Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
Res Vet Sci ; 180: 105399, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39217839

ABSTRACT

Human dirofilariasis is an emerging vector-borne zoonotic parasitic disease in India. Humans are accidental hosts. Symptomatic dirofilariasis, although uncommon is typically manifested in humans as pulmonary, ocular, or subcutaneous nodules. The present research reports the prevalence of the species, Dirofilaria sp. hongkongensis among the dog population in the Kani tribal settlements within the Agasthyamala Biosphere Reserve located at the southernmost end of the Western Ghats, Kerala. To study the prevalence, we conducted a random blood survey among the dog population in these tribal settlements in Thiruvananthapuram. Whole blood was collected from stray and domesticated animals. Genomic DNA was extracted and the microfilariae in the blood were characterized using the slide smear and COI-based marker specific to nematodes. After processing the data from the Sanger sequencer using BLAST, the sequences were submitted to GenBank. Over 25 % of dogs were found positive for Dirofilaria sp. hongkongensis, which is genetically identical to the strain causing human dirofilariasis as is shown by the phylogenetic analysis. The study reveals that the Kani tribes, who reside in deep forests, are particularly vulnerable to this strain of Dirofilaria sp. hongkongensis. Human case reports of this specific strain have been recorded in Kerala over the past decade. The effective elimination is ultimately impacted by a lack of knowledge regarding the mosquito vectors. Dirofilariasis in dogs and humans is on the rise, which demands both active disease surveillance and proper treatment.

2.
Parasit Vectors ; 17(1): 388, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39267125

ABSTRACT

BACKGROUND: Western Ghats is a biodiversity treasure trove with reports of indigenous leishmaniasis cases. Hence, systematic sand fly surveillance was carried out among the tribal population. The present study reports a novel sand fly species, Phlebotomus (Anaphlebotomus) ajithii n. sp. (Diptera: Psychodidae), discovered in the Western Ghats of India. METHODS: A comprehensive sand fly survey was conducted across the Kollam, Thrissur, Idukki, Kasaragod and Malappuram districts of Kerala, India. The survey spanned both indoor and outdoor habitats using standard collection methods over a 3-year, 3-month period. DNA barcoding of samples was performed targeting mitochondrial cytochrome c oxidase subunit I (COI) gene, and the sequence generated was subjected to phylogenetic analysis. RESULTS: Phlebotomus (Anaphlebotomus) ajithii, a new sand fly species, is recorded and described in this communication. The morphological relationship of the new species to other members of the subgenus Anaphlebotomus is discussed. Mitochondrial COI barcode followed by phylogenetic analysis confirmed that specimens of Ph. ajithii belong to the same taxonomic group, while a genetic distance of 11.7% from congeners established it as a distinct species. CONCLUSIONS: The Western Ghats, known for its rich biodiversity, has lacked systematic entomological surveys focusing on sand flies. This study aims to fill this gap and reports and describes a new species of sand fly.


Subject(s)
Electron Transport Complex IV , Phlebotomus , Phylogeny , Animals , India , Phlebotomus/genetics , Phlebotomus/classification , Electron Transport Complex IV/genetics , DNA Barcoding, Taxonomic , Female , Male
3.
Sci Rep ; 14(1): 18856, 2024 08 14.
Article in English | MEDLINE | ID: mdl-39143090

