Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters








Publication year range
1.
Heliyon ; 10(15): e35552, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170150

ABSTRACT

In this investigation, novel cellulose fibers were acquired from the Bassia Indica plant to serve as a reinforcement source in composite materials. The morphological characteristics were studied using Scanning Electron Microscopy (SEM). The surface chemistry, crystallinity, and functional groups of Bassia Indica fibers were analyzed using X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX) spectroscopy, and Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR), which assess the crystal structure, elemental composition, and surface functional groups, respectively. The thermal behavior of Bassia Indica fibers were assessed through Thermogravimetric Analysis (TGA). Anatomical techniques demonstrated the abundant presence of fibroblasts in the fibers. The presence of lignocellulosic fiber (lignin, cellulose and hemicellulose) was confirmed through ATR-FTIR analysis. The analysis of physical properties unveiled a fiber density of 1.065 ± 0.025 g/cm³ and a diameter of 145.58 ± 7.89 µm. The crystalline size of Bassia Indica fibers reached 2.23 nm, with a crystallinity index of 40.12 %, and an activation energy of 93.78 kJ/mol, TGA research revealed that Bassia Indica fibers are thermally stable up to 260.24 °C. Additionally, the fibers experienced maximum degradation at 321.23 °C. Weibull statistical analysis was performed using parameters 2 and 3 to calculate the observed dispersion in the experimental tensile results after analyzing the mechanical properties of the fibers possessing a tensile strength of 417.50 ± 7.08 MPa, Young's modulus of 17.46 ± 1.55 GPa, stress at failure of 1.17 ± 0.02 % and interfacial shear strength of 6.99 ± 1.10 MPa. The results were additionally compared to how they were stated in the relevant sources. Bassia Indica fibers can be considered a viable choice for reinforcing lightweight bio-composites.

2.
Proc Natl Acad Sci U S A ; 121(16): e2322415121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38602918

ABSTRACT

Localized deformation and randomly shaped imperfections are salient features of buckling-type instabilities in thin-walled load-bearing structures. However, it is generally agreed that their complex interactions in response to mechanical loading are not yet sufficiently understood, as evidenced by buckling-induced catastrophic failures which continue to today. This study investigates how the intimate coupling between localization mechanisms and geometric imperfections combine to determine the statistics of the pressure required to buckle (the illustrative example of) a hemispherical shell. The geometric imperfections, in the form of a surface, are defined by a random field generated over the nominally hemispherical shell geometry, and the probability distribution of the buckling pressure is computed via stochastic finite element analysis. Monte-Carlo simulations are performed for a wide range of the shell's radius to thickness ratio, as well as the correlation length of the spatial distribution of the imperfection. The results show that over this range, the buckling pressure is captured by the Weibull distribution. In addition, the analyses of the deformation patterns observed during the simulations provide insights into the effects of certain characteristic lengths on the local buckling that triggers global instability. In light of the simulation results, a probabilistic model is developed for the statistics of the buckling load that reveals how the dimensionless radius plays a dual role which remained hidden in previous deterministic analyses. The implications of the present model for reliability-based design of shell structures are discussed.

3.
Materials (Basel) ; 16(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37629945

ABSTRACT

This article reports the elastoplastic and viscoelastic response of an industrially cured CAD/CAM resin-based composite (Brilliant Crios, Coltene) at different scales, spatial locations, aging conditions, and shading. Mechanical tests were performed at the macroscopic scale to investigate material strength, elastic modulus, fracture mechanisms and reliability. An instrumented indentation test (IIT) was performed at the microscopic level in a quasi-static mode to assess the elastic and plastic deformation upon indentation, either by mapping transverse areas of the CAD/CAM block or at randomly selected locations. A dynamic-mechanical analysis was then carried out, in which chewing-relevant frequencies were included (0.5 to 5 Hz). Characteristics measured at the nano- and micro-scale were more discriminative in identifying the impact of variables as those measured at macro scale. Anisotropy as a function of the spatial location was identified in all shades, with gradual variation in properties from the center of the block to peripheral locations. Depending on the scale of observation, differences in shade and translucency are very small or not statistically significant. The aging effect is classified as low, but measurable on all scales, with the same pattern of variation occurring in all shades. Aging affects plastic deformation more than elastic deformation and affects elastic deformation more than viscous deformation.

