Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Int J Biol Macromol ; 280(Pt 1): 135717, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39293630

ABSTRACT

Ascorbate peroxidases (APXs) are antioxidant enzymes that play vital roles in redox homeostasis in plants. Citrus is susceptible to infection by Xanthomonas citri subsp. citri (Xcc), resulting in citrus bacterial canker (CBC). The present study used bioinformatic and expression analyses to investigate the APX family in Citrus sinensis. Bioinformatic research revealed the chromosomal locations, phylogeny, gene structure, promoter elements, functional domains, conserved motifs, and most likely physicochemical properties of the sequences. Six APXs clustered in three groups were identified, with each protein containing a single peroxidase domain. The promoter regions contained a variety of transcription factor-binding and hormone-response components. Xcc infection induced different CsAPX01 and CsAPX02 expressions in the CBC-susceptible Wanjincheng and CBC-resistant Kumquat varieties. Subcellular localization and transient expression showed that CsAPX01 and CsAPX02 were expressed in the cytoplasm and nucleus and had hydrogen peroxide (H2O2)-scavenging activity. Virus-induced gene silencing (VIGS) of CsAPX01 and CsAPX02 resulted in strong resistance to CBC and H2O2 bursts without effects on the plant phenotype. The current study focused on investigating and characterizing the citrus APX family. It was found that CsAPX01 and CsAPX02 exacerbated CBC by altering the balance of H2O2. These findings emphasize the importance of APXs in enhancing plant resistance to pathogens.

2.
Elife ; 132024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136681

ABSTRACT

Xanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker, elicits canker symptoms in citrus plants because of the transcriptional activator-like (TAL) effector PthA4, which activates the expression of the citrus susceptibility gene CsLOB1. This study reports the regulation of the putative carbohydrate-binding protein gene Cs9g12620 by PthA4-mediated induction of CsLOB1 during Xcc infection. We found that the transcription of Cs9g12620 was induced by infection with Xcc in a PthA4-dependent manner. Even though it specifically bound to a putative TAL effector-binding element in the Cs9g12620 promoter, PthA4 exerted a suppressive effect on the promoter activity. In contrast, CsLOB1 bound to the Cs9g12620 promoter to activate its expression. The silencing of CsLOB1 significantly reduced the level of expression of Cs9g12620, which demonstrated that Cs9g12620 was directly regulated by CsLOB1. Intriguingly, PhtA4 interacted with CsLOB1 and exerted feedback control that suppressed the induction of expression of Cs9g12620 by CsLOB1. Transient overexpression and gene silencing revealed that Cs9g12620 was required for the optimal development of canker symptoms. These results support the hypothesis that the expression of Cs9g12620 is dynamically directed by PthA4 for canker formation through the PthA4-mediated induction of CsLOB1.


Subject(s)
Bacterial Proteins , Citrus , Plant Diseases , Xanthomonas , Xanthomonas/genetics , Xanthomonas/metabolism , Plant Diseases/microbiology , Citrus/microbiology , Citrus/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Promoter Regions, Genetic
3.
Mol Plant Pathol ; 25(7): e13496, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39011828

ABSTRACT

The second messenger cyclic diguanylate monophosphate (c-di-GMP) regulates a wide range of bacterial behaviours through diverse mechanisms and binding receptors. Single-domain PilZ proteins, the most widespread and abundant known c-di-GMP receptors in bacteria, act as trans-acting adaptor proteins that enable c-di-GMP to control signalling pathways with high specificity. This study identifies a single-domain PilZ protein, XAC3402 (renamed N5MapZ), from the phytopathogen Xanthomonas citri subsp. citri (Xcc), which modulates Xcc virulence by directly interacting with the methyltransferase HemK. Through yeast two-hybrid, co-immunoprecipitation and immunofluorescent staining, we demonstrated that N5MapZ and HemK interact directly under both in vitro and in vivo conditions, with the strength of the protein-protein interaction decreasing at high c-di-GMP concentrations. This finding distinguishes N5MapZ from other characterized single-domain PilZ proteins, as it was previously known that c-di-GMP enhances the interaction between those single-domain PilZs and their protein partners. This observation is further supported by the fact that the c-di-GMP binding-defective mutant N5MapZR10A can interact with HemK to inhibit the methylation of the class 1 translation termination release factor PrfA. Additionally, we found that HemK plays an important role in Xcc pathogenesis, as the deletion of hemK leads to extensive phenotypic changes, including reduced virulence in citrus plants, decreased motility, production of extracellular enzymes and stress tolerance. Gene expression analysis has revealed that c-di-GMP and the HemK-mediated pathway regulate the expression of multiple virulence effector proteins, uncovering a novel regulatory mechanism through which c-di-GMP regulates Xcc virulence by mediating PrfA methylation via the single-domain PilZ adaptor protein N5MapZ.


Subject(s)
Bacterial Proteins , Cyclic GMP , Methyltransferases , Xanthomonas , Xanthomonas/pathogenicity , Xanthomonas/metabolism , Xanthomonas/genetics , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Virulence , Plant Diseases/microbiology , Protein Binding
4.
J Exp Bot ; 75(18): 5805-5818, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-38820225

ABSTRACT

Citrus bacterial canker (CBC) is a disease that poses a major threat to global citrus production and is caused by infection with Xanthomonas citri subsp. citri (Xcc). Wall-associated receptor-like kinase (WAKL) proteins play an important role in shaping plant resistance to various bacterial and fungal pathogens. In a previous report, CsWAKL01 was identified as a candidate Xcc-inducible gene found to be up-regulated in CBC-resistant citrus plants. However, the functional role of CsWAKL01 and the mechanisms whereby it may influence resistance to CBC have yet to be clarified. Here, CsWAKL01 was found to localize to the plasma membrane, and the overexpression of the corresponding gene in transgenic sweet oranges resulted in pronounced enhancement of CBC resistance, whereas its knockdown had the opposite effect. Mechanistically, the effect of CsWAKL01 was linked to its ability to reprogram jasmonic acid, salicylic acid, and abscisic acid signaling activity. CsWRKY53 was further identified as a transcription factor capable of directly binding to the CsWAKL01 promoter and inducing its transcriptional up-regulation. CsWRKY53 silencing conferred greater CBC susceptibility to infected plants. Overall, these data support a model wherein CsWRKY53 functions as a positive regulator of CsWAKL01 to enhance resistance to CBC via the reprogramming of phytohormone signaling. Together these results offer new insights into the mechanisms whereby WAKLs shape phytopathogen resistance while underscoring the potential value of targeting the CsWRKY53-CsWAKL01 axis when seeking to breed CBC-resistant citrus plant varieties.


Subject(s)
Disease Resistance , Plant Diseases , Plant Proteins , Signal Transduction , Transcription Factors , Xanthomonas , Citrus/microbiology , Citrus/genetics , Citrus sinensis/genetics , Citrus sinensis/microbiology , Citrus sinensis/metabolism , Gene Expression Regulation, Plant , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Xanthomonas/physiology
5.
Int J Biol Macromol ; 267(Pt 2): 131442, 2024 May.
Article in English | MEDLINE | ID: mdl-38621573

ABSTRACT

Citrus bacterial canker (CBC) is a harmful bacterial disease caused by Xanthomonas citri subsp. citri (Xcc), negatively impacting citrus production worldwide. The basic helix-loop-helix (bHLH) transcription factor family plays crucial roles in plant development and stress responses. This study aimed to identify and annotate bHLH proteins encoded in the Citrus sinensis genome and explore their involvement and functional importance in regulating CBC resistance. A total of 135 putative CsbHLHs TFs were identified and categorized into 16 subfamilies. Their chromosomal locations, collinearity, and phylogenetic relationships were comprehensively analyzed. Upon Xcc strain YN1 infection, certain CsbHLHs were differentially regulated in CBC-resistant and CBC-sensitive citrus varieties. Among these, CsbHLH085 was selected for further functional characterization. CsbHLH085 was upregulated in the CBC-resistant citrus variety, was localized in the nucleus, and had a transcriptional activation activity. CsbHLH085 overexpression in Citrus significantly enhanced CBC resistance, accompanied by increased levels of salicylic acid (SA), jasmonic acid (JA), reactive oxygen species (ROS), and decreased levels of abscisic acid (ABA) and antioxidant enzymes. Conversely, CsbHLH085 virus-induced gene silencing resulted in opposite phenotypic and biochemical responses. CsbHLH085 silencing also affected the expression of phytohormone biosynthesis and signaling genes involved in SA, JA, and ABA signaling. These findings highlight the crucial role of CsbHLH085 in regulating CBC resistance, suggesting its potential as a target for biotechnological-assisted breeding citrus varieties with improved resistance against phytopathogens.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Citrus sinensis , Disease Resistance , Gene Expression Regulation, Plant , Plant Diseases , Plant Proteins , Xanthomonas , Citrus sinensis/microbiology , Citrus sinensis/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Xanthomonas/pathogenicity , Plant Proteins/genetics , Plant Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Phylogeny , Oxylipins/metabolism , Genome, Plant , Cyclopentanes/metabolism , Salicylic Acid/metabolism , Multigene Family
6.
J Agric Food Chem ; 72(17): 9611-9620, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38646906

ABSTRACT

Citrus canker, a highly contagious bacterial disease caused by Xanthomonas citri subsp. citri (Xcc), poses a substantial threat to citrus crops, leading to serious reductions in fruit yield and economic losses. Most commonly used bactericides against Xcc lead to the rapid development of resistant subpopulations. Therefore, it is imperative to create novel drugs, such as type III secretion system (T3SS) inhibitors, that specifically target bacterial virulence factors rather than bacterial viability. In our study, we designed and synthesized a series of mandelic acid derivatives including 2-mercapto-1,3,4-thiazole. Seven substances were found to reduce the level of transcription of hpa1 without affecting bacterial viability. In vivo bioassays indicated that compound F9 significantly inhibited hypersensitive response and pathogenicity. RT-qPCR assays showed that compound F9 visibly suppressed the expression of Xcc T3SS-related genes as well as citrus canker susceptibility gene CsLOB1. Furthermore, the combination with compound F9 and quorum-quenching bacteria HN-8 can also obviously alleviate canker symptoms.


Subject(s)
Bacterial Proteins , Citrus , Mandelic Acids , Plant Diseases , Type III Secretion Systems , Xanthomonas , Xanthomonas/drug effects , Xanthomonas/pathogenicity , Citrus/microbiology , Citrus/chemistry , Plant Diseases/microbiology , Virulence/drug effects , Mandelic Acids/pharmacology , Mandelic Acids/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Type III Secretion Systems/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Drug Design
7.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38474170

ABSTRACT

Citrus bacterial canker (CBC) is a severe bacterial infection caused by Xanthomonas citri subsp. citri (Xcc), which continues to adversely impact citrus production worldwide. Members of the GATA family are important regulators of plant development and regulate plant responses to particular stressors. This report aimed to systematically elucidate the Citrus sinensis genome to identify and annotate genes that encode GATAs and evaluate the functional importance of these CsGATAs as regulators of CBC resistance. In total, 24 CsGATAs were identified and classified into four subfamilies. Furthermore, the phylogenetic relationships, chromosomal locations, collinear relationships, gene structures, and conserved domains for each of these GATA family members were also evaluated. It was observed that Xcc infection induced some CsGATAs, among which CsGATA12 was chosen for further functional validation. CsGATA12 was found to be localized in the nucleus and was differentially upregulated in the CBC-resistant and CBC-sensitive Kumquat and Wanjincheng citrus varieties. When transiently overexpressed, CsGATA12 significantly reduced CBC resistance with a corresponding increase in abscisic acid, jasmonic acid, and antioxidant enzyme levels. These alterations were consistent with lower levels of salicylic acid, ethylene, and reactive oxygen species. Moreover, the bacteria-induced CsGATA12 gene silencing yielded the opposite phenotypic outcomes. This investigation highlights the important role of CsGATA12 in regulating CBC resistance, underscoring its potential utility as a target for breeding citrus varieties with superior phytopathogen resistance.


Subject(s)
Bacterial Infections , Citrus sinensis , Citrus , Xanthomonas , Citrus sinensis/genetics , Citrus/genetics , Phylogeny , Xanthomonas/physiology , Plant Breeding , Plant Diseases/microbiology
8.
J Agric Food Chem ; 72(9): 4788-4800, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38377546

ABSTRACT

The present study investigated the antibacterial mechanism, control efficiency, and nontarget toxicity of actinomycin X2 (Act-X2) against Xanthomonas citri subsp. citri (Xcc) for the first time. Act-X2 almost completely inhibited the proliferation of Xcc in the growth curve assay at a concentration of 0.25 MIC (minimum inhibitory concentration, MIC = 31.25 µg/mL). This inhibitory effect was achieved by increasing the production of reactive oxygen species (ROS), blocking the formation of biofilms, obstructing the synthesis of intracellular proteins, and decreasing the enzymatic activities of malate dehydrogenase (MDH) and succinate dehydrogenase (SDH) of Xcc. Molecular docking and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis results indicated that Act-X2 steadily bonded to the RNA polymerase, ribosome, malate dehydrogenase, and succinate dehydrogenase to inhibit their activities, thus drastically reducing the expression levels of related genes. Act-X2 showed far more effectiveness than the commercially available pesticide Cu2(OH)3Cl in the prevention and therapy of citrus canker disease. Furthermore, the nontarget toxicity evaluation demonstrated that Act-X2 was not phytotoxic to citrus trees and exhibited minimal toxicity to earthworms in both contact and soil toxic assays. This study suggests that Act-X2 has the potential as an effective and environmentally friendly antibacterial agent.


Subject(s)
Citrus , Dactinomycin/analogs & derivatives , Xanthomonas , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/metabolism , Molecular Docking Simulation , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/metabolism , Citrus/metabolism , Plant Diseases/microbiology
9.
Plant J ; 118(2): 534-548, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38230828

ABSTRACT

Citrus bacterial canker (CBC) is a serious bacterial disease caused by Xanthomonas citri subsp. citri (Xcc) that adversely impacts the global citrus industry. In a previous study, we demonstrated that overexpression of an Xcc-inducible apetala 2/ethylene response factor encoded by Citrus sinensis, CsAP2-09, enhances CBC resistance. The mechanism responsible for this effect, however, is not known. In the present study, we showed that CsAP2-09 targeted the promoter of the Xcc-inducible WRKY transcription factor coding gene CsWRKY25 directly, activating its transcription. CsWRKY25 was found to localize to the nucleus and to activate transcriptional activity. Plants overexpressing CsWRKY25 were more resistant to CBC and showed higher expression of the respiratory burst oxidase homolog (RBOH) CsRBOH2, in addition to exhibiting increased RBOH activity. Transient overexpression assays in citrus confirmed that CsWRKY25 and CsRBOH2 participated in the generation of reactive oxygen species (ROS) bursts, which were able to restore the ROS degradation caused by CsAP2-09 knockdown. Moreover, CsWRKY25 was found to bind directly to W-box elements within the CsRBOH2 promoter. Notably, CsRBOH2 knockdown had been reported previously to reduce the CBC resistance, while demonstrated in this study, CsRBOH2 transient overexpression can enhance the CBC resistance. Overall, our results outline a pathway through which CsAP2-09-CsWRKY25 transcriptionally reprograms CsRBOH2-mediated ROS homeostasis in a manner conducive to CBC resistance. These data offer new insight into the mechanisms and regulatory pathways through which CsAP2-09 regulates CBC resistance, highlighting its potential utility as a target for the breeding of CBC-resistant citrus varieties.


Subject(s)
Citrus sinensis , Citrus , Xanthomonas , Citrus/genetics , Citrus/microbiology , Reactive Oxygen Species , Xanthomonas/genetics , Plant Breeding , Citrus sinensis/genetics , Citrus sinensis/microbiology , Homeostasis , Plant Diseases/genetics , Plant Diseases/microbiology
10.
J Agric Food Chem ; 71(43): 15971-15980, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37831979

ABSTRACT

To find potential type III secretion system (T3SS) inhibitors against citrus canker caused by Xanthomonas citri subsp. citri (Xcc), a new series of 5-phenyl-2-furan carboxylic acid derivatives stitched with 2-mercapto-1,3,4-thiadiazole were designed and synthesized. Among the 30 compounds synthesized, 14 compounds significantly inhibited the promoter activity of a harpin gene hpa1. Eight of the 14 compounds did not affect the growth of Xcc, but significantly reduced the hypersensitive response (HR) of tobacco and decreased the pathogenicity of Xcc on citrus plants. Subsequent studies have demonstrated that these inhibitory molecules effectively suppress the T3SS of Xcc and significantly impair the pathogen's ability to subvert citrus immunity, resulting in a reduction in the level of disease progression. As a result, our work has identified a series of potentially attractive agents for the control of citrus canker.


Subject(s)
Citrus , Xanthomonas , Type III Secretion Systems/genetics , Virulence , Plant Diseases/prevention & control
11.
Plant Biotechnol J ; 21(10): 2019-2032, 2023 10.
Article in English | MEDLINE | ID: mdl-37421233

ABSTRACT

Citrus bacterial canker (CBC), caused by Xanthomonas citri subsp. citri (Xcc), causes dramatic losses to the citrus industry worldwide. Transcription activator-like effectors (TALEs), which bind to effector binding elements (EBEs) in host promoters and activate transcription of downstream host genes, contribute significantly to Xcc virulence. The discovery of the biochemical context for the binding of TALEs to matching EBE motifs, an interaction commonly referred to as the TALE code, enabled the in silico prediction of EBEs for each TALE protein. Using the TALE code, we engineered a synthetic resistance (R) gene, called the Xcc-TALE-trap, in which 14 tandemly arranged EBEs, each capable of autonomously recognizing a particular Xcc TALE, drive the expression of Xanthomonas avrGf2, which encodes a bacterial effector that induces plant cell death. Analysis of a corresponding transgenic Duncan grapefruit showed that transcription of the cell death-inducing executor gene, avrGf2, was strictly TALE-dependent and could be activated by several different Xcc TALE proteins. Evaluation of Xcc strains from different continents showed that the Xcc-TALE-trap mediates resistance to this global panel of Xcc isolates. We also studied in planta-evolved TALEs (eTALEs) with novel DNA-binding domains and found that these eTALEs also activate the Xcc-TALE-trap, suggesting that the Xcc-TALE-trap is likely to confer durable resistance to Xcc. Finally, we show that the Xcc-TALE-trap confers resistance not only in laboratory infection assays but also in more agriculturally relevant field studies. In conclusion, transgenic plants containing the Xcc-TALE-trap offer a promising sustainable approach to control CBC.


Subject(s)
Citrus , Xanthomonas , Transcription Activator-Like Effectors/genetics , Transcription Activator-Like Effectors/metabolism , Citrus/genetics , Citrus/microbiology , Xanthomonas/genetics , Promoter Regions, Genetic/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
12.
Microorganisms ; 11(6)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37375024

ABSTRACT

Biological control of plant diseases has gained attraction for controlling various bacterial diseases at a field trial stage. An isolated endophytic bacterium, Bacillus velezensis 25 (Bv-25), from Citrus species had strong antagonistic activity against Xanthomonas citri subsp. citri (Xcc), which causes citrus canker disease. When Bv-25 was incubated in Landy broth or yeast nutrient broth (YNB), the ethyl acetate extract of Landy broth exhibited higher levels of antagonistic activity against Xcc compared to that of YNB. Therefore, the antimicrobial compounds in the two ethyl acetate extracts were detected by high performance liquid chromatography-mass spectrometry. This comparison revealed an increase in production of several antimicrobial compounds, including difficidin, surfactin, fengycin, and Iturin-A or bacillomycin-D by incubation in Landy broth. RNA sequencing for the Bv-25 grown in Landy broth were performed, and the differential expressions were detected for the genes encoding the enzymes for the synthesis of antimicrobial compounds, such as bacilysin, plipastatin or fengycin, surfactin, and mycosubtilin. Combination of metabolomics analysis and RNA sequencing strongly suggests that several antagonistic compounds, especially bacilysin produced by B. velezensis, exhibit an antagonistic effect against Xcc.

13.
Photochem Photobiol Sci ; 22(8): 1901-1918, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37209300

ABSTRACT

Plant-pathogen interaction is influenced by multiple environmental factors, including temperature and light. Recent works have shown that light modulates not only the defense response of plants but also the pathogens virulence. Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker, an important plant disease worldwide. The Xcc genome presents four genes encoding putative photoreceptors: one bacteriophytochrome and three blue light photoreceptors, one LOV and two BLUFs (bluf1: XAC2120 and bluf2: XAC3278). The presence of two BLUFs proteins is an outstanding feature of Xcc. In this work we show that the bluf2 gene is functional. The mutant strain, XccΔbluf2, was constructed demonstrating that BLUF2 regulates swimming-type motility, adhesion to leaves, exopolysaccharide production and biofilm formation, features involved in the Xcc virulence processes. An important aspect during the plant-pathogen interaction is the oxidative response of the host and the consequent reaction of the pathogen. We observed that ROS detoxification is regulated by Xcc bluf2 gene. The phenotypes of disease in orange plants produced by WT and XccΔbluf2 strains were evaluated, observing different phenotypes. Altogether, these results show that BLUF2 negatively regulates virulence during citrus canker. This work constitutes the first report on BLUF-like receptors in plant pathogenic bacteria.


Subject(s)
Citrus , Xanthomonas , Xanthomonas/genetics , Xanthomonas/metabolism , Citrus/metabolism , Citrus/microbiology , Virulence , Light , Plant Diseases/microbiology , Plant Leaves/metabolism
14.
Nat Prod Res ; 37(12): 2060-2064, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36008769

ABSTRACT

Fifteen compounds including one flavanone hesperitin (1), two cinnamic acid derivatives as (E)-4-hydroxycinnamic acid (2) and (E)-ferulic acid (3), eight polymethoxyflavones (PMFs) (4-11), and four hydroxylated PMFs (12-15) isolated from orange peel were subjected to antibacterial evaluation. Compounds 1-3 exhibited wide-spectrum antibacterial effects against four test strains involving Bacillus subtilis, Staphylococcus aureus, Xanthomonas citri subsp. citri (Xcc), and Meticillin-resistant Staphylococcus aureus (MRSA) with minimum inhibitory concentrations (MICs) ranging from 0.0312 to 0.125 mg/mL. In contrast, all PMFs showed weak antibacterial activity against these four strains with MICs being equal to or more than 0.125 mg/mL. Hydroxylated PMFs demonstrated better antibacterial effect against Xcc relative to PMFs. In addition, the synergistic effect against Xcc was obtained when compounds 1 and 3 were combined. Furthermore, the scanning electron microscopy (SEM) results of Xcc treated with both compounds 2 and 3 showed shrunken and rough surface morphologies, indicative of the cell membrane damage.


Subject(s)
Citrus sinensis , Methicillin-Resistant Staphylococcus aureus , Xanthomonas , Anti-Bacterial Agents/pharmacology
15.
Molecules ; 27(15)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35956994

ABSTRACT

Actinomycetes play a vital role as one of the most important natural resources for both pharmaceutical and agricultural applications. The actinomycete strain SPRI-371, isolated from soil collected in Jiangsu province, China, was classified as Streptomyces aureus based on its morphological, physiological, biochemical and molecular biological characteristics. Its bacterial activity metabolites were identified as aureonuclemycin (ANM), belonging to adenosine derivatives with the molecular formula C16H19N5O9 for ANM A and C10H13N5O3 for ANM B. Simultaneously, the industrial fermentation process of a mutated S. aureus strain SPRI-371 was optimized in a 20 m3 fermentation tank, featuring a rotation speed of 170 rpm, a pressure of 0.05 MPa, an inoculum age of 36−40 h and a dissolved oxygen level maintained at 1−30% within 40−80 h and at >60% in the later period, resulting in an ANM yield of >3700 mg/L. In the industrial separation of fermentation broth, the sulfuric acid solution was selected to adjust pH and 4# resin was used for adsorption. Then, it was resolved with 20% ethanol solution and concentrated in a vacuum (60−65 °C), with excellent results. Antibacterial experiments showed that ANM was less active or inactive against Xanthomonas oryzae pv. oryzae, Xanthomonas citri subsp. citri and Xanthomonas oryzae pv. oryzicola and most bacteria, yeast and fungi in vitro. However, in vivo experiments showed that ANM exhibited extremely significant protective and therapeutic activity against diseases caused by X. oryzae pv. oryzae and X. oryzae pv. oryzicola in rice and X. citri in oranges and lemons. In field trials, ANM A 150 gai/ha + ANM B 75 gai/ha exhibited excellent therapeutic activity against rice bacterial leaf blight, citrus canker and rice bacterial leaf streak. Furthermore, as the dosage and production cost of ANM are lower than those of commercial drugs, it has good application prospects.


Subject(s)
Oryza , Xanthomonas , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Oryza/microbiology , Plant Diseases/microbiology , Staphylococcus aureus , Streptomyces , Virulence
16.
Saudi J Biol Sci ; 29(4): 2363-2371, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35531204

ABSTRACT

Microorganisms with biocontrol capabilities against plant pathogens are considered as one of the most promising approaches for healthy crop management. In this study, ethyl acetate extracts of 25 Bacillus strains were investigated for their antagonistic effect on Xanthomonas citri subsp. citri (Xcc), which causes the citrus bacterial canker (CBC) disease. Among them, 21 strains exerted antibacterial activity against wild-type Xcc strains. Based on the strength of the antibacterial activity, nine Bacillus strains were selected for 16S rRNA analysis. 16S rRNA sequence homology revealed that several strains were closely related to B. velezensis, where strains with no antibacterial activity grouped as the soil-associated community of B. amyloliquefaciens. B. velezensis Bv-21 exhibited the highest antibacterial activity against wild type and streptomycin resistant Xcc with inhibition zones of 22.91 ± 0.45 and 20.28 ± 0.53, respectively. Furthermore, B. velezensis Bv-21 strain was tested for biocontrol activity against a streptomycin-resistant XccM4 in detached susceptible citrus leaves. The strain reduced the incidence of CBC by 26.30% and pathogen density of XccM4 by 81.68% over control. The results of the study strongly suggest that B. velezensis can be used as an effective and eco-friendly biocontrol agent either by itself or as an active compound, against both, the wild-type and streptomycin-resistant Xcc.

17.
J Food Sci Technol ; 59(5): 1739-1747, 2022 May.
Article in English | MEDLINE | ID: mdl-35531424

ABSTRACT

Xanthomonas citri (X. citri) is a quarentenary plant pathogen and the causal agent of the citrus canker. X. citri forms biofilms and remains fixed on the surface of plant tissues, especially on leaves and fruits. Considering this, all the citrus fruits have to be sanitized before they can be commercialized. NaOCl is the main sanitizer used to decontaminate fruits in the world. Due to its toxicity, treatment with NaOCl is no longer accepted by some Europe Union countries. Therefore, the aim of this work was to evaluate potassium bicarbonate (KHCO3), calcium hydroxide (Ca(OH)2), calcium hypochlorite (Ca(OCl)2) and peracetic acid (CH3CO3H) as alternatives to NaOCl for the sanitization of citrus fruit. By monitoring cell respiration and bacterial growth, we determined that peracetic acid and calcium hypochlorite exhibit bactericidal action against X. citri. Time-response growth curves and membrane integrity analyses showed that peracetic acid and calcium hypochlorite target the bacterial cytoplasmatic membrane, which is probably responsible for cell death in the first minutes of contact. The simulation of the sanitization process of citrus fruit in packinghouses showed that only peracetic acid exhibited a performance comparable to NaOCl. Among the tested compounds, peracetic acid constitutes an efficient and safer alternative to NaOCl.

18.
Int J Mol Sci ; 23(7)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35409293

ABSTRACT

Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri (Xcc), seriously affects fruit quality and yield, leading to significant economic losses around the world. Understanding the mechanism of Xcc virulence is important for the effective control of Xcc infection. In this report, we investigate the role of a protein named HemK in the regulation of the virulence traits of Xcc. The hemK gene was deleted in the Xcc jx-6 background, and the ΔhemK mutant phenotypically displayed significantly decreased motility, biofilm formation, extracellular enzymes, and polysaccharides production, as well as increased sensitivity to oxidative stress and high temperatures. In accordance with the role of HemK in the regulation of a variety of virulence-associated phenotypes, the deletion of hemK resulted in reduced virulence on citrus plants as well as a compromised hypersensitive response on a non-host plant, Nicotiana benthamiana. These results indicated that HemK is required for the virulence of Xcc. To characterize the regulatory effect of hemK deletion on gene expression, RNA sequencing analysis was conducted using the wild-type Xcc jx-6 strain and its isogenic ΔhemK mutant strain, grown in XVM2 medium. Comparative transcriptome analysis of these two strains revealed that hemK deletion specifically changed the expression of several virulence-related genes associated with the bacterial secretion system, chemotaxis, and quorum sensing, and the expression of various genes related to nutrient utilization including amino acid metabolism, carbohydrate metabolism, and energy metabolism. In conclusion, our results indicate that HemK plays an essential role in virulence, the regulation of virulence factor synthesis, and the nutrient utilization of Xcc.


Subject(s)
Citrus , Xanthomonas , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Citrus/metabolism , Methyltransferases/metabolism , Nutrients , Plant Diseases/microbiology , Virulence/genetics
19.
Pest Manag Sci ; 78(6): 2643-2656, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35355409

ABSTRACT

BACKGROUND: Despite technical improvements in the citrus chain and leadership in orange production achieved in the past decades, premature fruit drop remains a major component of crop loss in São Paulo state citrus belt, the largest sweet orange production area in the world. The present study aimed to determine, during five consecutive seasons, the impact of the diseases and pests on premature fruit drop in the orange belt. RESULTS: Fruit drop due to the main diseases and pests averaged approximately 11.0%, which corresponded to approximately 63% of the annual fruit drop. The average fruit drop rate due to fruit borer and fruit flies combined was 4.0%, Huanglongbing (HLB) 3.3%, black spot 2.6%, leprosis 1.0% and citrus canker 0.3%. The average amount of fruit drop (million 40.8 kg boxes) and value of crop losses (million US$ dollars), in five seasons, were 12.7 and 66.2 for fruit borer/fruit flies, 11.0 and 57.9 for HLB, 8.1 and 42.2 for black spot, 3.1 and 15.6 for leprosis, and 0.9 and 4.9 for citrus canker, respectively. CONCLUSION: Fruit borer and fruit flies (combined), HLB, black spot, leprosis and citrus canker are, in this order, the main diseases and pests in the orange belt of São Paulo state. All of these causes significantly increased the overall fruit drop rate in the evaluated seasons. The results will contribute to the development of the Brazilian citrus industry, while showing to other citrus-growing regions the potential that diseases and pests have to jeopardize production. © 2022 Society of Chemical Industry.


Subject(s)
Citrus sinensis , Citrus , Brazil , Fruit , Plant Diseases
20.
Plants (Basel) ; 11(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35161438

ABSTRACT

Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a quarantine disease that seriously affects citrus production worldwide. The use of microorganisms and their products for biological control has been proven to be effective in controlling Xanthomonas disease. In this study, a novel Xcc antagonistic strain was isolated and identified as Bacillus amyloliquefaciens F9 by morphological and molecular analysis. The lipopeptide extract of B. amyloliquefaciens F9 (F9LE) effectively inhibited the growth of Xcc in an agar diffusion assay and restrained the occurrence of canker lesions in a pathogenicity test under greenhouse conditions. Consistent with these findings, F9LE treatment significantly inhibited the production of extracellular enzymes in Xcc cells and induced cell wall damage, with leakage of bacterial contents revealed by scanning electron microscopy and transmission electron microscopy analyses. In addition, F9LE also showed strong antagonistic activity against a wide spectrum of plant pathogenic bacteria and fungi. Furthermore, using electrospray ionization mass spectrometry analysis, the main antimicrobial compounds of strain F9 were identified as three kinds of lipopeptides, including homologues of surfactin, fengycin, and iturin. Taken together, our results show that B. amyloliquefaciens F9 and its lipopeptide components have the potential to be used as biocontrol agents against Xcc, and other plant pathogenic bacteria and fungi.

SELECTION OF CITATIONS
SEARCH DETAIL