ABSTRACT

Climate change is one of the major drivers of biodiversity loss. Among vertebrates, amphibians are one of the more sensitive groups to climate change due to their unique ecology, habitat requirements, narrow thermal tolerance and relatively limited dispersal abilities. We projected the influence of climate change on an endemic toad, Malabar Tree Toad (Pedostibes tuberculosus; hereafter MTT) from the Western Ghats biodiversity hotspot, India, for two different shared socio-economic pathways (SSP) using multiple modeling approaches for current and future (2061-2080) scenarios. The data used predominantly comes from a citizen science program, 'Mapping Malabar Tree Toad' which is a part of the Frog Watch citizen science program, India Biodiversity Portal. We also evaluated the availability of suitable habitats for the MTT in Protected Areas (PAs) under the current and future scenarios. Our results show that annual precipitation was the most important bioclimatic variable influencing the distribution of MTT. We used MaxEnt (MEM) and Ensemble (ESM) modeling algorithms. The predicted distribution of MTT with selected environmental layers using MEM was 4556.95 km2 while using ESM was 18,563.76 km2. Overlaying PA boundaries on predicted distribution showed 37 PAs with 32.7% (1491.37 km2) and 44 PAs with 21.9% (4066.25 km2) coverage for MEM and ESM respectively. Among eight future climate scenarios, scenarios with high emissions showed a decreased distribution range from 33.5 to 68.7% of predicted distribution in PAs, while scenarios with low emissions showed an increased distribution range from 1.9 to 111.3% in PAs. PAs from the Central Western Ghats lose most suitable areas with a shift of suitable habitats towards the Southern Western Ghats. This suggests that MTT distribution may be restricted in the future and existing PAs may not be sufficient to conserve their habitats. Restricted and discontinuous distribution along with climate change can limit the dispersal and persistence of MTT populations, thus enhanced surveys of MTT habitats within and outside the PAs of the Western Ghats are an important step in safeguarding the persistence of MTT populations. Overall, our results demonstrate the use of citizen science data and its potential in modeling and understanding the geographic distribution and the calling phenology of an elusive, arboreal, and endemic amphibian species.


Subject(s)
Biodiversity , Bufonidae , Citizen Science , Climate Change , Ecosystem , Animals , India , Bufonidae/physiology , Conservation of Natural Resources
4.
Sci Rep ; 14(1): 10712, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730080

ABSTRACT

Landraces are important genetic resources that have a significant role in maintaining the long-term sustainability of traditional agro-ecosystems, food, nutrition, and livelihood security. In an effort to document landraces in the on-farm conservation context, Central Western Ghat region in India was surveyed. A total of 671 landraces belonging to 60 crops were recorded from 24 sites. The custodian farmers were found to conserve a variety of crops including vegetables, cereals and pulses, perennial fruits, spices, tuber and plantation crops. The survey indicated a difference in the prevalence of landraces across the sites. A significant difference with respect to the Shannon-diversity index, Gini-Simpson index, evenness, species richness, and abundance was observed among the different survey sites. Computation of a prevalence index indicated the need for immediate intervention in the form of collecting and ex situ conservation of landraces of some crops as a back-up to on-farm conservation. The study also identified the critical determinants of on-farm conservation, including (i) suitability to regional conditions, (ii) relevance in regional cuisine and local medicinal practices, (iii) cultural and traditional significance, and (iv) economic advantage. The information documented in this study is expected to promote the collection and conservation of landraces ex situ. The National Genebank housed at ICAR-NBPGR, New Delhi conserves around 550 accessions of landraces collected from the Central Western Ghats region surveyed in this report. Information collected from custodian farmers on specific uses will be helpful to enhance the utilization of these accessions.


Subject(s)
Biodiversity , Conservation of Natural Resources , Crops, Agricultural , Farms , India , Crops, Agricultural/growth & development , Conservation of Natural Resources/methods , Agriculture , Humans , Ecosystem
5.
Sci Total Environ ; 912: 168772, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38008316

ABSTRACT

Satellite-based land cover mapping plays an important role in understanding changes in ecosystems and biodiversity. There are global land cover products available, however for region specific studies of drivers of infectious disease patterns, these can lack the spatial and thematic detail or accuracy required to capture key ecological processes. To overcome this, we produced our own Landsat derived 30 m maps for three districts in India's Western Ghats (Wayanad, Shivamogga and Sindhudurg). The maps locate natural vegetation types, plantation types, agricultural areas, water bodies and settlements in the landscape, all relevant to functional resource use of species involved in infectious disease dynamics. The maps represent the mode of 50 classification iterations and include a spatial measure of class stability derived from these iterations. Overall accuracies for Wayanad, Shivamogga and Sindhudurg are 94.7 % (SE 1.2 %), 88.9 % (SE 1.2 %) and 88.8 % (SE 2 %) respectively. Class classification stability was high across all three districts and the individual classes that matter for defining key interfaces between human habitation, forests, crop, and plantation cultivation, were generally well separated. A comparison with the 300 m global ESA CCI land cover map highlights lower ESA CCI class accuracies and the importance of increased spatial resolution when dealing with complex landscape mosaics. A comparison with the 30 m Global Forest Change product reveals an accurate mapping of forest loss and different dynamics between districts (i.e., Forests lost to Built-up versus Forests lost to Plantations), demonstrating an interesting complementarity between our maps and the % tree cover Global Forest Change product. When studying infectious disease responses to land use change in tropical forest ecosystems, we recommend using bespoke land cover/use classifications reflecting functional resource use by relevant vectors, reservoirs, and people. Alternatively, global products should be carefully validated with ground reference points representing locally relevant habitats.


Subject(s)
Communicable Diseases , Ecosystem , Humans , Conservation of Natural Resources , Forests , Biodiversity
6.
Environ Monit Assess ; 195(12): 1461, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37953340

ABSTRACT

Initial reports signify some specific isolated locations in different latitudes, revealing a paradoxical increase in both heavy and very heavy rainfall events and also an increment in total, i.e., in both rainfall and temperature, over ecologically sensitive areas along the Western Ghats (WG). This paper presents a coherent study of the full-scale of daily rainfall and temperature over 27 well-spaced stations in the study area to determine its extent and investigate whether or not this contradictory behaviour is real. Also, an attempt has been made to assess the differential behaviour of rainfall, temperature, and heavy rainfall events in association with land use and land cover change (LULC). The analysis revealed that rainfall and temperature over the study area are increasing, whereas heavy rainfall events have increased during 1981-2020 with strong peaks after 2000 around 18-19°N (Mumbai metropolitan region), 14-16°N (mining and quarrying regions in Goa), and 9-12°N (a narrow strip of land spanning across the coastal towns of Karnataka and Kerala) latitudes. The majority of the rainfall excess years coincided with El Nino years, indicating that El Nino does not affect rainfall negatively. However, rainfall over the WG is influenced by local relief and cascading topography. The spatial pattern of average annual rainfall shows a decreasing trend from south to north because the elevation and span of rainfall occurrence are higher in the southern part of WG. The findings of the current research will help in building a strategy to address trends and patterns of climatic variables in association with LULC.


Subject(s)
El Nino-Southern Oscillation , Environmental Monitoring , Temperature , India
7.
Environ Sci Pollut Res Int ; 30(50): 109372-109388, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37775626

ABSTRACT

Aerosol-CCN characteristics and dynamics during a pre-monsoon dust storm (April 6-11, 2015) over a high-altitude site ((17.92°N, 73.66°E, and 1348 m above mean sea level (MSL)) in Western Ghats, India, has been studied using ground-based observations, satellite, and reanalysis datasets. Spatial distribution of dust surface mass concentration along with the back trajectory analysis showed the Arabian Desert area (Rub-Al-khali desert) as the source region and strong westerly winds transported the dust particles toward the Indian subcontinent. High values noticed in the surface PM10 (PM2.5), i.e., ~ 450 (~ 130) µg m-3, MODIS AOD550nm (0.6), and MERRA 2 dust surface mass concentration (5 × 10-7 kg m-3) along MODIS true color images confirmed the dust storm event on April 6, 2015 over the observational site. Size-segregated aerosol number concentration measured from ground-based observations showed the dominance of Aitken, accumulation, and coarse mode particles during dust period. CCN concentrations at 0.1, 0.3, 0.5, 0.7, and 0.9% SS were analyzed. A low value of CCN concentration and activation fraction (~ 0.3) near surface was noticed during dust storm day, suggesting insoluble mineral dust particle being transported. Analyzed vertical velocity during pre-dust period showed downdraft between 900 and 750 hPa, suggesting dust transport from upper altitudes toward the observational site. WRF-Chem model simulation also captured the dust storm event, and the results are in good agreement with the observation with a significance of 95% confidence level.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Altitude , Dust/analysis , Wind , Aerosols/analysis , India , Environmental Monitoring
8.
Exp Appl Acarol ; 90(3-4): 429-440, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37347433

ABSTRACT

The spotted fever group (SFG) of Rickettsia are zoonotic disease-causing pathogens, commonly transmitted by hard ticks to a wide range of hosts, including humans. Rickettsia conorii is the common SFG recognised in India, whereas most of the infections due to other group species go undifferentiated at the species level. Hence, this study was conducted to screen host-seeking ticks in the Western Ghats region, India, for the DNA of SFG Rickettsia. The ticks were collected from Kerala, Goa, and Maharashtra states of India during a survey conducted between November 2017 and January 2018. In total, 288 tick pools were screened for Rickettsia spp. DNA using pan-Rickettsia real-time PCR, and conventional PCR targeting the gltA, OmpA and 17-kDa protein-coding genes. Nucleotide sequences were subjected to phylogenetic analysis using the NCBI BLAST tool to identify submitted sequences with higher homology. Neighbour-joining trees were constructed using the reference sequences of the GenBank database. Overall, Rickettsia spp. DNA was detected in 27.2% (62/228 pools) of host-seeking ticks across the Western Ghats region, with an estimated minimum infection rate of 0.057. Upon phylogenetic analysis, it was identified that the detected sequences were highly similar (> 99% sequence homology) to R. africae, Candidatus R. laoensis and an un-categorised Rickettsia species, and they were widely carried by Haemaphysalis ticks. The current study is the first report of R. africae and Candidatus R. laoensis in ticks in India. Although the pathogenicity of these species is not well documented, they may pose a potential threat to both animal and the human population in this geographical region.


Subject(s)
Ixodidae , Rickettsia , Spotted Fever Group Rickettsiosis , Ticks , Animals , Humans , Ticks/microbiology , Phylogeny , India , Rickettsia/genetics , Ixodidae/microbiology , Real-Time Polymerase Chain Reaction , Spotted Fever Group Rickettsiosis/epidemiology , Spotted Fever Group Rickettsiosis/veterinary
9.
Article in English | MEDLINE | ID: mdl-37156952

ABSTRACT

The western flanks of the Western Ghats are one of the major landslide hotspots in India. Recent rainfall triggered landslide incidents in this humid tropical region necessitating the accurate and reliable landslide susceptibility mapping (LSM) of selected parts of Western Ghats for hazard mitigation. In this study, a GIS-coupled fuzzy Multi-Criteria Decision Making (MCDM) technique is used to evaluate the landslide-susceptible zones in a highland segment of the Southern Western Ghats. Fuzzy numbers specified the relative weights of nine landslide influencing factors that were established and delineated using the ArcGIS, and the pairwise comparison of these fuzzy numbers in the Analytical hierarchy process (AHP) system resulted in standardized causative factor weights. Thereafter, the normalized weights are assigned to corresponding thematic layers, and finally, a landslide susceptibility map is generated. The model is validated using the area under the curve values (AUC) and F1 scores. The result reveals that about 27% of the study area is classified as highly susceptible zones followed by 24% area in moderately susceptible zone, 33% in low susceptible, and 16% in a very low susceptible area. Also, the study shows that the plateau scarps in the Western Ghats are highly susceptible to the occurrence of landslides. Moreover, the predictive accuracy estimated by the AUC scores (79%) and F1 scores (85%) shows that the LSM map is trustworthy for future hazard mitigation and land use planning in the study area.

10.
Agrofor Syst ; 97(5): 751-783, 2023.
Article in English | MEDLINE | ID: mdl-37193256

ABSTRACT

Homegarden (HG) agroforestry combines biological carbon (C) sequestration with biodiversity conservation outcomes. Although C stocks and species richness of HGs vary along elevational gradients and as a function of holding sizes, there is no consensus on the nature and magnitude of such variations. Field studies were conducted in the Western Ghats region of central Kerala, India (180 homesteads in 20 selected panchayats), to evaluate the effects of elevation (near sea level to 1938 m) and garden size (162-10,117 m2) on aboveground C stocks and floristic diversity. The C stocks (per unit area) of HGs (arborescent species) were highly variable (0.63-93.65 Mg ha-1), as garden management was highly individualistic and it exhibited a weak negative relationship with elevation. Likewise, there was a weak negative relationship between C stocks and garden size. Tree stocking levels (stems/garden) and species richness (species/garden) positively impacted total C stocks per garden. Floristic diversity was high in the study area (753 species) and included many rare and endangered species (43 IUCN Red-Listed species) making homegardens circa situm reservoirs of biodiversity. Elevation and holding size exerted a weak negative linear relationship on Simpson's floristic diversity index, which ranged from 0.26 to 0.93 for the arboreal species. Homegardens, regardless of elevation or size, contribute to C sequestration and agrobiodiversity conservation and help achieve the UN Sustainable Development Goals (SDGs), particularly Climate Action (SDG-13) and conserving agrobiodiversity (SDG-15, Life on Land).

11.
Proc Biol Sci ; 290(1997): 20222513, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37122248

ABSTRACT

The Western Ghats (WG) mountain chain is a global biodiversity hotspot with high diversity and endemicity of woody plants. The latitudinal breadth of the WG offers an opportunity to determine the evolutionary drivers of latitudinal diversity patterns. We examined the spatial patterns of evolutionary diversity using complementary phylogenetic diversity and endemism measures. To examine if different regions of the WG serve as a museum or cradle of evolutionary diversity, we examined the distribution of 470 species based on distribution modelling and occurrence locations across the entire region. In accordance with the expectation, we found that the southern WG is both a museum and cradle of woody plant evolutionary diversity, as a higher proportion of both old and young evolutionary lineages are restricted to the southern WG. The diversity gradient is likely driven by high geo-climatic stability in the south and phylogenetic niche conservatism for moist and aseasonal sites. This is corroborated by persistent lineage nestedness at almost all evolutionary depths (10-135 million years), and a strong correlation of evolutionary diversity with drought seasonality, precipitation and topographic heterogeneity. Our results highlight the global value of the WG, demonstrating, in particular, the importance of protecting the southern WG-an engine of plant diversification and persistence.


Subject(s)
Museums , Wood , Phylogeny , Biological Evolution , Biodiversity
12.
Lett Appl Microbiol ; 76(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37115025

ABSTRACT

Coscinium fenestratum is a medicinally significant critically endangered plant found in Western Ghats of India. The leaf spot and blight was observed in Kerala during 2021 with disease incidence of 40% in 20 assessed plants in 0.6 hectare. The associated fungus was isolated on potato dextrose agar medium. A total of six morpho-culturally identical isolates were isolated and morphologically identified. Based on morpho-cultural features, the fungus was identified at genus level as Lasiodiplodia sp., which was further authentically confirmed as Lasiodiplodia theobromae by molecular identification with a representative isolate (KFRIMCC 089) using multigene (ITS, LSU, SSU, TEF1-α, and TUB2) sequence analysis and concatenated phylogenetic analysis (ITS-TEF1-α-TUB2). Pathogenicity tests were also assessed in vitro and in vivo using mycelial disc and spore suspension of L. theobromae, and the isolated fungus's pathogenic behaviour was confirmed after re-isolation and morpho-cultural features. Literature survey reveals that there are no reports of L. theobromae on C. fenestratum from all over the world. Hence, C. fenestratum is being firstly reported as a new host record for L. theobromae from India.


Subject(s)
Ascomycota , Phylogeny , Ascomycota/genetics , India , Culture Media
13.
Environ Monit Assess ; 195(5): 578, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37062766

ABSTRACT

The effect of climate change on the tropical river catchments in the Western Ghats of India is studied using the Coupled Model Intercomparison Project-6 data (CMIP-6). Multi-model ensembles of rainfall and temperature are constructed using the Random Forest ensemble technique for bias-corrected GCMs in the near future (2014-2050) and far future (2051-2100) horizons. For the two catchments each in the southern, central, and northern Ghats, the trend in minimum and maximum temperatures, precipitation, and other indices are calculated. By 2100, dry sub-humid and humid catchments will see a higher increase in mean annual temperature than per-humid central catchments. In future decades, the warm days and nights increase by 45-50% and 40-70%, respectively, with twofold warming in the winter season. Under a climate change scenario, annual rainfall increases in Vamanapuram, Ulhas, and Purna, while Chaliyar, Netravati, and Aghanashini catchments experience a decrease in rainfall in the far future with an increase in pre-monsoon rainfall. The southern catchments are anticipated to have contrasting variations in the rainfall extremes; northern catchments face a substantial increase in very wet to extremely wet days and medium to heavy rainfall. In all catchments (excluding Vamanapuram), cumulative wet days increase with a decrease in cumulative dry days. After the mid-twenty-first century, humid to per-humid catchments encompass an increase in cool nights, whereas it disappears in dry sub-humid catchments of the Ghat. Interestingly, warming tendencies begin to slow down after 2050. This investigation can assist in comprehending the regional climate extremes in the Western Ghats to formulate better climate risk planning and adaptation strategies.


Subject(s)
Environmental Monitoring , Rivers , Seasons , Temperature , India , Climate Change
14.
Plants (Basel) ; 12(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36771602

ABSTRACT

The Western Ghats, India, is a hotspot for lichen diversity. However, the pharmacological importance of lichen-associated metabolites remains untapped. This study aimed to evaluate the cytotoxic potential of lichens of this region. For this, sixteen macrolichens were collected and identified from two locations in the Western Ghats. The acetone extract of Usnea cornuta (UC2A) showed significant cytotoxicity towards multiple human cancer cell lines. Interestingly, co-treatment with chloroquine (CQ), an autophagy inhibitor, increased the cytotoxic potential of the UC2A extract. A gas chromatography mass spectrometry (GCMS) study revealed usnic acid (UA), atraric acid and barbatic acid as the dominant cytotoxic compounds in the UC2A extract. Further, UA was purified and identified from the UC2A extract and evaluated for cytotoxicity in HeLa cells. The monodansyl cadaverine and mitotracker red double staining revealed the autophagy-inducing activities of UA, and the inhibition of autophagy was confirmed via CQ treatment. Autophagy inhibition increased the cytotoxicity of UA by 12-16% in a concentration-dependent manner. It also increased lipid peroxidation, ROS levels and mitochondrial depolarization and decreased glutathione availability. A decrease in zeta potential and a 40% increase in caspase 3/7 activity were also noted after CQ treatment of UA-treated cells. Thus, cytotoxicity of UA can be increased by inhibiting autophagy.

15.
Environ Sci Pollut Res Int ; 30(12): 32301-32319, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36462078

ABSTRACT

There is very little knowledge on microplastic pollution in the Western Ghats (WG), a heritage site in southwest India. To address this, we have studied the spatiotemporal variations of sedimentary microplastics (MPs) from the River Sharavathi, a pristine river in the Western Ghats (WG), southern India. The rich biodiversity in the region makes it relevant to analyse the distribution of this emerging pollutant that is causing harm to the biota and the ecosystem. We analysed the sedimentological and carbon content (organic and inorganic) of these sediments and explored their relationship with MPs. Finally, risk assessment indices such as the Pollution Load Index (PLI), the Polymer Hazard Index (PHI), and the Potential Ecological Risk Index (PERI) were calculated to detect the levels of plastic pollution. The concentration of MPs ranged from 2.5 to 57.5 pieces/kg and 0 to 15 pieces/kg during the pre-monsoon and post-monsoon seasons, respectively. The dip in the MPs' abundance during the post-monsoon season was due to the extremely high rainfall in the river basin during July-August 2019, which would have entrained the sedimentary MPs and transported them to the coast/Arabian Sea. Smaller MPs (0.3-1 mm) were more abundant than the larger MPs (1-5 mm), mainly due to the breakdown of sedimentary plastics by physical processes. Fragments, films, foams, and fibres were the main categories of MPs, and the main polymers were polyethylene, polyethylene terephthalate, and polypropylene. No significant relationship was observed between the sedimentological properties and microplastics, which may be due to the different physical properties of sediments and microplastics. The PLI, PHI, and PERI indices suggest different contamination levels in the river basin. Based on the PLI scores, all the samples belong to the hazardous level I suggesting minor risk category, and the risk of microplastic pollution falls under the high to hazardous risk category based on the PHI values. The PERI value ranged from 160 to 440 and 40 to 2240 during the pre-monsoon and post-monsoon seasons, respectively. The risk assessment in a region known for its rich biodiversity is crucial, as the data can be used by the district administration to mitigate plastic pollution.


Subject(s)
Microplastics , Water Pollutants, Chemical , Microplastics/analysis , Plastics , Ecosystem , Environmental Monitoring , Water Pollutants, Chemical/analysis , Geologic Sediments , India
16.
Sci Total Environ ; 854: 158647, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36089016

ABSTRACT

Evolving Anthropocene epoch wields significant influence in altering atmospheric carbon, which affects the carbon cycle, leading to climate change. Understanding the carbon stock, fate, and transport across ecosystems are essential in determining India's carbon budget, hitherto, unavailable. In this study, we have analysed the stock, source, distribution, flux, and the relationship between terrestrial and aquatic black carbon over a high-altitude mountainous area in the Western Ghats region using the data collected from September 2019 to February 2021. Soil Organic Carbon (SOC) and Black Carbon (BC) are the highest in the forest region (SOC:23 ± 3 g of C/kg (dry weight (dw)), BC:6 ± 3 g/kg) and are the lowest in the urban region (SOC: 13 ± 2 g of C/kg (dw), BC:2 ± 1 g/kg). SOC is labile, whereas BC is non-labile. The BC/SOC ratio represents soil carbon lability. Topsoil BC/SOC ratios vary by land use and land cover, with urban areas having greater labile carbon pools than the forests. Dissolved BC (DBC) concentrations were most strongly correlated with bulk Dissolved Organic Carbon (DOC) concentrations in midstream (R = 0.6, p < 0.05), headwater streams (R = 0.3, p < 0.05) and to the soil bulk DBC (R = 0.3, p < 0.05), indicating the presence of transfer mechanism of soil to streams. The molecular associations revealed the presence of biolabile autochthonous compounds suggesting the crucial role land use and land cover play on watersheds. A positive relationship between DOC with seasonal hydrology and gradient significantly influences the DBC flux across regional streams. Intercomparison of observed terrestrial and aquatic carbon stocks with globally modelled data indicates an overestimation of regional-scale stock. These new findings have repercussions to policy framework on regional climate change. Further, the results suggest that a consistent quantification of BC and integration of regional, and global source-to-sink process are needed in order to understand and better quantify biogeochemical process cycles and associated climatic impacts.

17.
Stoch Environ Res Risk Assess ; 37(2): 527-556, 2023.
Article in English | MEDLINE | ID: mdl-35880038

ABSTRACT

Flooding is one of the most destructive natural catastrophes that can strike anywhere in the world. With the recent, but frequent catastrophic flood events that occurred in the narrow stretch of land in southern India, sandwiched between the Western Ghats and the Arabian Sea, this study was initiated. The goal of this research is to identify flood-vulnerable zones in this area by making the local self governing bodies as the mapping unit. This study also assessed the predictive accuracy of analytical hierarchy process (AHP) and fuzzy-analytical hierarchy process (F-AHP) models. A total of 20 indicators (nine physical-environmental variables and 11 socio-economic variables) have been considered for the vulnerability modelling. Flood-vulnerability maps, created using remotely sensed satellite data and geographic information systems, was divided into five zones. AHP and F-AHP flood vulnerability models identified 12.29% and 11.81% of the area as very high-vulnerable zones, respectively. The receiver operating characteristic (ROC) curve is used to validate these flood vulnerability maps. The flood vulnerable maps, created using the AHP and F-AHP methods, were found to be outstanding based on the area under the ROC curve (AUC) values. This demonstrates the effectiveness of these two models. The results of AUC for the AHP and F-AHP models were 0.946 and 0.943, respectively, articulating that the AHP model is more efficient than its chosen counterpart in demarcating the flood vulnerable zones. Decision-makers and land-use planners will find the generated vulnerable zone maps useful, particularly in implementing flood mitigation plans.

18.
Front Plant Sci ; 13: 1029540, 2022.
Article in English | MEDLINE | ID: mdl-36578332

ABSTRACT

Artocarpus (Moraceae), known as breadfruits for their diverse nutritious fruits, is prized for its high-quality timber, medicinal value, and economic importance. Breadfruits are native to Southeast Asia but have been introduced to other continents. The most commonly cultivated species are Artocarpus heterophyllus (Jackfruit) and Artocarpus altilis (Breadfruit). With numerous smaller but nutritionally comparable fruits on a larger tree, Artocarpus hirsutus, also called "Wild Jack" or "Ayani", is an elusive forest species endemic to Indian Western Ghats. In this study, we sequenced and assembled the whole genome of Artocarpus hirsutus sampled from the sacred groves of Coorg, India. To decipher demographic and evolutionary history, we compared our Wild Jack genome with previously published Jackfruit and Breadfruit genomes. Demographic history reconstruction indicates a stronger effect of habitat rather than phylogeny on the population histories of these plants. Repetitive genomic regions, especially LTR Copia, strongly affected the demographic trajectory of A. heterophyllus. Upon further investigation, we found a recent lineage-specific accumulation of LTR Copia in A. heterophyllus, which had a major contribution to its larger genome size. Several genes from starch, sucrose metabolism, and plant hormone signal transduction pathways, in Artocarpus species had signatures of selection and gene family evolution. Our comparative genomic framework provides important insights by incorporating endemic species such as the Wild Jack.