4.
Dent Mater ; 39(4): 430-441, 2023 04.
Article in English | MEDLINE | ID: mdl-36914432

ABSTRACT

OBJECTIVES: To investigate crystallography, translucency, phase content, microstructure and flexural strength of two commercial strength-gradient multilayered dental zirconia grades. METHODS: Two zirconia grades, i.e., KATANA Zirconia YML (Kuraray Noritake; referred to as "YML"; composed of four layers: enamel, body 1-3) and IPS e.max ZirCAD Prime (Ivoclar Vivadent; referred to as "Prime"; composed of three layers: enamel, transition, body) were investigated. Fully sintered square-shaped zirconia specimens from each layer were prepared. Microstructure, chemical composition, translucency parameter and zirconia-phase composition of each layer were characterized. Four-point and biaxial flexural strength of each layer was measured using fully sintered bar- and square-shaped specimens. Square-shaped samples were used to measure strength across the layers. RESULTS: For both multilayer zirconia grades, the 'enamel' layer contains a higher amount of c-ZrO2, which resulted in higher translucency but lower flexural strength than the 'body' layers. The characteristic 4-point flexural strength of the YML 'body 2' (923 MPa) and 'body 3' (911 MPa) layers, and of the Prime 'body' (989 MPa) layer were comparable and higher than for the YML 'enamel' (634 MPa), Prime 'transition' (693 MPa) and 'enamel' (535 MPa) layers. The biaxial strength of specimens sectioned across the layers was in-between that of the 'enamel' and 'body' layers for both YML and Prime, implying the interfaces did not form a weak link. SIGNIFICANCE: The difference in yttria content affects the phase composition and mechanical properties of each layer of the multi-layer zirconia. The strength-gradient approach allowed to integrate monoliths with irreconcilable properties.


Subject(s)
Dental Materials , Zirconium , Dental Materials/chemistry , Materials Testing , Surface Properties , Zirconium/chemistry , Yttrium/chemistry , Ceramics/chemistry
5.
Dent Mater J ; 42(2): 177-186, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36464291

ABSTRACT

An insight into the fracture behavior of dental polymer-based biomaterials is important to reduce safety hazards for patients. The crack-driven fracture process of polymers is largely stochastic and often dependent on the loading rate. Therefore, in this study, a statistical model was developed based on three-point bending tests on dental polymethyl methacrylate at different loading rates. The fracture strains were investigated (two-parameter Weibull distribution (2PW)) and the rate-dependency of the 2PW parameters were examined (Cramér-von Mises test (CvM)), arriving at the conclusion that there could be a limiting distribution for both quasi-static and dynamic failure. Based on these findings, a phenomenological model based on exponential functions was developed, which would further facilitate the determination of the failure probability of the material at a certain strain with a given strain rate. The model can be integrated into finite element solvers to consider the stochastic fracture behavior in simulations.


Subject(s)
Biocompatible Materials , Polymers , Humans , Materials Testing , Polymethyl Methacrylate , Models, Statistical , Dental Stress Analysis , Finite Element Analysis , Stress, Mechanical
6.
Polymers (Basel) ; 14(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35890617

ABSTRACT

This work addresses the following problem: which of the statistical approaches, Weibull's or Gaussian, is more appropriate to correctly describe the statistical distributions of the mechanical properties of the high-performance polymer materials of different sample types (single or multifilament oriented fibers) and chain architectures (ultra-high-molecular-weight polyethylene, polyamide 6, or polypropylene)? Along with the routine mechanical properties such as strength, strain at break, and Young's modulus, an apparent viscoelastic modulus and an apparent strain at break found when differentiating the stress-strain curves have been considered for the first time. For this purpose, a large sample number (50 in each series) has been tested. It has been shown that the values of the Weibull's modulus (m) characterizing the data scatter were dependent both on the chain architecture and the sample type for the five elastic, viscoelastic and fracture characteristics analyzed. The Weibull's model has been found to be more correct as compared to the Gaussian one. The different statistical approaches used for the analysis of the large arrays of the data are important for a better understanding of the deformation and fracture mechanisms of quasi-brittle and quasi-ductile high-performance polymer materials.

7.
ACS Appl Mater Interfaces ; 13(16): 19422-19429, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33847491

ABSTRACT

Adhesives based on fibrillar surface microstructures have shown great potential for handling applications requiring strong, reversible, and switchable adhesion. Recently, the importance of the statistical distribution of adhesive strength of individual fibrils in controlling the overall performance was revealed. Strength variations physically correspond to different interfacial defect sizes, which, among other factors, are related to surface roughness. For analysis of the strength distribution, Weibull's statistical theory of fracture was introduced. In this study, the importance of the statistical properties in controlling the stability of attachment is explored. Considering the compliance of the loading system, we develop a stability criterion based on the Weibull statistical parameters. It is shown that when the distribution in fibril adhesive strength is narrow, the global strength is higher but unstable detachment is more likely. Experimental variation of the loading system compliance for a specimen of differing statistical properties shows a transition to unstable detachment at low system stiffness, in good agreement with the theoretical stability map. This map serves to inform the design of gripper compliance, when coupled with statistical analysis of strength on the target surface of interest. Such a treatment could prevent catastrophic failure by spontaneous detachment of an object from an adhesive gripper.

8.
Dent Mater ; 37(2): 284-295, 2021 02.
Article in English | MEDLINE | ID: mdl-33358016

ABSTRACT

OBJECTIVE: The aim of this interlaboratory round robin test was to prove the robustness of the DIN EN ISO 6872:2019 and to identify the influence of processing and testing variations. METHODS: Each of the 12 laboratories participated (A-L) received 60 (n = 720) assigned zirconia specimens. All participants seperated the specimens from the blanks, sintered them, polished half of all specimens and performed the biaxial flexural test (DIN EN ISO 6872:2019). The surface roughness was determined by using tactile measuring device. Fractographic examination was performed under scanning-electron-microscopy (SEM). Data was analysed using Kolmogorov-Smirnov-, Kruskal-Wallis-, Mann-Whitney-U-test and two-parametric Weibull statistic (p < 0.05). RESULTS: The results for both preparation methods (as-fired and polished) showed significant differences for some participants. The values for as-fired groups ranged between 513 (I) and 659 (E) MPa. H showed higher Weibull modulus than C, E and I. Within polished groups flexural strengths values from 465 (L) to 1212 (E) MPa were observed, with a tendency to clustered groups A, I, J, L (465-689 MPa) and remaining groups (877-1212 MPa). E presented the highest and H the lowest Weibull modulus. Within A and J, no impact of the preparation method on flexural strength values was observed. Within L, as-fired specimens showed higher flexural strength than polished ones. The flexural strength increase did only associate to a certain extent with measured surface roughness. Fractography showed defect populations depending on polishing techniques, associated to the strength level, especially for polished groups. Reduced strength is related to machining defects, regardless of the surface state. SIGNIFICANCE: DIN EN ISO 6872:2019 can be seen as guidance to biaxial flexural strength testing but additional effort is necessary to ensure interlaboratory comparability. Calibrated furnaces and reliable sintering conditions are mandatory requirements together with detailed specifications on finishing or polishing procedures. Biaxial flexural testing is really a matter of understanding specimen preparation, alignment and mechanical testing by itself. DIN EN ISO 6872:2019 should further recommend reporting of mean surface roughness along with any biaxial flexural strength data. Fractography is a mandatory tool in interpretation and understanding of strength data.


Subject(s)
Flexural Strength , Laboratories , Ceramics , Humans , Materials Testing , Surface Properties , Zirconium
9.
J Appl Biomater Funct Mater ; 18: 2280800020982677, 2020.
Article in English | MEDLINE | ID: mdl-33307928

ABSTRACT

INTRODUCTION: The aim of the present study was to investigate how different aging protocols can affect the flexural strength and phase transformations of yttrium-stabilized zirconia ceramics (Y-TZP) for monolithic restorations. MATERIALS AND METHODS: Bar-shaped specimens from two zirconia ceramics bars were divided into three groups: a. no treatment (c), b. aging in an autoclave (a), and c. thermal cycling (t). The flexural strength was determined by the 3-point bending test and statistical analysis was performed to determine significant differences (p< 0.05). Weibull statistics was used to analyze the dispersion of strength values while surface microstructural analysis was performed through X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). RESULTS: Aging did not significantly affect the flexural strength but differences were recorded between the two groups, with group A presenting higher strength values and m-phase percentages. CONCLUSIONS: The observed differences between the two ceramics could be attributed to variations in composition and processing.


Subject(s)
Flexural Strength , Zirconium , Ceramics , Dental Materials , Materials Testing , Stress, Mechanical , Surface Properties , Yttrium
10.
Molecules ; 25(12)2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32604727

ABSTRACT

Spider silks present extraordinary mechanical properties, which have attracted the attention of material scientists in recent decades. In particular, the strength and the toughness of these protein-based materials outperform the ones of many man-made fibers. Unfortunately, despite the huge interest, there is an absence of statistical investigation on the mechanical properties of spider silks and their related size effects due to the length of the fibers. Moreover, several spider silks have never been mechanically tested. Accordingly, in this work, we measured the mechanical properties and computed the Weibull parameters for different spider silks, some of them unknown in the literature. We also measured the mechanical properties at different strain rates for the dragline of the species Cupiennius salei. For the same species, we measured the strength and Weibull parameters at different fiber lengths. In this way, we obtained the spider silk scaling laws directly and according to Weibull's prediction. Both length and strain rates affect the mechanical properties of spider silk, as rationalized by Weibull's statistics.


Subject(s)
Silk/physiology , Spiders/metabolism , Animals , Biomechanical Phenomena , Models, Statistical
11.
Polymers (Basel) ; 12(1)2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31941088

ABSTRACT

Undispersed filler agglomerates or other substantial inclusions/contaminants in rubber can act as large crack precursors that reduce the strength and fatigue lifetime of the material. To demonstrate this, we use tensile strength (stress at break, σb) data from 50 specimens to characterize the failure distribution behavior of carbon black (CB) reinforced styrene-butadiene rubber (SBR) compounds. Poor mixing was simulated by adding a portion of the CB late in the mixing process, and glass beads (microspheres) with 517 µm average diameter were introduced during milling to reproduce the effects of large inclusions. The σb distribution was well described with a simple unimodal Weibull distribution for the control compound, but the tensile strengths of the poor CB dispersion material and the compounds with the glass beads required bimodal Weibull distributions. For the material with the lowest level of glass beads-corresponding to less than one microsphere per test specimen-the bimodal failure distribution spanned a very large range of σb from 13.7 to 22.7 MPa in contrast to the relatively narrow σb distribution for the control from 18.4 to 23.8 MPa. Crack precursor size (c0) distributions were also inferred from the data, and the glass beads introduced c0 values in the 400 µm range compared to about 180 µm for the control. In contrast to σb, critical tearing energy (tear strength) was unaffected by the presence of the CB agglomerates and glass beads, because the strain energy focuses on the pre-cut macroscopic crack in the sample during tear testing rather than on the microscopic crack precursors within the rubber. The glass beads were not detected by conventional filler dispersion measurements using interferometric microscopy, indicating that tensile strength distribution characterization is an important complementary approach for identifying the presence of minor amounts of large inclusions in rubber.

12.
Proc Math Phys Eng Sci ; 476(2244): 20200394, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33402873

ABSTRACT

The proposed theory defines a relative index of epidemic lethality that compares any two configurations in different observation periods, preferably one in the acute and the other in a mild epidemic phase. Raw mortality data represent the input, with no need to recognize the cause of death. Data are categorized according to the victims' age, which must be renormalized because older people have a greater probability of developing a level of physical decay (human damage), favouring critical pathologies and co-morbidities. The probabilistic dependence of human damage on renormalized age is related to a death criterion considering a virus spread by contagion and our capacity to cure the disease. Remarkably, this is reminiscent of the Weibull theory of the strength of brittle structures containing a population of crack-like defects, in the correlation between the statistical distribution of cracks and the risk of fracture at a prescribed stress level. Age-of-death scaling laws are predicted in accordance with data collected in Italian regions and provinces during the first wave of COVID-19, taken as representative examples to validate the theory. For the prevention of spread and the management of the epidemic, the various parameters of the theory shall be informed on other existing epidemiological models.

13.
Biomaterials ; 213: 119212, 2019 08.
Article in English | MEDLINE | ID: mdl-31152931

ABSTRACT

Among additive manufacturing (AM) techniques, laser or electron beam based processes have been widely investigated for metallic implants. Despite the potential in manufacturing of patient-specific biomedical implants, 3D inkjet powder printing (3DIJPP, a variant of AM) of biomaterials is still in its infancy, as little is known quantitatively about the transient process physics and dynamics. An equally important challenge has been the ink formulation to manufacture biomaterials with reliable mechanical properties and desired biocompatibility. We have developed, for the very first time, the theoretical foundation and experimental formulation of a unique process strategy involving the 'on-demand' delivery of a novel in situ polymerisable acrylic ink system to print a model biomaterial, Ti-6Al-4V. The post-ejection in-flight dynamics of ink droplets have been captured in situ by employing high speed stroboscopic shadowgraphy, to quantitatively estimate the dimensionless numbers of fluid physics for 'printability' assessment. Washburn model was adapted extensively to quantify the capillary ink infiltration time in porous powder bed of finite thickness. On the other hand, particle tracking mode in diffusing wave spectroscopy (DWS) was exploited to analyse the timescale for effective binding of powder particles during in situ polymerisation. The clinically relevant combination of 3D porous architecture with 98.4% interconnectivity among 10-40 µm pores together with modest combination of elastic modulus (4 GPa) and strength reliability (Weibull modulus ∼8.1) establish the potential of inkjet printed Ti-6Al-4V as cortical bone analogue. A better cell attachment, viability, cytoskeletal spreading with pronounced proliferation of murine fibroblasts and pre-osteoblasts on 3DIJPP Ti-6Al-4V, when benchmarked against the metallurgically processed (commercial) or selective laser melted (SLM) Ti-6Al-4V, has been demonstrated, in vitro. The enhanced cellular activities on the 3DIJPP Ti-6Al-4V was explained in terms of an interplay among the elastic stiffness, surface roughness and wettability against the same benchmarking. It is conceived that the quantitative understanding of the integrated process physics and dynamics to print Ti-6Al-4V with reliable mechanical properties together with better cytocompatibility can lead to a paradigm shift in adapting the scalable 3DIJPP for manufacturing of metallic biomaterials.


Subject(s)
Biocompatible Materials/chemistry , Printing, Three-Dimensional , Titanium/chemistry , X-Ray Microtomography , 3T3 Cells , Alloys , Animals , Bone and Bones/diagnostic imaging , Cell Proliferation , Cell Survival , Cytoskeleton/metabolism , Fibroblasts/metabolism , Helium/chemistry , Humans , Materials Testing , Metals/chemistry , Mice , Porosity , Powders , Pressure , Reproducibility of Results , Rheology , Stress, Mechanical
14.
Dent Mater J ; 38(2): 177-181, 2019 Mar 31.
Article in English | MEDLINE | ID: mdl-30381634

ABSTRACT

Various materials have been used for core build-up when restoring the coronal portion of the tooth. Currently, bulk-fill resin composites have been produced to restore a large posterior cavity in single increment. This study aimed to evaluate the compressive strength, flexural strength, and microhardness of three commercial composite core build-up materials. All data were analyzed by oneway ANOVA and Tukey test methods (α=0.05). Flexural strength data were subjected to Weibull statistics analysis. All three groups presented significant differences in the compressive strength, flexural strength, and Knoop hardness. FiltekTM Z350 XT had the greatest compressive strength (MPa) and Knoop hardness while FiltekTM bulk fill had the highest flexural strength. MultiCore®Flow had the lowest properties; however, it revealed the highest Weibull modulus (m) value. With regard to the properties tested in this study, bulk-fill resin composite can be used as an alternative to conventional resin composite for core build-up material.


Subject(s)
Composite Resins , Dental Materials , Compressive Strength , Hardness , Materials Testing
15.
Eur J Oral Sci ; 127(2): 170-178, 2019 04.
Article in English | MEDLINE | ID: mdl-30537391

ABSTRACT

This study aimed to evaluate the improvement in strength and durability of the bond between dentin and composite resins following plasma drying of the etched dentin surface using non-thermal atmospheric pressure plasma. Plasma drying was applied to the etched dentin before applying adhesive. Conventional wet-bonding and helium (He) gas-dried bonding schemes were used as control groups. The bond strength of the composite resin to dentin was measured as the microtensile bond strength at 24 h after bonding and after 10,000 cycles of thermocycling. Hybrid layer formation was observed using micro-Raman spectroscopy and scanning electron microscopy. Although the bond-strength values were not statistically different either at 24 h after bonding or after thermocycling, the bond strength of the plasma-dried bonding group was significantly higher than the conventional wet-bonding group and He gas-dried bonding group. Micro-Raman spectral analysis revealed effective penetration of the adhesive and an improved polymerization rate of the adhesive after plasma drying. Plasma drying increased the penetration of hydrophobic resin into the collagen mesh structure, which improved mechanical bonding and long-term durability between dentin and composite resin.


Subject(s)
Composite Resins/chemistry , Dental Bonding , Dental Materials/chemistry , Dentin , Plasma Gases/chemistry , Dental Cements , Dentin-Bonding Agents , Humans , Materials Testing , Microscopy, Electron, Scanning , Resin Cements , Surface Properties , Tensile Strength
16.
J Colloid Interface Sci ; 523: 45-55, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29605740

ABSTRACT

HYPOTHESIS: Colloidal polymer composites, in which polymer particles are blended with a filler, are widely used in applications including pharmaceuticals, crop protection, inks, and protective coatings. It is generally found that the presence of hard particulate fillers will increase the elastic modulus of a polymer colloid composite. However, the influence of the size of the filler particle on the large-strain deformation and fracture and on the viscoelastic characteristics, including creep, is not well explored. We hypothesize that the size ratio of the filler to the colloidal polymer will play a critical role in determining the properties of the composite. EXPERIMENTS: Colloidal composites were prepared by blending soft polymer colloids (as a binder) with calcium carbonate fillers having four different sizes, spanning from 70 nm to 4.5 µm. There is no bonding between the filler and matrix in the composites. The large-strain deformation, linear viscoelasticity, and creep were determined for each filler size for increasing the filler volume fractions (ϕCC). Weibull statistics were used to analyze the distributions of strains at failure. FINDINGS: We find that the inclusion of nano-fillers leads to brittle fracture at a lower ϕCC than when µm-size fillers are used. The data interpretation is supported by Weibull analysis. However, for a given ϕCC, the storage modulus is higher in the rubbery regime, and the creep resistance is higher when nanoparticles are used. Using scanning electron microscopy to support our arguments, we show that the properties of colloidal composites are correlated with their microstructure, which can be altered through control of the filler:polymer particle size ratio. Hard nanoparticles pack efficiently around larger particles to provide reinforcement (manifested as a higher storage modulus and greater creep resistance), but they also introduce weak points that lead to brittleness.

17.
Entropy (Basel) ; 20(11)2018 Nov 17.
Article in English | MEDLINE | ID: mdl-33266610

ABSTRACT

Blind/no-reference image quality assessment is performed to accurately evaluate the perceptual quality of a distorted image without prior information from a reference image. In this paper, an effective blind image quality assessment approach based on entropy differences in the discrete cosine transform domain for natural images is proposed. Information entropy is an effective measure of the amount of information in an image. We find the discrete cosine transform coefficient distribution of distorted natural images shows a pulse-shape phenomenon, which directly affects the differences of entropy. Then, a Weibull model is used to fit the distributions of natural and distorted images. This is because the Weibull model sufficiently approximates the pulse-shape phenomenon as well as the sharp-peak and heavy-tail phenomena of natural scene statistics rules. Four features that are related to entropy differences and human visual system are extracted from the Weibull model for three scaling images. Image quality is assessed by the support vector regression method based on the extracted features. This blind Weibull statistics algorithm is thoroughly evaluated using three widely used databases: LIVE, TID2008, and CSIQ. The experimental results show that the performance of the proposed blind Weibull statistics method is highly consistent with that of human visual perception and greater than that of the state-of-the-art blind and full-reference image quality assessment methods in most cases.

18.
Materials (Basel) ; 10(11)2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29113116

ABSTRACT

Knowledge of statistical characteristics of mechanical properties is very important for the practical application of structural materials. Unfortunately, the scatter characteristics of magnesium alloys for mechanical performance remain poorly understood until now. In this study, the mechanical reliability of magnesium alloys is systematically estimated using Weibull statistical analysis. Interestingly, the Weibull modulus, m, of strength for magnesium alloys is as high as that for aluminum and steels, confirming the very high reliability of magnesium alloys. The high predictability in the tensile strength of magnesium alloys represents the capability of preventing catastrophic premature failure during service, which is essential for safety and reliability assessment.

19.
Dent Mater ; 33(6): 681-689, 2017 06.
Article in English | MEDLINE | ID: mdl-28434560

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate an accelerated fatigue test method that used a continuously increasing load for testing the dentin-composite bond strength. METHODS: Dentin-composite disks (ϕ5mm×2mm) made from bovine incisor roots were subjected to cyclic diametral compression with a continuously increasingly load amplitude. Two different load profiles, linear and nonlinear with respect to the number of cycles, were considered. The data were then analyzed by using a probabilistic failure model based on the Weakest-Link Theory and the classical stress-life function, before being transformed to simulate clinical data of direct restorations. RESULTS: All the experimental data could be well fitted with a 2-parameter Weibull function. However, a calibration was required for the effective stress amplitude to account for the difference between static and cyclic loading. Good agreement was then obtained between theory and experiments for both load profiles. The in vitro model also successfully simulated the clinical data. SIGNIFICANCE: The method presented will allow tooth-composite interfacial fatigue parameters to be determined more efficiently. With suitable calibration, the in vitro model can also be used to assess composite systems in a more clinically relevant manner.


Subject(s)
Dentin-Bonding Agents , Dentin , Animals , Cattle , Composite Resins , Dental Bonding , Materials Testing , Resin Cements , Tensile Strength
20.
ACS Appl Mater Interfaces ; 9(15): 13347-13356, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28322055

ABSTRACT

In this study, we assess the utility of a normal force (pull-test) approach to measuring adhesion in organic solar cells and organic light-emitting diodes. This approach is a simple and practical method of monitoring the impact of systematic changes in materials, processing conditions, or environmental exposure on interfacial strength and electrode delamination. The ease of measurement enables a statistical description with numerous samples, variant geometry, and minimal preparation. After examining over 70 samples, using the Weibull modulus and the characteristic breaking strength as metrics, we were able to successfully differentiate the adhesion values between 8-tris(hydroxyquinoline aluminum) (Alq3) and poly(3-hexyl-thiophene) and [6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) interfaces with Al and between two annealing times for the bulk heterojunction polymer blends. Additionally, the Weibull modulus, a relative measure of the range of flaw sizes at the fracture plane, can be correlated with the roughness of the organic surface. Finite element modeling of the delamination process suggests that the out-of-plane elastic modulus for Alq3 is lower than the reported in-plane elastic values. We suggest a statistical treatment of a large volume of tests be part of the standard protocol for investigating adhesion to accommodate the unavoidable variability in morphology and interfacial structure found in most organic devices.

SELECTION OF CITATIONS
SEARCH DETAIL