Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
J Comp Physiol B ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39245661

ABSTRACT

Many flatfish species are partially euryhaline, such as the Pacific sanddab which spawn and feed in highly dynamic estuaries ranging from seawater to near freshwater. With the rapid increase in saltwater invasion of freshwater habitats, it is very likely that in these estuaries, flatfish will be exposed to increasing levels of dissolved organic carbon (DOC) of freshwater origin at a range of salinities. As salinity fluctuations often coincide with changes in DOC concentration, two natural freshwater DOCs [Luther Marsh (LM, allochthonous) and Lake Ontario (LO, autochthonous) were investigated at salinities of 30 and 7.5 ppt. Optical characterization of the two natural DOC sources indicate salinity-dependent differences in their physicochemistry. LO and LM DOCs, as well as three model compounds [tannic acid (TA), sodium dodecyl sulfate (SDS) and bovine serum albumin (BSA)] representing key chemical moieties of DOC, were used to evaluate physiological effects on sanddabs. In the absence of added DOC, an acute decrease in salinity resulted in an increase in diffusive water flux (a proxy for transcellular water permeability), ammonia excretion and a change in TEP from positive (inside) to negative (inside). The effects of DOC (10 mg C L-1) were salinity and source-dependent, with generally more pronounced effects at 30 than 7.5 ppt, and greater potency of LM relative to LO. Both LM DOC and SDS increased diffusive water flux at 30 ppt but only SDS had an effect at 7.5 ppt. TA decreased ammonia excretion at 7.5 ppt. LO DOC decreased urea-N excretion at both salinities whereas the stimulatory effect of BSA occurred only at 30 ppt. Likewise, the effects of LM DOC and BSA to reduce TEP were present at 30 ppt but not 7.5 ppt. None of the treatments affected oxygen consumption rates. Our results demonstrate that DOCs and salinity interact to alter key physiological processes in marine flatfish, reflecting changes in both gill function and the physicochemistry of DOCs between 30 and 7.5 ppt.

2.
Environ Sci Pollut Res Int ; 31(33): 45847-45861, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976191

ABSTRACT

Recently, alcohol-based draw solute (DS), i.e., alcohol with water, is one of the trending research topics in forward osmosis (FO) because of its performance and ease of regeneration. Nevertheless, the higher reverse solute flux (RSF) of the alcohol-based DS hinders its commercialization in water and wastewater treatment applications. This research aims to minimize the RSF of the alcohol-based DS in FO by investigating the possibility of using alcohol-alcohol-based draw solutes for the first time. Three alcohol-alcohol-based draw solutions, namely, (1) E70 + IPA30 (ethanol: 70% + isopropanol: 30%), (2) E40 + IPA60 (ethanol: 40% + isopropanol: 60%), and (3) E10 + IPA90 (ethanol: 10% + isopropanol: 90%), were prepared and the properties (including osmolality, shear stress, and viscosity) of the DS were first investigated followed by the parametric investigation (concerning temperature and concentration). The results were further analyzed with the fixed-point iterative method in MATLAB to obtain the performance parameters. Results reveal that the E10 + IPA90 mixture yields a lower RSF of 40.62 g/m2/h and specific reverse solute flux of 3.78 g/L with a considerably good water flux and recovery percentage of 11.47 LMH and 26.29%, respectively, as compared to other DS E70 + IPA30 and E40 + IPA60 at 25 °C. Thus, E10 + IPA90 is recommended as a potential candidate to be used as a DS in FO.


Subject(s)
Osmosis , Water Purification , Water Purification/methods , Alcohols/chemistry , Wastewater/chemistry
3.
Environ Sci Pollut Res Int ; 31(31): 43660-43672, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38904877

ABSTRACT

The agricultural sector uses 70% of the world's freshwater. As clean water is extracted, groundwater quality decreases, making it difficult to grow crops. Brackish water desalination is a promising solution for agricultural areas, but the cost is a barrier to adoption. This study investigated the performance of the fertilizer drawn forward osmosis (FDFO) process for brackish water desalination using response surface methodology (RSM) and artificial neural network (ANN) approaches. The RSM model was used to identify the optimal operating conditions, and the ANN model was used to predict the water flux (Jw) and reverse solute flux (Js). Both models achieved high accuracy, with RSM excelling in predicting Js (R2 = 0.9614) and ANN performing better for Jw (R2 = 0.9801). Draw solution (DS) concentration emerged as the most critical factor for both models, having a relative importance of 100% for two outputs. The optimal operating conditions identified by RSM were a DS concentration of 22 mol L-1, and identical feed solution (FS) and DS velocities of 8.1 cm s-1. This configuration yielded a high Jw of 4.386 LMH and a low Js of 0.392 gMH. Furthermore, the study evaluated the applicability of FDFO for real brackish groundwater. The results confirm FDFO's potential as a viable technology for water recovery in agriculture. The standalone FO system proves to be less energy-intensive than other desalination technologies. However, FO exhibits a low recovery rate, which may necessitate further dilution for fertigation purposes.


Subject(s)
Agriculture , Fertilizers , Groundwater , Neural Networks, Computer , Osmosis , Water Purification , Groundwater/chemistry , Water Purification/methods , Salinity
4.
ACS Appl Mater Interfaces ; 16(22): 29355-29363, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38769617

ABSTRACT

Energy-efficient water desalination is the key to tackle the challenges with drought and water scarcity that affect 1.2 billion people. The material and type of membrane in reverse osmosis water desalination are the key factors in their efficiency. In this work, we explored the potential of a graphene-MoS2 heterostructure membrane for water desalination, focusing on bilayer membranes and their advantages over monolayer counterparts. Through extensive molecular dynamics simulation and statistical analysis, the bilayer MoS2-graphene was investigated and compared to the monolayer of graphene and MoS2. By optimizing the heterostructure membrane, improved water flux was achieved while maintaining a high ion rejection rate. Furthermore, the study delves into the physical mechanisms underlying the superior performance of heterostructure nanopores, comparing them with circular bilayer and monolayer pores. Factors investigated include water structure, hydration shell near the membrane surface, water density, energy barrier using the potential of mean force, and porosity within the nanopore. Our findings contribute to the understanding of heterostructure membranes and their potential in enhancing the water desalination efficiency, providing valuable insights for future membrane design and optimization.

5.
Sci Rep ; 14(1): 11143, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750120

ABSTRACT

Due to the high volume of wastewater produced from dairy factories, it is necessary to integrate a water recovery process with the treatment plant. Today, bipolar membrane electrodialysis units (BMEUs) are increasingly developed for wastewater treatment and reutilizing. This article aims to develop and evaluate (technical and cost analyses) a combined BMEU/batch reverse osmosis unit (BROU) process for the recovery of chemicals and water from the dairy wastewater plant. The combined BROU/BMEU process is able to simultaneously produce water and strong base-acid, and reduce power consumption due to the injection of concentrated feed flow into the BMEU. A comprehensive comparative analysis on the performances of two combined and stand-alone BMEU configurations are developed. The proposed combined technology for dairy factory wastewater treatment is designed on a new structure and configuration that can address superior cost analysis compared to similar technologies. Further, the optimal values of permeate flux and current density as two vital and influencing parameters on the performance of the studied dairy wastewater treatment process were calculated and discussed. From the outcomes, the total cost of production in the combined configuration has been reduced by approximately 26% compared to the stand-alone configuration. Increasing the feed concentration rate using the batch reverse osmosis process for the dairy wastewater treatment process can be an ideal solution from an economic point of view. Moreover, point (current density, feed concentration rate, total unit cost) = 328.9 , 7 , 14.37 can be considered as an optimal point for the economic performance of the studied wastewater treatment process.

6.
Chemosphere ; 357: 141969, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604515

ABSTRACT

Direct Contact Membrane Distillation (DCMD) is emerging as an effective method for water desalination, known for its efficiency and adaptability. This study delves into the performance of DCMD by integrating two powerful analytical tools: Computational Fluid Dynamics (CFD) and Artificial Neural Networks (ANN). The research thoroughly examines the impact of various factors, such as inlet temperatures, velocities, channel heights, salt concentration, and membrane characteristics, on the process's efficiency, specifically calculating the water vapor flux. A rigorous validation of the CFD model aligns well with established studies, ensuring reliability. Subsequently, over 1000 data points reflecting variations in input factors are utilized to train and validate the ANN. The training phase demonstrated high accuracy, with near-zero mean squared errors and R2 values close to one, indicating a strong predictive capability. Further analysis post-ANN training shed light on key relationships: higher membrane porosity boosts water vapor flux, whereas thicker membranes reduce it. Additionally, it was detailed how salt concentration, channel dimensions, inlet temperatures, and velocities significantly influence the distillation process. Finally, a mathematical model was proposed for water vapor flux as a function of key input factors. The results highlighted that salt mole fraction and hot water inlet temperature have the most effect on the water vapor flux. This comprehensive investigation contributes to the understanding of DCMD and emphasizes the potential of combining CFD and ANN for optimizing and innovating water desalination technology.


Subject(s)
Distillation , Machine Learning , Membranes, Artificial , Neural Networks, Computer , Water Purification , Distillation/methods , Water Purification/methods , Hydrodynamics , Models, Theoretical , Porosity , Temperature
7.
Sci Total Environ ; 929: 172758, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670382

ABSTRACT

Revegetation has resulted in a trend of increasing vegetation greenness on the Chinese Loess Plateau. However, it remains unclear whether the regional vegetation coverage exceeds hydroclimatic limitations in the context of revegetation, and the hydrological effects of greening are controversial. Eagleson's optimality hypothesis can explain some of the hydrological effects on the Loess Plateau. Here, building on previous research, the geospatial vegetation states were estimated for pre- and post-revegetation periods on the Loess Plateau from 1982 to 2015 using Eagleson's ecological optimality theory. Additionally, a drought composite analysis approach was utilized to investigate the hydrological effects related to drought (including sensitivity and partitioning) under various vegetation states. It was found that revegetation increased the proportion of catchments in the equilibrium state and decreased the proportion in the disturbed state, owing to a wetter climate compared with the pre-revegetation period. Root-zone soil drought, driven by precipitation (P) deficit, asymmetrically triggered hydrological effects for both the pre- and post-revegetation periods, with reduced runoff (Q) for both periods and a decrease in evapotranspiration (ET) during the pre-revegetation period but an increase in ET during the post-revegetation period. Moreover, catchments in an equilibrium state exhibited lower sensitivity between ET and P, and more stable partitioning of ET with regards to P, compared with those in a disturbed state. These results underscore the theoretical framework that an equilibrium state is crucial for maintaining ecosystem ET. Our results highlight the necessity of considering the hydrologic regulation of vegetation states when assessing the hydrological effects of vegetation change.

8.
Polymers (Basel) ; 15(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37447513

ABSTRACT

Novel ultrafiltration (UF) polymer membranes were prepared to enhance the antifouling features and filtration performance. Several ultrafiltration polymer membranes were prepared by incorporating different concentrations of water-soluble cationic poly [2-(dimethyl amino) ethyl methacrylate] (PDMAEMA) into a homogenous casting solution of polyethersulfone (PES). After adding PDMAEMA, the effects on morphology, hydrophilicity, thermal stability, mechanical strength, antifouling characteristics, and filtration performance of these altered blended membranes were investigated. It was observed that increasing the quantity of PDMAEMA in PES membranes in turn enhanced surface energy, hydrophilicity, and porosity of the membranes. These new modified PES membranes, after the addition of PDMAEMA, showed better filtration performance by having increased water flux and a higher flux recovery ratio (FRR%) when compared with neat PES membranes. For the PES/PDMAEMA membrane, pure water flux with 3.0 wt.% PDMAEMA and 0.2 MPa pressure was observed as (330.39 L·m-2·h-1), which is much higher than that of the neat PES membrane with the value of (163.158 L·m-2·h-1) under the same conditions. Furthermore, the inclusion of PDMAEMA enhanced the antifouling capabilities of PES membranes. The total fouling ratio (TFR) of the fabricated PES/PDMAEMA membranes with 3.0 wt.% PDMAEMA at 0.2 MPa applied pressure was 36 percent, compared to 64.9 percent for PES membranes.

9.
J Neural Eng ; 20(4)2023 07 24.
Article in English | MEDLINE | ID: mdl-37413982

ABSTRACT

Objective. Transcranial direct current stimulation (tDCS) generates sustained electric fields in the brain, that may be amplified when crossing capillary walls (across blood-brain barrier, BBB). Electric fields across the BBB may generate fluid flow by electroosmosis. We consider that tDCS may thus enhance interstitial fluid flow.Approach. We developed a modeling pipeline novel in both (1) spanning the mm (head),µm (capillary network), and then nm (down to BBB tight junction (TJ)) scales; and (2) coupling electric current flow to fluid current flow across these scales. Electroosmotic coupling was parametrized based on prior measures of fluid flow across isolated BBB layers. Electric field amplification across the BBB in a realistic capillary network was converted to volumetric fluid exchange.Main results. The ultrastructure of the BBB results in peak electric fields (per mA of applied current) of 32-63Vm-1across capillary wall and >1150Vm-1in TJs (contrasted with 0.3Vm-1in parenchyma). Based on an electroosmotic coupling of 1.0 × 10-9- 5.6 × 10-10m3s-1m2perVm-1, peak water fluxes across the BBB are 2.44 × 10-10- 6.94 × 10-10m3s-1m2, with a peak 1.5 × 10-4- 5.6 × 10-4m3min-1m3interstitial water exchange (per mA).Significance. Using this pipeline, the fluid exchange rate per each brain voxel can be predicted for any tDCS dose (electrode montage, current) or anatomy. Under experimentally constrained tissue properties, we predicted tDCS produces a fluid exchange rate comparable to endogenous flow, so doubling fluid exchange with further local flow rate hot spots ('jets'). The validation and implication of such tDCS brain 'flushing' is important to establish.


Subject(s)
Transcranial Direct Current Stimulation , Transcranial Direct Current Stimulation/methods , Water , Brain/physiology , Head , Physics
10.
Chemosphere ; 336: 139162, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37290520

ABSTRACT

Reverse osmosis (RO) is one of the most fundamental membrane technology because it has higher salt rejections, which suffers from the issue of membrane fouling, as the membrane is inevitably exposed to foulants during the filtration process. For different fouling mechanisms of RO membrane, physical and chemical cleaning are widely used in the control of RO membrane fouling. The present study investigated the performance and water flux recovery using osmotic cleaning to clean the typical inorganic and organic foulants on RO membrane for textile printing and dyeing wastewater treatment. The effects of operation conditions (i.e., the concentration of cleaning solution, the filtrating time and cleaning time, and the flow rate of cleaning solution) on relative water flux recovery were examined. The results show that a highly water flux recovery (98.3% for cleaning of inorganic fouling and 99.6% for cleaning of organic fouling) was achieved under optimal operation of the concentration and flow rate of cleaning solution and the filtrating and cleaning time. Moreover, the experiment of repeated "filtrating-cleaning" cycles indicated that the osmotic cleaning has highly performance of recoverability of water flux (over 95.0%) can be extended in a relatively long time. The experimental results and changes on SEM and AFM images of RO membrane confirmed the successful development and application of osmotic cleaning for inorganic and organic fouling of RO membrane.


Subject(s)
Membranes, Artificial , Water Purification , Osmosis , Water , Water Purification/methods , Printing
11.
Membranes (Basel) ; 13(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37103823

ABSTRACT

The possibility of using various types of ion-exchange membranes in diffusion dialysis for the separation of sulfuric acid and nickel sulfate has been evaluated. The process of the dialysis separation of a real waste solution from an electroplating facility containing 252.3 g/L of sulfuric acid, 20.9 g/L of nickel ions and small amounts of zinc, iron, copper ions, etc. has been studied. Heterogeneous cation-exchange membrane containing sulfonic groups and heterogeneous anion-exchange membranes with different thicknesses (from 145 µm to 550 µm) and types of fixed groups (four samples with quaternary ammonium base and one sample with secondary and tertiary amines) have been used. The diffusion fluxes of sulfuric acid, nickel sulfate, and the total and osmotic fluxes of the solvent have been determined. The use of a cation-exchange membrane does not allow the separation of the components, since the fluxes of both components are low and comparable in magnitude. The use of anion-exchange membranes makes it possible to efficiently separate sulfuric acid and nickel sulfate. Anion-exchange membranes with quaternary ammonium groups are more effective in the diffusion dialysis process, while the thin membrane turns out to be the most effective.

12.
Membranes (Basel) ; 13(4)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37103854

ABSTRACT

This study investigated the predictability of forward osmosis (FO) performance with an unknown feed solution composition, which is important in industrial applications where process solutions are concentrated but their composition is unknown. A fit function of the unknown solution's osmotic pressure was created, correlating it with the recovery rate, limited by solubility. The osmotic concentration was derived and used in the subsequent simulation of the permeate flux in the considered FO membrane. For comparison, magnesium chloride and magnesium sulfate solutions were used since these show a particularly strong deviation from the ideal osmotic pressure according to Van't Hoff and are, thus, characterized by an osmotic coefficient unequal to 1. The simulation is based on the solution-diffusion model with consideration of external and internal concentration polarization phenomena. Here, a membrane module was subdivided into 25 segments of equal membrane area, and the module performance was solved by a numerical differential. Experiments in a laboratory scale for validation confirmed that the simulation gave satisfactory results. The recovery rate in the experimental run could be described for both solutions with a relative error of less than 5%, while the calculated water flux as a mathematical derivative of the recovery rate showed a bigger deviation.

13.
J Colloid Interface Sci ; 640: 261-269, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36863182

ABSTRACT

In existing separation membranes, it is difficult to quickly produce large-area graphene oxide (GO) nanofiltration membranes with high permeability and high rejection, which is the bottleneck of industrialization. In this study, a pre-crosslinking rod-coating technique is reported. A GO-P-Phenylenediamine (PPD) suspension was obtained by chemically crosslinking GO and PPD for 180 min. After scraping and coating with a Mayer rod, the ultra-thin GO-PPD nanofiltration membrane with an area of 400 cm2 and a thickness of 40 nm was prepared in 30 s. The PPD formed an amide bond with GO to improve its stability. It also increased the layer spacing of GO membrane, which could improve the permeability. The prepared GO nanofiltration membrane had a 99 % rejection rate for dyes such as methylene blue, crystal violet, and Congo red. Meanwhile, the permeation flux reached to 42 LMH/bar, which was 10 times that of the GO membrane without PPD crosslinking, and it still maintained excellent stability under strongly acidic and basic conditions. This work successfully solved the problems of GO nanofiltration membranes, including the large-area fabrication, high permeability and high rejection.

14.
Membranes (Basel) ; 13(2)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36837647

ABSTRACT

Water is an important component of our life. However, the unavailability of fresh water and its contamination are emerging problems. The textile industries are the major suppliers of contamination of water, producing high concentrations of heavy metals and hazardous dyes posing serious health hazards. Several technologies for water purification are available in the market. Among them, the membrane technology is a highly advantageous and facile strategy to remediate wastewater. Herein, the distinguished combination of pore-forming agents, solvent, and nanoparticles has been used to achieve improved functioning of the polymeric composite membranes. To do so, graphene oxide (GO) was fabricated via Hummer's technique and GO functionalization using chloroacetic acid (c-GO) was performed. Thermoplastic polyurathane (TPU) membranes having different concentrations c-GO were made using the phase inversion technique. Scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) was used to examine surface morphology, chemical functionalities on membranes surfaces, and crystallinity of membranes, respectively. The temperature-dependent behavior of c-GO composite membranes has been analyzed using DSC technique. The water contact angle measurements were performed for the estimation of hydrophilicity of the c-GO based TPU membrane. The improved water permeability of the composite membrane was observed with increasing the c-GO concentration in polymeric membranes. c-GO was observed as a potential candidate that enhanced membrane physicochemical properties. The proposed membranes can behave as efficient candidates in multiple domains of environmental remediation. Furthermore, the improved dye rejection characteristics of proposed composite membranes suggest that the membranes can be best suited for wastewater treatment as well.

15.
Environ Sci Pollut Res Int ; 30(7): 19224-19233, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36227491

ABSTRACT

In this study, poly(acrylic acid) sodium (PAA-Na) salt was selected as representative polymer additive and the effect on forward osmosis (FO) performance of traditional draw solute NaCl was investigated. Results showed that PAA-Na increased water flux in both FO and PRO mode at 25 °C (up to 50%). Water flux and specific RSF firstly increased and then kept stable with the increasing concentration of PAA-Na additive. However, PAA-Na cannot enhance water permeation effectively at 35 and 45 °C. PAA-Na influenced FO performance by (1) increasing membrane hydrophilicity, which can increase water permeation, and was dominant at low temperature, and (2) causing pore-clogging, leading water flux decline, which was significant at high temperature. Furthermore, the influence of PAA-Na was compared with another polymer PAM and divalent salts MgCl2. The addition of PAM increased water flux slightly (lower than 25%), but increased RSF at the same time, due to the negative charge. Although MgCl2 decreased RSF and kept water flux fixed, its role was not obvious. In all, PAA-Na had advantages to improve FO performance.


Subject(s)
Sodium , Water Purification , Water Purification/methods , Sodium Chloride , Acrylic Resins , Water , Osmosis , Membranes, Artificial
16.
Int J Biol Macromol ; 226: 833-839, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36521706

ABSTRACT

Forward osmosis (FO) technology exhibits great potential in seawater desalination and wastewater treatment due to its negligible energy consumption and high antifouling, however, the weak desalination capability, especially low water flux, remains challenging. Herein, a cost-effective and high-desalination-performance chitosan (CS)-based FO membrane is developed via coupling the electrospinning CS nanofibers and interfacial-polymerized polyamide (PA). The electrospun nanofibers construct the porous and hydrophilic CS layer with the large pore-diameter of ~274 nm and low thickness of ~10 µm, enabling the effective transport of water molecules, specifically, a superhigh water flux of 107.53 LMH at a low salt-water ratio of 0.24 g·L-1. In addition, such superior desalination performance of the as-prepared FO membrane is universal for the various salt species and concentrations. Our CS nanofiber-based membrane with the high separation capability of water-salt, desirable antibacterial activity, as well as the low cost, offers a roadmap toward the sustainable membrane materials.


Subject(s)
Chitosan , Nanofibers , Water Purification , Water , Membranes, Artificial , Osmosis
17.
Membranes (Basel) ; 12(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36557110

ABSTRACT

Osmotic microbial fuel cells (OsMFCs) are an emerging wastewater treatment technology in bioelectricity generation, organic substrate removal, and wastewater reclamation. To address this issue, proton-conductive sites were strengthened after using the forward osmosis (FO) membrane by reducing the membrane resistance. The mechanism of improving electricity generation was attributed mainly to the unique characteristics of the membrane material and the water flux characteristics of the FO membrane. In particular, only when the concentration of catholyte was greater than 0.3 M was the membrane resistance the main contributor to the overall internal resistance. Meanwhile, through the simulation of the concentration inside the membrane, the changes in the membrane thickness direction and the phase transition of the internal structure of the membrane from the dry state (0% water content) to the expansion state (>50%water content) were analyzed, which were influenced by the water flux, further explaining the important role of the membrane's microenvironment in reducing the membrane impedance. This further opens a novel avenue for the use of OsMFCs in practical engineering applications.

18.
Membranes (Basel) ; 12(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36005709

ABSTRACT

Multi-walled carbon nanotubes (MWCNTs) were modified on the tips and inner walls by 12-chloro-12-oxododecanedioic acid-methyl ester groups and then added to the polyamide composite membranes to prepare MWCNT-CH2OCOC12H23O2 membranes for desalination. The characterization results of transmission electron microscopy, Fourier transform, infrared transform, and thermogravimetric analysis showed that the 12-chloro-12-oxododecanedioic acid-methyl ester group was successfully grafted to the entrances and inner walls of the MWCNTs. The performance of the MWCNTs' composite membranes was evaluated by scanning electron microscopy, contact angle, and filtration test. The modified membrane morphology is more uniform, and there is no structural damage. The grafting of carbon nanotubes with methyl 12-chloro-12-oxydodecyldicarboxylate could improve the hydrophilicity of the membrane. Under identical conditions, the water flux of MWCNT-CH2OCOC12H23O2 membranes was higher than that of the pristine carbon nanotube's membrane, and the desalination rate was also slightly improved.

19.
Membranes (Basel) ; 12(7)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35877873

ABSTRACT

In this work, cellulose nanocrystals (CNC) derived from sawdust were successfully incorporated into a nanofiltration membrane produced by the interfacial polymerization of piperazine (PIP) and trimesoyl chloride (TMC). The characteristics of unmodified and CNC-modified membranes were investigated using scanning electron microscopy (SEM), Atomic Force Microscopy (AFM), zeta potential measurement, X-ray photoelectron spectroscopy (XPS), and contact angle measurement. The performance of the membranes in terms of nitrate removal and water flux was investigated using 60 mg/L of potassium nitrate solution in a dead-end test cell. The characteristics of the modified membrane revealed a more nodular structure, higher roughness, increased negative surface charge, and higher hydrophilicity than the pristine membrane, leading to nitrate rejection of 94%. In addition, the membrane gave an average water flux of 7.2 ± 1.8 L/m2/h/bar. This work implies that nanofiltration, a relatively low-pressure process compared to reverse osmosis, can be used for improved nitrate removal from drinking water using an NF membrane modified with sawdust-derived cellulose nanocrystals.

20.
Polymers (Basel) ; 14(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35808754

ABSTRACT

This review considers the forward osmosis (FO) membrane process as one of the feasible solutions for water desalination. Different aspects related to the FO process are reviewed with an emphasis on ultrasound assisted FO membrane processes. The different types of membranes used in FO are also reviewed and discussed; thus, their configuration, structure and applications are considered. Coupling ultrasound with FO enhances water flux through the membrane under certain conditions. In addition, this review addresses questions related to implementation of an ultrasound/FO system for seawater desalination, such as the impact on fouling, flow configuration, and location of fouling. Finally, the mechanisms for the impact of ultrasound on FO membranes are discussed and future research directions are suggested.

SELECTION OF CITATIONS
SEARCH DETAIL