Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
1.
Cells ; 13(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39273049

ABSTRACT

LMNA-related dilated cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C (LMNA) gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. The molecular mechanisms of the disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality. We investigated possible mechanisms of LMNA-related DCM using induced pluripotent stem cells derived from a family with a heterozygous LMNA c.357-2A>G splice-site mutation. We differentiated one LMNA-mutant iPSC line derived from an affected female (Patient) and two non-mutant iPSC lines derived from her unaffected sister (Control) and conducted single-cell RNA sequencing for 12 samples (four from Patients and eight from Controls) across seven time points: Day 0, 2, 4, 9, 16, 19, and 30. Our bioinformatics workflow identified 125,554 cells in raw data and 110,521 (88%) high-quality cells in sequentially processed data. Unsupervised clustering, cell annotation, and trajectory inference found complex heterogeneity: ten main cell types; many possible subtypes; and lineage bifurcation for cardiac progenitors to cardiomyocytes (CMs) and epicardium-derived cells (EPDCs). Data integration and comparative analyses of Patient and Control cells found cell type and lineage-specific differentially expressed genes (DEGs) with enrichment, supporting pathway dysregulation. Top DEGs and enriched pathways included 10 ZNF genes and RNA polymerase II transcription in pluripotent cells (PP); BMP4 and TGF Beta/BMP signaling, sarcomere gene subsets and cardiogenesis, CDH2 and EMT in CMs; LMNA and epigenetic regulation, as well as DDIT4 and mTORC1 signaling in EPDCs. Top DEGs also included XIST and other X-linked genes, six imprinted genes (SNRPN, PWAR6, NDN, PEG10, MEG3, MEG8), and enriched gene sets related to metabolism, proliferation, and homeostasis. We confirmed Lamin A/C haploinsufficiency by allelic expression and Western blot. Our complex Patient-derived iPSC model for Lamin A/C haploinsufficiency in PP, CM, and EPDC provided support for dysregulation of genes and pathways, many previously associated with Lamin A/C defects, such as epigenetic gene expression, signaling, and differentiation. Our findings support disruption of epigenomic developmental programs, as proposed in other LMNA disease models. We recognized other factors influencing epigenetics and differentiation; thus, our approach needs improvement to further investigate this mechanism in an iPSC-derived model.


Subject(s)
Cardiomyopathy, Dilated , Cell Differentiation , Haploinsufficiency , Induced Pluripotent Stem Cells , Lamin Type A , Myocytes, Cardiac , Transcriptome , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/metabolism , Lamin Type A/genetics , Lamin Type A/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Cell Differentiation/genetics , Haploinsufficiency/genetics , Female , Transcriptome/genetics , Pericardium/pathology , Pericardium/metabolism , Cell Lineage/genetics , Single-Cell Analysis , Gene Expression Regulation , Mutation/genetics , Adult
2.
J Clin Immunol ; 45(1): 1, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264518

ABSTRACT

PURPOSE: Genetic hypomorphic defects in X chromosomal IKBKG coding for the NF-κB essential modulator (NEMO) lead to ectodermal dysplasia and immunodeficiency in males and the skin disorder incontinentia pigmenti (IP) in females, respectively. NF-κB essential modulator (NEMO) Δ-exon 5-autoinflammatory syndrome (NEMO-NDAS) is a systemic autoinflammatory disease caused by alternative splicing and increased proportion of NEMO-Δex5. We investigated a female carrier presenting with IP and NEMO-NDAS due to non-skewed X-inactivation. METHODS: IKBKG transcripts were quantified in peripheral blood mononuclear cells isolated from the patient, her mother, and healthy controls using RT-PCR and nanopore sequencing. Corresponding proteins were analyzed by western blotting and flow cytometry. Besides toll-like receptor (TLR) and tumor necrosis factor (TNF) signaling, the interferon signature, cytokine production and X-inactivation status were investigated. RESULTS: IP and autoinflammation with recurrent fever, oral ulcers, hepatitis, and neutropenia, but no immunodeficiency was observed in a female patient. Besides moderately reduced NEMO signaling function, type I interferonopathy, and elevated IL-18 and CXCL10 were found. She and her mother both carried the heterozygous variant c.613 C > T p.(Gln205*) in exon 5 of IKBKG previously reported in NEMO-deficient patients. However, X-inactivation was skewed in the mother, but not in the patient. Alternative splicing led to increased ratios of NEMO-Dex5 over full-length protein in peripheral blood cell subsets causing autoinflammation. Clinical symptoms partially resolved under treatment with TNF inhibitors. CONCLUSION: Non-skewed X-inactivation can lead to NEMO-NDAS in females with IP carrying hypomorphic IKBKG variants due to alternative splicing and increased proportions of NEMO-∆ex5.


Subject(s)
Exons , I-kappa B Kinase , Incontinentia Pigmenti , X Chromosome Inactivation , Humans , Female , Incontinentia Pigmenti/genetics , Incontinentia Pigmenti/diagnosis , I-kappa B Kinase/genetics , Exons/genetics , Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/diagnosis , Mutation/genetics , Cytokines/metabolism , Adult , Alternative Splicing , Signal Transduction
3.
Muscle Nerve ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221574

ABSTRACT

INTRODUCTION/AIMS: The dystrophinopathies primarily affect males; however, female carriers of pathogenic dystrophin variants can develop skeletal muscle symptoms. This study aimed to evaluate muscle involvement and symptoms in females with dystrophinopathy using quantitative magnetic resonance imaging (MRI), functional assessments, and patient-reported outcomes. METHODS: Controls and females with dystrophinopathy with muscle symptoms of pain, weakness, fatigue, or excessive tightness were enrolled in this cross-sectional study. Participants underwent lower extremity MRI to quantify muscle inflammation, replacement by fat, and disease asymmetry. Cardiac MRI, functional ability, muscle symptoms, and serum creatine kinase levels were also evaluated. RESULTS: Six pediatric females with dystrophinopathy (mean age: 11.7 years), 11 adult females with dystrophinopathy (mean age: 41.3 years), and seven controls enrolled. The mean fat fraction was increased in females with dystrophinopathy compared to controls in the soleus (0.11 vs. 0.03, p = .0272) and vastus lateralis (0.16 vs. 0.03, p = .004). Magnetic resonance spectroscopy water T2, indicative of muscle inflammation, was elevated in the soleus and/or vastus lateralis in 11 of 17 individuals. North Star Ambulatory Assessment score was lower in the dystrophinopathy group compared to controls (29 vs. 34 points, p = .0428). From cardiac MRI, left ventricle T1 relaxation times were elevated in females with dystrophinopathy compared to controls (1311 ± 55 vs. 1263 ± 25 ms, p < .05), but ejection fraction and circumferential strain did not differ. DISCUSSION: Symptomatic females with dystrophinopathy quantitatively demonstrate muscle replacement by fat and inflammation, along with impairments in functional ability and cardiac function. Additional research is needed to evaluate how symptoms and muscle involvement change longitudinally.

4.
Cell ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39168126

ABSTRACT

Xp11 translocation renal cell carcinoma (tRCC) is a rare, female-predominant cancer driven by a fusion between the transcription factor binding to IGHM enhancer 3 (TFE3) gene on chromosome Xp11.2 and a partner gene on either chromosome X (chrX) or an autosome. It remains unknown what types of rearrangements underlie TFE3 fusions, whether fusions can arise from both the active (chrXa) and inactive X (chrXi) chromosomes, and whether TFE3 fusions from chrXi translocations account for the female predominance of tRCC. To address these questions, we performed haplotype-specific analyses of chrX rearrangements in tRCC whole genomes. We show that TFE3 fusions universally arise as reciprocal translocations and that oncogenic TFE3 fusions can arise from chrXi:autosomal translocations. Female-specific chrXi:autosomal translocations result in a 2:1 female-to-male ratio of TFE3 fusions involving autosomal partner genes and account for the female predominance of tRCC. Our results highlight how X chromosome genetics constrains somatic chrX alterations and underlies cancer sex differences.

5.
Ophthalmic Genet ; : 1-6, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39148443

ABSTRACT

CASE SUMMARY: The patient is a 42-year-old female who presented with a de novo missense variant in the PRPS1 gene. Her phenotype includes asymmetric retinal dystrophy with sensory esotropia, congenital sensorineural hearing loss, neuropathy, and severe tremors with recent-onset ataxia. This contributes a new presentation of ophthalmic and neurological findings to the literature.

6.
Cell ; 187(14): 3541-3562.e51, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996487

ABSTRACT

Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.


Subject(s)
Genome , Mammoths , Skin , Animals , Mammoths/genetics , Genome/genetics , Female , Elephants/genetics , Chromatin/genetics , Fossils , DNA, Ancient/analysis , Mice , Humans , X Chromosome/genetics
7.
Endocr J ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38987196

ABSTRACT

The mean height is taller in males than in females, except for early teens. In this regard, previous studies have revealed that (1) distribution of the mean adult heights in subjects with disorders accompanied by discordance between sex chromosome complement and bioactive sex steroids and in control subjects (the British height standards) indicates that, of the ~12.5 cm of sex difference in the mean adult height, ~9 cm is accounted for by the difference in the sex chromosome complement and the remaining ~3.5 cm is explained by the dimorphism in sex steroids (primarily due to the growth-promoting effect of gonadal androgens); (2) according to the infancy-childhood-puberty growth model, the sex difference in the childhood growth function produces height differences of ~1 cm in childhood and 8-10 cm at 18-20 years of age, whereas the sex difference in the pubertal growth function yields height difference of ~4.5 cm at 18-20 years of age; and (3) SHOX expression and methylation analyses using knee cartilage tissues and cultured chondrocytes have shown lower SHOX expression levels in female samples than in male samples and methylation patterns consistent with partial spreading of X-inactivation affecting SHOX in female samples. These findings suggest that small but persistent sex difference in SHOX expression dosage leads to the variation in the sex steroid independent childhood growth function, thereby yielding the sex difference in height which remains small in childhood but becomes obvious in adulthood.

8.
Neuron ; 112(15): 2524-2539.e5, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38838671

ABSTRACT

Altered transcriptional and epigenetic regulation of brain cell types may contribute to cognitive changes with advanced age. Using single-nucleus multi-omic DNA methylation and transcriptome sequencing (snmCT-seq) in frontal cortex from young adult and aged donors, we found widespread age- and sex-related variation in specific neuron types. The proportion of inhibitory SST- and VIP-expressing neurons was reduced in aged donors. Excitatory neurons had more profound age-related changes in their gene expression and DNA methylation than inhibitory cells. Hundreds of genes involved in synaptic activity, including EGR1, were less expressed in aged adults. Genes located in subtelomeric regions increased their expression with age and correlated with reduced telomere length. We further mapped cell-type-specific sex differences in gene expression and X-inactivation escape genes. Multi-omic single-nucleus epigenomes and transcriptomes provide new insight into the effects of age and sex on human neurons.


Subject(s)
DNA Methylation , Neurons , Humans , Neurons/metabolism , Neurons/physiology , Female , Male , Adult , Aged , Young Adult , Aging/physiology , Aging/genetics , Sex Characteristics , Middle Aged , Epigenesis, Genetic , Transcriptome , Age Factors , Aged, 80 and over , Frontal Lobe/metabolism , Frontal Lobe/cytology , X Chromosome Inactivation/genetics , Cerebral Cortex/cytology , Cerebral Cortex/metabolism
9.
Med Genet ; 36(2): 111-120, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38854642

ABSTRACT

Epigenetic control systems are based on chromatin modifications (DNA methylation, histone modifications and nucleosome positioning), which affect the local kinetics of gene expression. They play an important role in maintaining cell fate decisions, X inactivation and genomic imprinting. Aberrant chromatin states that are associated with a deleterious change in gene expression are called epimutations. An epimutation can be a primary epimutation that has occurred in the absence of any genetic change or a secondary epimutation that results from a mutation of a cis-acting regulatory element or trans-acting factor. Epimutations may play a causative role in disease, for example in imprinting disorders, or may be part of the pathogenetic mechanism as in the fragile X syndrome and in syndromes caused by a mutation affecting a chromatin modifier. For several diseases, DNA methylation testing is an important tool in the diagnostic work-up of patients.

10.
Mol Cell ; 84(10): 1870-1885.e9, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759625

ABSTRACT

How Polycomb repressive complex 2 (PRC2) is regulated by RNA remains an unsolved problem. Although PRC2 binds G-tracts with the potential to form RNA G-quadruplexes (rG4s), whether rG4s fold extensively in vivo and whether PRC2 binds folded or unfolded rG4 are unknown. Using the X-inactivation model in mouse embryonic stem cells, here we identify multiple folded rG4s in Xist RNA and demonstrate that PRC2 preferentially binds folded rG4s. High-affinity rG4 binding inhibits PRC2's histone methyltransferase activity, and stabilizing rG4 in vivo antagonizes H3 at lysine 27 (H3K27me3) enrichment on the inactive X chromosome. Surprisingly, mutagenizing the rG4 does not affect PRC2 recruitment but promotes its release and catalytic activation on chromatin. H3K27me3 marks are misplaced, however, and gene silencing is compromised. Xist-PRC2 complexes become entrapped in the S1 chromosome compartment, precluding the required translocation into the S2 compartment. Thus, Xist rG4 folding controls PRC2 activity, H3K27me3 enrichment, and the stepwise regulation of chromosome-wide gene silencing.


Subject(s)
G-Quadruplexes , Histones , Polycomb Repressive Complex 2 , RNA, Long Noncoding , X Chromosome Inactivation , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Histones/metabolism , Histones/genetics , Mouse Embryonic Stem Cells/metabolism , Chromatin/metabolism , Chromatin/genetics , X Chromosome/genetics , X Chromosome/metabolism , Gene Silencing , RNA Folding , Protein Binding
11.
Histochem Cell Biol ; 162(1-2): 41-52, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762823

ABSTRACT

During development and differentiation, histone modifications dynamically change locally and globally, associated with transcriptional regulation, DNA replication and repair, and chromosome condensation. The level of histone H4 Lys20 monomethylation (H4K20me1) increases during the G2 to M phases of the cell cycle and is enriched in facultative heterochromatin, such as inactive X chromosomes in cycling cells. To track the dynamic changes of H4K20me1 in living cells, we have developed a genetically encoded modification-specific intracellular antibody (mintbody) probe that specifically binds to the modification. Here, we report the generation of knock-in mice in which the coding sequence of the mCherry-tagged version of the H4K20me1-mintbody is inserted into the Rosa26 locus. The knock-in mice, which ubiquitously expressed the H4K20me1-mintbody, developed normally and were fertile, indicating that the expression of the probe does not disturb the cell growth, development, or differentiation. Various tissues isolated from the knock-in mice exhibited nuclear fluorescence without the need for fixation. The H4K20me1-mintbody was enriched in inactive X chromosomes in developing embryos and in XY bodies during spermatogenesis. The knock-in mice will be useful for the histochemical analysis of H4K20me1 in any cell types.


Subject(s)
Gene Knock-In Techniques , Histones , Luminescent Proteins , Animals , Mice , Histones/metabolism , Luminescent Proteins/metabolism , Luminescent Proteins/genetics , Antibodies/metabolism , Red Fluorescent Protein , Male , Mice, Inbred C57BL , Mice, Transgenic
12.
Dis Model Mech ; 17(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38804708

ABSTRACT

The TATA box-binding protein-associated factor 1 (TAF1) is a ubiquitously expressed protein and the largest subunit of the basal transcription factor TFIID, which plays a key role in initiation of RNA polymerase II-dependent transcription. TAF1 missense variants in human males cause X-linked intellectual disability, a neurodevelopmental disorder, and TAF1 is dysregulated in X-linked dystonia-parkinsonism, a neurodegenerative disorder. However, this field has lacked a genetic mouse model of TAF1 disease to explore its mechanism in mammals and treatments. Here, we generated and validated a conditional cre-lox allele and the first ubiquitous Taf1 knockout mouse. We discovered that Taf1 deletion in male mice was embryonically lethal, which may explain why no null variants have been identified in humans. In the brains of Taf1 heterozygous female mice, no differences were found in gross structure, overall expression and protein localisation, suggesting extreme skewed X inactivation towards the non-mutant chromosome. Nevertheless, these female mice exhibited a significant increase in weight, weight with age, and reduced movement, suggesting that a small subset of neurons was negatively impacted by Taf1 loss. Finally, this new mouse model may be a future platform for the development of TAF1 disease therapeutics.


Subject(s)
Body Weight , Heterozygote , Histone Acetyltransferases , Mice, Knockout , Movement Disorders , TATA-Binding Protein Associated Factors , Transcription Factor TFIID , Animals , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIID/genetics , Transcription Factor TFIID/metabolism , Transcription Factor TFIID/deficiency , Female , Male , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Movement Disorders/genetics , Movement Disorders/pathology , Embryo, Mammalian/metabolism , Mice , Brain/pathology , Brain/metabolism , Genes, Lethal , Mice, Inbred C57BL
13.
EMBO Rep ; 25(5): 2258-2277, 2024 May.
Article in English | MEDLINE | ID: mdl-38654121

ABSTRACT

X chromosome inactivation (XCI) in mammals is mediated by Xist RNA which functions in cis to silence genes on a single X chromosome in XX female cells, thereby equalising levels of X-linked gene expression relative to XY males. XCI progresses over a period of several days, with some X-linked genes silencing faster than others. The chromosomal location of a gene is an important determinant of silencing rate, but uncharacterised gene-intrinsic features also mediate resistance or susceptibility to silencing. In this study, we examine mouse embryonic stem cell lines with an inducible Xist allele (iXist-ChrX mESCs) and integrate allele-specific data of gene silencing and decreasing inactive X (Xi) chromatin accessibility over time courses of Xist induction with cellular differentiation. Our analysis reveals that motifs bound by the transcription factor YY1 are associated with persistently accessible regulatory elements, including many promoters and enhancers of slow-silencing genes. We further show that YY1 is evicted relatively slowly from target sites on Xi, and that silencing of X-linked genes is increased upon YY1 degradation. Together our results suggest that YY1 acts as a barrier to Xist-mediated silencing until the late stages of the XCI process.


Subject(s)
Gene Silencing , RNA, Long Noncoding , X Chromosome Inactivation , YY1 Transcription Factor , Animals , Female , Male , Mice , Alleles , Cell Differentiation/genetics , Cell Line , Chromatin/metabolism , Chromatin/genetics , Mouse Embryonic Stem Cells/metabolism , Promoter Regions, Genetic , Protein Binding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , X Chromosome/genetics , X Chromosome/metabolism , X Chromosome Inactivation/genetics , YY1 Transcription Factor/metabolism , YY1 Transcription Factor/genetics
14.
Mol Cell ; 84(8): 1442-1459.e7, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38458200

ABSTRACT

In mammals, dosage compensation involves two parallel processes: (1) X inactivation, which equalizes X chromosome dosage between males and females, and (2) X hyperactivation, which upregulates the active X for X-autosome balance. The field currently favors models whereby dosage compensation initiates "de novo" during mouse development. Here, we develop "So-Smart-seq" to revisit the question and interrogate a comprehensive transcriptome including noncoding genes and repeats in mice. Intriguingly, de novo silencing pertains only to a subset of Xp genes. Evolutionarily older genes and repetitive elements demonstrate constitutive Xp silencing, adopt distinct signatures, and do not require Xist to initiate silencing. We trace Xp silencing backward in developmental time to meiotic sex chromosome inactivation in the male germ line and observe that Xm hyperactivation is timed to Xp silencing on a gene-by-gene basis. Thus, during the gamete-to-embryo transition, older Xp genes are transmitted in a "pre-inactivated" state. These findings have implications for the evolution of imprinting.


Subject(s)
RNA, Long Noncoding , X Chromosome Inactivation , Female , Mice , Male , Animals , X Chromosome Inactivation/genetics , Genomic Imprinting , Germ Cells , Epigenesis, Genetic , Embryo, Mammalian , RNA, Long Noncoding/genetics , X Chromosome/genetics , Mammals/genetics
15.
Brain Dev ; 46(6): 230-233, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38480026

ABSTRACT

BACKGROUND: Heterozygous L1CAM variants cause L1 syndrome with hydrocephalus and aplasia/hypoplasia of the corpus callosum. L1 syndrome usually has an X-linked recessive inheritance pattern; however, we report a rare case occurring in a female child. CASE PRESENTATION: The patient's family history was unremarkable. Fetal ultrasonography revealed enlarged bilateral ventricles of the brain and hypoplasia of the corpus callosum. The patient was born at 38 weeks and 4 days of gestation. Brain MRI performed on the 8th day of life revealed enlargement of the brain ventricles, marked in the lateral and third ventricles with irregular margins, and hypoplasia of the corpus callosum. Exome sequencing at the age of 2 years and 3 months revealed a de novo heterozygous L1CAM variant (NM_000425.5: c.2934_2935delp. (His978Glnfs * 25). X-chromosome inactivation using the human androgen receptor assay revealed that the pattern of X-chromosome inactivation in the patients was highly skewed (96.6 %). The patient is now 4 years and 11 months old and has a mild developmental delay (developmental quotient, 56) without significant progression of hydrocephalus. CONCLUSION: In this case, we hypothesized that the dominant expression of the variant allele arising from skewed X inactivation likely caused L1 syndrome. Symptomatic female carriers may challenge the current policies of prenatal and preimplantation diagnoses.


Subject(s)
Hydrocephalus , Neural Cell Adhesion Molecule L1 , X Chromosome Inactivation , Humans , Female , X Chromosome Inactivation/genetics , Neural Cell Adhesion Molecule L1/genetics , Hydrocephalus/genetics , Hydrocephalus/diagnostic imaging , Child, Preschool , Agenesis of Corpus Callosum/genetics
16.
Epigenomes ; 8(1)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38390899

ABSTRACT

The mammalian sexes are distinguished by the X and Y chromosomes. Whereas males harbor one X and one Y chromosome, females harbor two X chromosomes. To equalize X-linked gene expression between the sexes, therian mammals have evolved X-chromosome inactivation as a dosage compensation mechanism. During X-inactivation, most genes on one of the two X chromosomes in females are transcriptionally silenced, thus equalizing X-linked gene expression between the sexes. Two forms of X-inactivation characterize eutherian mammals, imprinted and random. Imprinted X-inactivation is defined by the exclusive inactivation of the paternal X chromosome in all cells, whereas random X-inactivation results in the silencing of genes on either the paternal or maternal X chromosome in individual cells. Both forms of X-inactivation have been studied intensively in the mouse model system, which undergoes both imprinted and random X-inactivation early in embryonic development. Stable imprinted and random X-inactivation requires the induction of the Xist long non-coding RNA. Following its induction, Xist RNA recruits proteins and complexes that silence genes on the inactive-X. In this review, we present a current understanding of the mechanisms of Xist RNA induction, and, separately, the establishment and maintenance of gene silencing on the inactive-X by Xist RNA during imprinted and random X-inactivation.

17.
bioRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260534

ABSTRACT

The linear DNA sequence of mammalian chromosomes is organized in large blocks of DNA with similar sequence properties, producing a pattern of dark and light staining bands on mitotic chromosomes. Cytogenetic banding is essentially invariant between people and cell-types and thus may be assumed unrelated to genome regulation. We investigate whether large blocks of Alu-rich R-bands and L1-rich G-bands provide a framework upon which functional genome architecture is built. We examine two models of large-scale chromatin condensation: X-chromosome inactivation and formation of senescence-associated heterochromatin foci (SAHFs). XIST RNA triggers gene silencing but also formation of the condensed Barr Body (BB), thought to reflect cumulative gene silencing. However, we find Alu-rich regions are depleted from the L1-rich BB, supporting it is a dense core but not the entire chromosome. Alu-rich bands are also gene-rich, affirming our earlier findings that genes localize at the outer periphery of the BB. SAHFs similarly form within each territory by coalescence of syntenic L1 regions depleted for highly Alu-rich DNA. Analysis of senescent cell Hi-C data also shows large contiguous blocks of G-band and R-band DNA remodel as a segmental unit. Entire dark-bands gain distal intrachromosomal interactions as L1-rich regions form the SAHF. Most striking is that sharp Alu peaks within R-bands resist these changes in condensation. We further show that Chr19, which is exceptionally Alu rich, fails to form a SAHF. Collective results show regulation of genome architecture corresponding to large blocks of DNA and demonstrate resistance of segments with high Alu to chromosome condensation.

18.
Genes (Basel) ; 15(1)2024 01 16.
Article in English | MEDLINE | ID: mdl-38254992

ABSTRACT

The translocation of the testis-determining factor, the SRY gene, from the Y to the X chromosome is a rare event that causes abnormalities in gonadal development. In all cases of males and females carrying this translocation, disorder of sex development is reported. In our study, we described a peculiar pedigree with the first evidence of four healthy females from three generations who are carriers of the newly identified t(X;Y)(q28;p11.2)(SRY+) translocation with no evidence of ambiguous genitalia or other SRY-dependent alterations. Our study was a consequence of a Non-Invasive Prenatal Test (NIPT) showing a sexual chromosomal abnormality (XXY) followed by a chorionic villus analysis suggesting a normal karyotype 46,XX and t(X;Y) translocation detected by FISH. Here, we (i) demonstrated the inheritance of the translocation in the maternal lineage via karyotyping and FISH analysis; (ii) characterised the structural rearrangement via chromosomal microarray; and (iii) demonstrated, via Click-iT® EdU Imaging assay, that there was an absolute preferential inactivation of the der(X) chromosome responsible for the lack of SRY expression. Overall, our study provides valuable genetic and molecular information that may lead personal and medical decisions.


Subject(s)
Chromosomes, Human, X , Genes, sry , Male , Pregnancy , Humans , Female , Sex-Determining Region Y Protein/genetics , Chromosomes, Human, X/genetics , Chromosome Aberrations , Karyotyping , Translocation, Genetic/genetics
19.
Front Cell Dev Biol ; 11: 1296600, 2023.
Article in English | MEDLINE | ID: mdl-38155839

ABSTRACT

There is growing evidence that X-chromosome inactivation is driven by phase-separated supramolecular assemblies. However, among the many proteins recruited to the inactive X chromosome by Xist long non-coding RNA, so far only a minority (CIZ1, CELF1, SPEN, TDP-43, MATR3, PTBP1, PCGF5) have been shown to form Xist-seeded protein assemblies, and of these most have not been analyzed in detail. With focus on CIZ1, here we describe 1) the contribution of intrinsically disordered regions in RNA-dependent protein assembly formation at the inactive X chromosome, and 2) enrichment, distribution, and function of proteins within Xist-seeded assemblies.

20.
JCEM Case Rep ; 1(5): luad082, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37908207

ABSTRACT

X-linked hypophosphatemia (XLH), the most common form of hereditary rickets, is due to inactivation of PHEX, resulting in increased circulating fibroblast growth factor 23. Consequent renal phosphate loss leads to hypophosphatemia, rickets, and progressive bow deformity. Inheritance is X-linked dominant, such that heterozygous females are affected, as well as hemizygous males. A 10-month-old girl was referred for potential treatment for presumed XLH. Amniocentesis, performed following prenatal identification of duodenal atresia, polyhydramnios, and intrauterine growth restriction, revealed a de novo X-chromosomal deletion encompassing 10 genes, including PHEX. Postnatal genetic testing confirmed presence of the deletion in the baby. She demonstrated no phenotypic, biochemical, or radiographic features of XLH. Neither parent had features of XLH, nor carried the deletion. Given the discordance between genotype and phenotype, evaluation for skewed X-inactivation was pursued. Methylation analysis via the androgen receptor locus was inconclusive, thus RNA sequencing was pursued. Analysis of 12 high-quality single nucleotide polymorphisms (SNPs) that are expressed in mRNA revealed skewed X-inactivation. Heterozygous disruption of PHEX typically confers a diagnosis of XLH. Skewed X-inactivation, whereby one X chromosome is preferentially silenced, appears to have protected this patient from the expected expression of an X-linked dominant disorder.

SELECTION OF CITATIONS
SEARCH DETAIL