19.
Front Pharmacol ; 13: 1025848, 2022.
Article in English | MEDLINE | ID: mdl-36313327

ABSTRACT

Caesalpinia mimosoides Lam. is one of the important medicinal plants used by the traditional healers of Uttara Kannada district, Karnataka (India) for treating wounds. In our previous study ethanol extract of the plant was evaluated for its wound healing activity. In continuation, the present study was aimed to evaluate the phenol enriched fraction (PEF) of ethanol extract for wound healing activity along with its antioxidant, anti-inflammatory and antimicrobial properties. The potent wound healing activity of PEF was evidenced by observation of increased rate of cell migration in L929, 3T3L1 and L6 cells (92.59 ± 1.53%, 98.42 ± 0.82% and 96.63 ± 0.61% respectively) at 7.81 µg/ml doses in assays carried out in vitro. Significantly enhanced rate of wound contraction (97.92 ± 0.41%), tensile strength (973.67 ± 4.43 g/mm2), hydroxyproline (31.31 ± 0.64 mg/g) and hexosamine (8.30 ± 0.47 mg/g) contents were observed on 15th post wounding day in 5% PEF treated animals. The enzymatic and non-enzymatic cellular antioxidants (superoxide dismutase, catalase and reduced glutathione) were upregulated (15.89 ± 0.17 U/mg, 48.30 ± 4.60 U/mg and 4.04 ± 0.12 µg/g respectively) with the administration of 5% PEF. The significant antimicrobial, antioxidant and anti-inflammatory activities support the positive correlation of PEF with its enhanced wound healing activity. PEF contains expressive amounts of total phenolic and total flavonoid contents (578.28 ± 2.30 mg GAE/g and 270.76 ± 2.52 mg QE/g). Of the various chemicals displayed in RP-UFLC-DAD analysis of PEF, gallic acid (68.08 µg/mg) and ethyl gallate (255.91 µg/mg) were predominant. The results indicate that PEF has great potential for the topical management of open wounds.

20.
Chemosphere ; 306: 135563, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35787876

ABSTRACT

Sustainable plastic-waste management is becoming increasingly challenging as enormous loads of plastic debris regularly accumulate in susceptible ecosystems. The microplastic (MP) particles generated from these plastic wastes are imposing additional threats to these ecosystems due to their small size as well as their ability to adsorb and carry toxic chemicals. The current investigation deals with one such MP-originated toxicant, diethyl phthalate (DEP), and its impact on two species of freshwater loaches from the Western Ghats of India, Lepidocephalichthys thermalis and Indoreonectes evezardi. The MP samples were collected from the sediments of the Mula River and characterized using spectroscopic methods and scanning electron microscopy. Polymers, such as polyvinyl chloride and polypropylene, were identified in the collected MPs. GC-MS analysis of the MP extracts revealed the presence of DEP, confirming the MP waste as a potential source of DEP pollution. Further, to evaluate the effect of DEP on survival of selected loaches, L. thermalis and I. evezardi were exposed to DEP concentrations (18.75-300 mg L-1) and the lethal DEP dose (LC50) was estimated to be 44.53 mg L-1 for L. thermalis and 34.64 mg L-1 for I. evezardi. Fishes were further exposed to sub-lethal DEP concentration for one day (Short term exposure: STE) or eight days (Long term exposure: LTE) to analyze the histological condition and oxidative status of the liver in response to DEP treatment. Histology revealed congestion of sinusoids and vacuolization after the LTE. Higher lipid peroxidation levels were also measured in the livers of both species treated with DEP, which indicated DEP-mediated oxidative damage. The antioxidant enzymes including superoxide dismutase, catalase, peroxidase and glutathione-S-transferase displayed elevated activities in response to STE and LTE of DEP. Collectively, the results demonstrate that MPs in the Mula River are a potential source of DEP. The findings also show that DEP exposure can be fatal to freshwater fishes such as loaches, possibly by causing increased oxidative damage to the hepatic system.


Subject(s)
Plasticizers , Water Pollutants, Chemical , Animals , Ecosystem , Fishes/metabolism , Glutathione Transferase/metabolism , Microplastics , Oxidative Stress/physiology , Phthalic Acids , Plasticizers/toxicity , Plastics , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL