Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 819
Filter
1.
Adv Mater ; : e2404787, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39126131

ABSTRACT

The stability and catalytic activity of acidic oxygen evolution reaction (OER) are strongly determined by the coordination states and spatial symmetry among metal sites at catalysts. Herein, an ultrafast oxygen evaporation technology to rapidly soften the intrinsic covalent bonds using ultrahigh electrical pulses is suggested, in which prospective charged excited states at this extreme avalanche condition can generate a strong electron-phonon coupling to rapidly evaporate some coordinated oxygen (O) atoms, finally leading to a controllable half-metallization feature. Simultaneously, the relative metal (M) site arrays can be orderly locked to delineate some intriguing atom-fingerprints at pyrochlore catalysts, where the coexistence of metallic bonds (M─M) and covalent bonds (M─O) at this symmetry-breaking configuration can partially restrain crystal field effect to generate a particular high-spin occupied state. This half-metallization catalyst can effectively optimize the spin-related reaction kinetics in acidic OER, giving rise to 10.3 times (at 188 mV overpotential) reactive activity than pristine pyrochlores. This work provides a new understanding of half-metallization atom-fingerprints at catalyst surfaces to accelerate acidic water oxidation.

2.
Adv Mater ; : e2405478, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39097948

ABSTRACT

Photoelectrochemical (PEC) water splitting is attracting significant research interest in addressing sustainable development goals in renewable energy. Current state-of-the-art, however, cannot provide photoanodes with simultaneously high efficiency and long-lasting lifetime. Here, large-scale NiFe oxyhydroxides-alloy hybridized co-catalyst layer that exhibits an applied bias photon-to-current efficiency (ABPE) of 4.24% in buried homojunction-free photoanodes and stability over 250 h is reported. These performances represent an increase over the present highest-performing technology by 408% in stability and the most stable competitor by over 330% in efficiency. These results originate from a previously unexplored mechanism of light-induced atomic reconfiguration, which rapidly self-generates a catalytic-protective amorphous/crystalline heterostructure at low biases. This mechanism provides active sites for reaction and insulates the photoanode from performance degradation. Photon-generated NiFe oxyhydroxides are more than 200% higher than the quantity that pure electrocatalysis would otherwise induce, overcoming the threshold for an efficient water oxidation reaction in the device. While of immediate interest in the industry of water splitting, the light-induced NiFe oxyhydroxides-alloy co-catalyst developed in this work provides a general strategy to enhance further the performances and stability of PEC devices for a vast panorama of chemical reactions, ranging from biomass valorization to organic waste degradation, and CO2-to-fuel conversion.

3.
Adv Mater ; : e2408341, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39097953

ABSTRACT

The electrosynthesis of hydrogen peroxide (H2O2) from O2 or H2O via the two-electron (2e-) oxygen reduction (2e- ORR) or water oxidation (2e- WOR) reaction provides a green and sustainable alternative to the traditional anthraquinone process. Herein, a paired-electrosynthesis tactic is reported for concerted H2O2 production at a high rate by coupling the 2e- ORR and 2e- WOR, in which the bifunctional oxygen-vacancy-enriched Bi2O3 nanorods (Ov-Bi2O3-EO), obtained through electrochemically oxidative reconstruction of Bi-based metal-organic framework (Bi-MOF) nanorod precursor, are used as both efficient anodic and cathodic electrocatalysts, achieving concurrent H2O2 production at both electrodes with high Faradaic efficiencies. Specifically, the coupled 2e- ORR//2e- WOR electrolysis system based on such distinctive oxygen-defect Bi catalyst displays excellent performance for the paired-electrosynthesis of H2O2, delivering a remarkable cell Faradaic efficiency of 154.8% and an ultrahigh H2O2 production rate of 4.3 mmol h-1 cm-2. Experiments combined with theoretical analysis reveal the crucial role of oxygen vacancies in optimizing the adsorption of intermediates associated with the selective two-electron reaction pathways, thereby improving the activity and selectivity of the 2e- reaction processes at both electrodes. This work establishes a new paradigm for developing advanced electrocatalysts and designing novel paired-electrolysis systems for scalable and sustainable H2O2 electrosynthesis.

4.
ACS Nano ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39047140

ABSTRACT

The vast extensional planes of two-dimensional (2D) nanomaterials are recognized as desirable ground for electrocatalytic reactions. However, they tend to exhibit catalytic inertia due to their surface-ordered coordination configurations. Herein, an in situ autoxidation strategy enables high-density grafting of ultrafine CeO2 nanoclusters on 2D Co(OH)2. Affluent active units were activated at the inert interface of Co(OH)2 via the formation of Co-O-Ce units. The optimized catalyst exhibits oxygen evolution reaction activity with an overpotential of 83 mV lower than that of Co(OH)2 at 10 mA cm-2. The cascade orbital coupling between Co (3d) and Ce (4f) in Co-O-Ce units drives electron transfer by unlocking a "d-f electron ladder". Meanwhile, the bond-order theorem analyses and the d-band center show that the occupancy of Co-3d-eg is optimized to balance the adsorption-desorption process of active sites to the key reaction intermediate *OOH, thereby making it easier to release oxygen. This work will drive the development of wider area electron modulation methods and provide guidance for the surface engineering of 2D nanomaterials.

5.
J Colloid Interface Sci ; 676: 139-148, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39024814

ABSTRACT

A promising method of producing hydrogen peroxide (H2O2) is the electrochemical two-electron water oxidation reaction (2e- WOR). In this process, it is important to design electrocatalysts that are both earth abundant and environmentally friendly, as well as offering high stability and production rates. The research of WOR catalysts, such as the extensively used transition metal oxides, is mainly focused on the modification of transition metal elements. Few studies pay attention to the protective heterostructure of metal oxides. Here, we demonstrate for the first time an organometallic skeleton protection strategy to develop highly stable WOR catalysts for H2O2 generation. Unlike the pure ZnO and zeolite imidazole framework-8 (ZIF-8) catalysts, ZnO@ZIF-8 enabled the production of hydrogen peroxide at high voltages. The experimental results demonstrate that the ZnO@ZIF-8 catalyst stably generates H2O2 even under a high voltage of 3.0 V vs. RHE, with a yield reaching 2845.819 µmolmin-1 g-1. ZnO@ZIF-8 shows a relatively low overpotential, with a current density of 10 mA cm-2 and an overpotential of 110 mV. The ZnO@ZIF-8 catalyst's maximal FE value was 4.72 %. Moreover, the ZnO@ZIF-8 catalyst exhibits remarkable durability even after an extended 60-hour stability test. Operando Raman and theoretic calculation analyses reveal that the metal-organic skeleton being encapsulated on the metal oxide surface synergizes with each other, not only expanding the electrochemical surface area, but also adjusting the catalyst metal sites' adsorption capacity. A novel approach to the modification of 2e- WOR metal oxide catalyst is presented in this work.

6.
Annu Rev Biophys ; 53(1): 343-365, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39013027

ABSTRACT

The structure and mechanism of the water-oxidation chemistry that occurs in photosystem II have been subjects of great interest. The advent of X-ray free electron lasers allowed the determination of structures of the stable intermediate states and of steps in the transitions between these intermediate states, bringing a new perspective to this field. The room-temperature structures collected as the photosynthetic water oxidation reaction proceeds in real time have provided important novel insights into the structural changes and the mechanism of the water oxidation reaction. The time-resolved measurements have also given us a view of how this reaction-which involves multielectron, multiproton processes-is facilitated by the interaction of the ligands and the protein residues in the oxygen-evolving complex. These structures have also provided a picture of the dynamics occurring in the channels within photosystem II that are involved in the transport of the substrate water to the catalytic center and protons to the bulk.


Subject(s)
Lasers , Photosystem II Protein Complex , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/ultrastructure , Photosystem II Protein Complex/metabolism , Electrons , Water/chemistry , Water/metabolism , X-Rays , Oxidation-Reduction , Models, Molecular
7.
ACS Nano ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058358

ABSTRACT

Photocatalytic H2O2 production has attracted much attention as an alternative way to the industrial anthraquinone oxidation process but is limited by the weak interaction between the catalysts and reactants as well as inefficient proton transfer. Herein, we report on a hydrogen-bond-broken strategy in carbon nitride for the enhancement of H2O2 photosynthesis without any sacrificial agent. The H2O2 photosynthesis is promoted by the hydrogen bond formation between the exposed N atoms on hydrogen-bond-broken carbon nitride and H2O molecules, which enhances proton-coupled electron transfer and therefore the photocatalytic activity. The exposed N atoms serve as proton buffering sites for the proton transfer from H2O molecules to carbon nitride. The H2O2 photosynthesis is also enhanced through the enhanced adsorption and reduction of O2 gas toward H2O2 on hydrogen-bond-broken carbon nitride because of the formation of nitrogen vacancies (NVs) and cyano groups after the intralayer hydrogen bond breaking on carbon nitride. A high light-to-chemical conversion efficiency (LCCE) value of 3.85% is achieved. O2 and H2O molecules are found to undergo a one-step two-electron reduction pathway by photogenerated hot electrons and a four-electron oxidation process to produce O2 gas, respectively. Density functional theory (DFT) calculations validate the O2 adsorption and reaction pathways. This study elucidates the significance of the hydrogen bond formation between the catalyst and reactants, which greatly increases the proton tunneling dynamics.

8.
ChemSusChem ; : e202400640, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052349

ABSTRACT

Electrochemical water splitting holds promise for sustainable hydrogen production but restricted by the sluggish reaction kinetics at the anodic oxygen evolution. Herein, we present a room-temperature spontaneous corrosion strategy to convert inexpensive iron (Fe) on iron foam substrates into highly active and stable self-supporting nickel iron layered hydroxide (NiFe LDH) catalysts. The corrosion evolution mechanisms are elucidated combining ex-situ scanning electron microscopy (SEM) and X-ray photo electron spectroscopy (XPS) techniques, demonstrating precise control over the concentration of Ni2+ and reaction time to achieve controllable micro-structures of NiFe LDH. Taking advantage of the self-supporting morphology and hierarchical micro-/nano- structure, the NiFe LDH with optimized Ni2+ concentration and reaction time exhibits significant small overpotentials of 160 mV and 200 mV for the OER at current densities of 10 mA cm-2 and 100 mA cm-2 respectively, showcasing excellent OER activities. Furthermore, this catalyst demonstrates superior reaction kinetics, high electrochemical stability, and excellent integral water splitting performance when coupled with a commercial Pt/C cathode. The energy-efficient, cost-effective, and scalable spontaneous corrosion strategy opens new avenues for the development of high-electrochemical-interface catalysts.

9.
Chem Asian J ; : e202400631, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034282

ABSTRACT

This report describes a systematic approach for precise engineering of a catalyst-metal oxide interface through combining complementary approaches of chemical vapor deposition and atomic layer deposition. Specifically, Chemical Vapor Deposition (CVD) fabricated nanostructured hard-carbon framework (NCF) is employed as synergistic support for precise deposition of NiOx particles through Atomic Layer Deposition (ALD). The three variants of NCF-NiOx system (dimensions ranging from 3-12 nm, surface coverage ranging from 0.14% to 2%) achieved exhibit unique electrocatalytic water oxidation activities, that are further strongly influenced by an external magnetic field (Hext). This confluence of size engineering and associated magnetic field effects interplay to produce the largest lowering in Rct at Hext = 200 mT. A comprehensive analysis of electrocatalytic parameters including the Tafel slope and double layer capacitance establishes further insights on co-relation of size effect and magnetic properties to understand the role of nanocarbon supported transition metal oxides in water electrolysis.

10.
Photosynth Res ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037690

ABSTRACT

Photosystem II (PSII) uses light energy to oxidize water and to reduce plastoquinone in the photosynthetic electron transport chain. O2 is produced as a byproduct. While most members of the PSII research community agree that O2 originates from water molecules, alternative hypotheses involving bicarbonate persist in the literature. In this perspective, we provide an overview of the important roles of bicarbonate in regulating PSII activity and assembly. Further, we emphasize that biochemistry, spectroscopy, and structural biology experiments have all failed to detect bicarbonate near the active site of O2 evolution. While thermodynamic arguments for oxygen-centered bicarbonate oxidation are valid, the claim that bicarbonate is a substrate for photosynthetic O2 evolution is challenged.

11.
Small ; : e2403029, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966884

ABSTRACT

Hydrogen peroxide (H2O2) plays a pivotal role in advancing sustainable technologies due to its eco-friendly oxidizing capability. The electrochemical two-electron (2e-) oxygen reduction reaction and water oxidation reaction present an environmentally green method for H2O2 production. Over the past three years, significant progress is made in the field of carbon-based metal-free electrochemical catalysts (C-MFECs) for low-cost and efficient production of H2O2 (H2O2EP). This article offers a focused and comprehensive review of designing C-MFECs for H2O2EP, exploring the construction of dual-doping configurations, heteroatom-defect coupling sites, and strategic dopant positioning to enhance H2O2EP efficiency; innovative structural tuning that improves interfacial reactant concentration and promote the timely release of H2O2; modulation of electrolyte and electrode interfaces to support the 2e- pathways; and the application of C-MFECs in reactors and integrated energy systems. Finally, the current challenges and future directions in this burgeoning field are discussed.

12.
Materials (Basel) ; 17(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38893973

ABSTRACT

The visible-light-driven photocatalytic production of hydrogen peroxide (H2O2) is currently an emerging approach for transforming solar energy into chemical energy. In general, the photocatalytic process for producing H2O2 includes two pathways: the water oxidation reaction (WOR) and the oxygen reduction reaction (ORR). However, the utilization efficiency of ORR surpasses that of WOR, leading to a discrepancy with the low oxygen levels in natural water and thereby impeding their practical application. Herein, we report a novel donor-bridge-acceptor (D-B-A) organic polymer conjugated by the Sonogashira-Hagihara coupling reaction with tetraphenylethene (TPE) units as the electron donors, acetylene (A) as the connectors and pyrene (P) moieties as the electron acceptors. Notably, the resulting TPE-A-P exhibits a remarkable solar-to-chemical conversion of 1.65% and a high BET-specific surface area (1132 m2·g-1). Furthermore, even under anaerobic conditions, it demonstrates an impressive H2O2 photosynthetic efficiency of 1770 µmol g-1 h-1, exceeding the vast majority of previously reported photosynthetic systems of H2O2. The outstanding performance is attributed to the effective separation of electrons and holes, along with the presence of sufficient reaction sites facilitated by the incorporation of alkynyl electronic bridges. This protocol presents a successful method for generating H2O2 via a water oxidation reaction, signifying a significant advancement towards practical applications in the natural environment.

13.
ACS Nano ; 18(26): 16413-16449, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38904346

ABSTRACT

Layered double hydroxides (LDHs), especially those containing nickel (Ni), are increasingly recognized for their potential in photo(-/)electrocatalytic water oxidation due to the abundant availability of Ni, their corrosion resistance, and their minimal toxicity. This review provides a comprehensive examination of Ni-based LDHs in electrocatalytic (EC), photocatalytic (PC), and photoelectrocatalytic (PEC) water oxidation processes. The review delves into the operational principles, highlighting similarities and distinctions as well as the benefits and limitations associated with each method of water oxidation. It includes a detailed discussion on the synthesis of monolayer, ultrathin, and bulk Ni-based LDHs, focusing on the merits and drawbacks inherent to each synthesis approach. Regarding the EC oxygen evolution reaction (OER), strategies to improve catalytic performance and insights into the structural evolution of Ni-based LDHs during the electrocatalytic process are summarized. Furthermore, the review extensively covers the advancements in Ni-based LDHs for PEC OER, including an analysis of semiconductors paired with Ni-based LDHs to form photoanodes, with a focus on their enhanced activity, stability, and underlying mechanisms facilitated by LDHs. The review concludes by addressing the challenges and prospects in the development of innovative Ni-based LDH catalysts for practical applications. The comprehensive insights provided in this paper will not only stimulate further research but also engage the scientific community, thus driving the field of photo(-/)electrocatalytic water oxidation forward.

14.
Angew Chem Int Ed Engl ; 63(31): e202402184, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38750660

ABSTRACT

Water electrolysis is one promising and eco-friendly technique for energy storage, yet its overall efficiency is hindered by the sluggish kinetics of oxygen evolution reaction (OER). Therefore, developing strategies to boost OER catalyst performance is crucial. With the advances in characterization techniques, an extensive phenomenon of surface structure evolution into an active amorphous layer was uncovered. Surface reconstruction in a controlled fashion was then proposed as an emerging strategy to elevate water oxidation efficiency. In this work, Cr substitution induces the reconstruction of NiFexCr2-xO4 during cyclic voltammetry (CV) conditioning by Cr leaching, which leads to a superior OER performance. The best-performed NiFe0.25Cr1.75O4 shows a ~1500 % current density promotion at overpotential η=300 mV, which outperforms many advanced NiFe-based OER catalysts. It is also found that their OER activities are mainly determined by Ni : Fe ratio rather than considering the contribution of Cr. Meanwhile, the turnover frequency (TOF) values based on redox peak and total mass were obtained and analysed, and their possible limitations in the case of NiFexCr2-xO4 are discussed. Additionally, the high activity and durability were further verified in a membrane electrode assembly (MEA) cell, highlighting its potential for practical large-scale and sustainable hydrogen gas generation.

15.
Angew Chem Int Ed Engl ; 63(34): e202406701, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38740950

ABSTRACT

Stable homogeneous two-electron water oxidation electrocatalysts are highly demanded to understand the precise mechanism and reaction intermediates of electrochemical H2O2 production. Here we report a tetranuclear manganese complex with a cubane structure which can electrocatalyze water oxidation to hydrogen peroxide under alkaline and neutral conditions. Such a complex demonstrates an optimal Faradaic efficiency (FE) of 87 %, which is amongst (if not) the highest FE(H2O2) of reported homogeneous and heterogeneous electrocatalysts. In addition, active species were identified and co-catalysts were excluded through ESI-MS characterization. Furthermore, we identified water binding sites and isolated one-electron oxidation intermediate by chemical oxidation of the catalyst in the presence of water substrates. It is evident that efficient proton-accepting electrolytes avoid rapid proton building-up at electrode and substantially improve reaction rate and selectivity. Accordingly, we propose a two-electron catalytic cycle model for water oxidation to hydrogen peroxide with the bioinspired molecular electrocatalyst. The present work is expected to provide an ideal platform to elucidate the two-electron WOR mechanism at the atomic level.

16.
Environ Technol ; : 1-10, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780540

ABSTRACT

The objective of the present study is the treatment of pistachio processing industry wastewaters (PPIW) using the supercritical water oxidation method. The experiments were conducted within a 400-600°C temperature range and a 30-150 s reaction time range, while maintaining a constant pressure of 25 MPa and using an O2/COD ratio of 1:1. To observe the effects of the initial PPIW and O2 concentrations on the treatment efficiency, experiments were also conducted with O2/COD ratios ranging from 0.5 to 3, while maintaining a constant reaction temperature and time of 500°C and 60 s, respectively. The influence of reaction temperature, reaction time and O2/COD ratio on the total organic carbon (TOC) and total nitrogen (TN) contents of the liquid PPIW effluents were investigated. Treatment efficiencies up to 99.75% regarding TOC conversion and 78.72% regarding TN conversion were obtained in very short reaction times. Additionally, the kinetics of oxidation of PPIW was studied, and reaction rate expressions based on TOC and TN were proposed.

17.
Photosynth Res ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700727

ABSTRACT

Calcium and chloride are activators of oxygen evolution in photosystem II (PSII), the light-absorbing water oxidase of higher plants, algae, and cyanobacteria. Calcium is an essential part of the catalytic Mn4CaO5 cluster that carries out water oxidation and chloride has two nearby binding sites, one of which is associated with a major water channel. The co-activation of oxygen evolution by the two ions is examined in higher plant PSII lacking the extrinsic PsbP and PsbQ subunits using a bisubstrate enzyme kinetics approach. Analysis of three different preparations at pH 6.3 indicates that the Michaelis constant, KM, for each ion is less than the dissociation constant, KS, and that the affinity of PSII for Ca2+ is about ten-fold greater than for Cl-, in agreement with previous studies. Results are consistent with a sequential binding model in which either ion can bind first and each promotes the activation by the second ion. At pH 5.5, similar results are found, except with a higher affinity for Cl- and lower affinity for Ca2+. Observation of the slow-decaying Tyr Z radical, YZ•, at 77 K and the coupled S2YZ• radical at 10 K, which are both associated with Ca2+ depletion, shows that Cl- is necessary for their observation. Given the order of electron and proton transfer events, this indicates that chloride is required to reach the S3 state preceding Ca2+ loss and possibly for stabilization of YZ• after it forms. Interdependence through hydrogen bonding is considered in the context of the water environment that intervenes between Cl- at the Cl-1 site and the Ca2+/Tyr Z region.

18.
ACS Appl Mater Interfaces ; 16(19): 24712-24722, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691761

ABSTRACT

A simple fabrication method that involves two steps of hydrothermal reaction has been demonstrated for the growth of α-Fe2O3@K-OMS-2 branched core-shell nanoarrays. Different reactant concentrations in the shell-forming step led to different morphologies in the resultant composites, denoted as 0.25 OC, 0.5 OC, and 1.0 OC. Both 0.25 OC and 0.5 OC formed perfect branched core-shell structures, with 0.5 OC possessing longer branches, which were observed by SEM and TEM. The core K-OMS-2 and shell α-Fe2O3 were confirmed by grazing incidence X-ray diffraction (GIXRD), EDS mapping, and atomic alignment from high-resolution STEM images. Further investigation with high-resolution HAADF-STEM, EELS, and XPS indicated the existence of an ultrathin layer of Mn3O4 sandwiched at the interface. All composite materials offered greatly enhanced photocurrent density at 1.23 VRHE, compared to the pristine Fe2O3 photoanode (0.33 mA/cm2), and sample 0.5 OC showed the highest photocurrent density of 2.81 mA/cm2. Photoelectrochemical (PEC) performance was evaluated for the samples by conducting linear sweep voltammetry (LSV), applied bias photo-to-current efficiency (ABPE), electrochemical impedance spectroscopy (EIS), incident-photo-to-current efficiency (IPCE), transient photocurrent responses, and stability tests. The charge separation and transfer efficiencies, together with the electrochemically active surface area, were also investigated. The significant enhancement in sample 0.5 OC is ascribed to the synergetic effect brought by the longer branches in the core-shell structure, the conductive K-OMS-2 core, and the formation of the Mn3O4 thin layer formed between the core and shell.

19.
ChemSusChem ; : e202400735, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771427

ABSTRACT

Large-scale hydrogen production through water splitting represents an optimal approach for storing sustainable but intermittent energy sources. However, water oxidation, a complex and sluggish reaction, poses a significant bottleneck for water splitting efficiency. The impact of outer chemical environments on the reaction kinetics of water oxidation catalytic centers remains unexplored. Herein, chemical environment impacts were integrated by featuring methylpyridinium cation group (Py+) around the classic Ru(bpy)(tpy) (bpy=2,2'-bipyridine, tpy=2,2' : 6',2''-terpyridine) water oxidation catalyst on the electrode surface via electrochemical co-polymerization. The presence of Py+ groups could significantly enhance the turnover frequencies of Ru(bpy)(tpy), surpassing the performance of typical proton acceptors such as pyridine and benzoic acid anchored around the catalyst. Mechanistic investigations reveal that the flexible internal proton acceptor anions induced by Py+ around Ru(bpy)(tpy) are more effective than conventionally anchored proton acceptors, which promoted the rate-determining proton transfer process and enhanced the rate of water nucleophilic attack during O-O bond formation. This study may provide a novel perspective on achieving efficient water oxidation systems by integrating cations into the outer chemical environments of catalytic centers.

20.
Chemistry ; 30(35): e202400396, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38659321

ABSTRACT

The low activation barrier for O-O coupling in the closed-cubane Oxygen-Evolving Centre (OEC) of Photosystem II (PSII) requires water coordination with the Mn4 'dangler' ion in the Mn(V)-oxo fragment. This coordination transforms the Mn(V)-oxo complex into a more reactive Mn4(IV)-oxyl species, enhancing O-O coupling. This study explains the mechanism behind the coordination and indicates that in the most stable form of the OEC, the Mn4 fragment adopts a trigonal bipyramidal geometry but needs to transition to a square pyramidal form to be activated for O-O coupling. This transition stabilizes the Mn4 dxy orbital, enabling electron transfer from the oxo ligand to the dxy orbital, converting the oxo ligand into an oxyl species. The role of the water is to coordinate with the square pyramidal structure, reducing the energy gap between the oxo and oxyl forms, thereby lowering the activation energy for O-O coupling. This mechanism applies not only to the OEC system but also to other Mn(V)-based catalysts. For other catalysts, ligands such as OH- stabilize the Mn(IV)-oxyl species better than water, improving catalyst activation for reactions like C-H bond activation. This study is the first to explain the Mn(V)-oxo to Mn(IV)-oxyl conversion, providing a new foundation for Mn-based catalyst design.

SELECTION OF CITATIONS
SEARCH DETAIL