621, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35073739

ABSTRACT

The majority of drug discovery efforts against herpesviruses have focused on nucleoside analogs that target viral DNA polymerases, agents that are associated with dose-limiting toxicity and/or a narrow spectrum of activity. We are pursuing a strategy based on targeting two-metal ion-dependent (TMID) viral enzymes. This family of enzymes consists of structurally related proteins that share common active sites containing conserved carboxylates predicted to coordinate divalent cations essential for catalysis. Compounds that target TMID enzymes, such as HIV integrase and influenza endoribonuclease, have been successfully developed for clinical use. HIV integrase inhibitors have been reported to inhibit replication of herpes simplex virus (HSV) and other herpesviruses; however, the molecular targets of their antiviral activities have not been identified. We employed a candidate-based approach utilizing several two-metal-directed chemotypes and the potential viral TMID enzymatic targets in an effort to correlate target-based activity with antiviral potency. The panel of compounds tested included integrase inhibitors, the anti-influenza agent baloxavir, three natural products previously shown to exhibit anti-HSV activity, and two 8-hydroxyquinolines (8-HQs), AK-157 and AK-166, from our in-house program. The integrase inhibitors exhibited weak overall anti-HSV-1 activity, while the 8-HQs were shown to inhibit both HSV-1 and cytomegalovirus (CMV). Target-based analysis demonstrated that none of the antiviral compounds acted by inhibiting ICP8, contradicting previous reports. On the other hand, baloxavir inhibited the proofreading exonuclease of HSV polymerase, while AK-157 and AK-166 inhibited the alkaline exonuclease UL12. In addition, AK-157 also inhibited the catalytic activity of the HSV polymerase, which provides an opportunity to potentially develop dual-targeting agents against herpesviruses. IMPORTANCE Human herpesviruses (HHVs) establish lifelong latent infections, which undergo periodic reactivation and remain a major cause of morbidity and mortality, especially in immunocompromised individuals. Currently, HHV infections are treated primarily with agents that target viral DNA polymerase, including nucleoside analogs; however, long-term treatment can be complicated by the development of drug resistance. New therapies with novel modes of action would be important not only for the treatment of resistant viruses but also for use in combination therapy to reduce dose-limiting toxicities and potentially eliminate infection. Since many essential HHV proteins are well conserved, inhibitors of novel targets would ideally exhibit broad-spectrum activity against multiple HHVs.


Subject(s)
HIV Integrase Inhibitors , Herpesviridae , Herpesvirus 1, Human , Humans , Antiviral Agents/pharmacology , Nucleosides/pharmacology , Herpesvirus 1, Human/physiology , HIV Integrase Inhibitors/pharmacology , DNA-Directed DNA Polymerase/genetics , Exonucleases/pharmacology , Virus Replication
3.
ChemMedChem ; 16(9): 1403-1419, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33427377

ABSTRACT

Nucleoside and nucleotide analogues are structurally similar antimetabolites and are promising small-molecule chemotherapeutic agents against various infectious DNA and RNA viruses. To date, these analogues have not been documented in-depth as anti-human immunodeficiency virus (HIV) and anti-hepatitis virus agents, these are at various stages of testing ranging from pre-clinical, to those withdrawn from trials, or those that are approved as drugs. Hence, in this review, the importance of these analogues in tackling HIV and hepatitis virus infections is discussed with a focus on the viral genome and the mechanism of action of these analogues, both in a mutually exclusive manner and their role in HIV/hepatitis coinfection. This review encompasses nucleoside and nucleotide analogues from 1987 onwards, starting with the first nucleoside analogue, zidovudine, and going on to those in current clinical trials and even the drugs that have been withdrawn. This review also sheds light on the prospects of these nucleoside analogues in clinical trials as a treatment option for the COVID-19 pandemic.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , Hepatitis, Viral, Human/drug therapy , Nucleosides/therapeutic use , Nucleotides/therapeutic use , COVID-19/epidemiology , Clinical Trials as Topic , Drug Repositioning , HIV/drug effects , HIV/enzymology , HIV Reverse Transcriptase/antagonists & inhibitors , Hepatitis Viruses/drug effects , Hepatitis Viruses/enzymology , Humans , Pandemics , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Reverse Transcriptase Inhibitors/therapeutic use , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
4.
ACS Infect Dis ; 6(10): 2800-2811, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32886480

ABSTRACT

RNA-dependent RNA polymerases (RdRPs) from nonsegmented negative strand (NNS) RNA viruses perform both mRNA transcription and genome replication, and these activities are regulated by their interactions with RNA and other accessory proteins within the ribonucleoprotein (RNP) complex. Detailed biochemical characterization of these enzymatic activities and their regulation is essential for understanding the life cycles of many pathogenic RNA viruses and for antiviral drug discovery. We developed biochemical and biophysical kinetic methods to study the RNA synthesis and RNA binding activities of respiratory syncytial virus (RSV) L/P RdRP. We determined that the intact L protein is essential for RdRP activity, and in truncated L protein constructs, RdRP activity is abrogated due to their deficiency in RNA template binding. These results are in agreement with the observation of an RNA template-binding tunnel at the interface of RdRP and capping domains in RSV and vesicular stomatitis virus (VSV) L protein cryo-EM structures. We also describe nonradiometric assays for measuring RNA binding and RNA polymerization activity of RSV RdRP, which are amenable to compound screening and profiling.


Subject(s)
RNA-Dependent RNA Polymerase , Respiratory Syncytial Virus, Human , Antiviral Agents , RNA-Dependent RNA Polymerase/genetics , Respiratory Syncytial Virus, Human/genetics , Transcription, Genetic , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL