Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters








Publication year range
1.
Materials (Basel) ; 17(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38998432

ABSTRACT

Mesoporous silica-based nanomaterials have emerged as multifunctional platforms with applications spanning catalysis, medicine, and nanotechnology. Since their synthesis in the early 1990s, these materials have attracted considerable interest due to their unique properties, including high surface area, tunable pore size, and customizable surface chemistry. This article explores the surface properties of a series of MSU-type mesoporous silica nanoparticles, elucidating the impact of different functionalization strategies on surface characteristics. Through an extensive characterization utilizing various techniques, such as FTIR, Z-potential, and nitrogen adsorption porosimetry, insights into the surface modifications of mesoporous silica nanoparticles are provided, contributing to a deeper understanding of their nanostructure and related interactions, and paving the way to possible unexpected actionability and potential applications.

2.
Pharmaceutics ; 16(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38675120

ABSTRACT

The purpose of the present study was to investigate the anti-staphylococcal activity of liposomal daptomycin against four biofilm-producing S. aureus and S. epidermidis clinical strains, three of which are methicillin-resistant. Neutral and negatively charged daptomycin-loaded liposomes were prepared using three methods, namely, thin-film hydration (TFH), a dehydration-rehydration vesicle (DRV) method, and microfluidic mixing (MM); moreover, they were characterized for drug encapsulation (EE%), size distribution, zeta-potential, vesicle stability, drug release, and drug integrity. Interestingly, whilst drug loading in THF and DRV nanosized (by extrusion) vesicles was around 30-35, very low loading (~4%) was possible in MM vesicles, requiring further explanatory investigations. Liposomal encapsulation protected daptomycin from degradation and preserved its bioactivity. Biofilm mass (crystal violet, CV), biofilm viability (MTT), and growth curve (GC) assays evaluated the antimicrobial activity of neutral and negatively charged daptomycin-liposomes towards planktonic bacteria and biofilms. Neutral liposomes exhibited dramatically enhanced inhibition of bacterial growth (compared to the free drug) for all species studied, while negatively charged liposomes were totally inactive. Biofilm prevention and treatment studies revealed high antibiofilm activity of liposomal daptomycin. Neutral liposomes were more active for prevention and negative charge ones for treating established biofilms. Planktonic bacteria as well as the matured biofilms of low daptomycin-susceptible, methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE) strains were almost completely eradicated by liposomal-daptomycin, indicating the need for their further exploration as antimicrobial therapeutics.

3.
Food Chem X ; 20: 101020, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144797

ABSTRACT

Sodium copper chlorophyllin (SCC), with a higher stability and water solubility than chlorophyll, has limited applications in acidic products due to precipitation. We investigated the effect of pectin (PE), carboxymethyl cellulose (CMC), xanthan gum (XG), carrageenan gum (CG), gellan gum (GG), tragacanth gum (TG), gum Arabic (GA), and polysorbate 80 (PS80) on SCC stability in acidic model solutions (pH = 3.5). These stabilizers led to a significant reduction in particle size and zeta-potential compared to control sample. GA (33.3:1), PE (8:1), CMC (4:1), XG (1.33:1), and PS80 (0.67:1) stabilized SCC in acidic systems for 28 days. The FTIR analysis showed that mainly electrostatic and hydrogen bonds between SCC and stabilizers led to a substantial decline in particle size, improving SCC distribution and stability within acidic environment. Thus, XG and CMC could be effectively used for SCC stabilization under acidic solutions where applying PS80 surfactant is a health concern.

4.
Saudi Pharm J ; 31(6): 861-873, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37228326

ABSTRACT

The study aimed to develop cisplatin-loaded PEGylated chitosan nanoparticles. The optimal batch of cisplatin-loaded PEGylated chitosan nanoparticles had a + 49.9 mV zeta potential, PDI of 0.347, and % PDI of 58.9. Nanoparticle zeta size was 741.4 z. d.nm, the size in diameter was 866.7 ± 470.5 nm, and nanoparticle conductivity in colloidal solution was 0.739 mS/cm. Differential scanning calorimetry (DSC) revealed that cisplatin-loaded PEGylated chitosan nanoparticles had sharp endothermic peaks at temperatures at 168.6 °C. The thermogravimetric analysis (TGA) showed the weight loss of cisplatin-loaded PEGylated chitosan nanoparticles, which was observed as 95% at 262.76 °C. XRD investigation on cisplatin-loaded PEGylated chitosan nanoparticles exhibited distinct peaks at 2θ as 9.7°, 20.4°, 22.1°, 25.3°, 36.1°, 38.1°, 39.5°, 44.3°, and 64.5°, confirming crystalline structure. The 1H NMR analysis showed the fingerprint region of cisplatin-loaded PEGylated chitosan nanoparticles as 0.85, 1.73, and 1.00 ppm in the proton dimension and de-shielded proton peaks appeared at 3.57, 3.58, 3.58, 3.59, 3.65, 3.67, 3,67, 3,67, 3.70, 3.71, 3.77, 3.78 and 4.71 ppm. The 13C NMR spectrum showed specified peaks at 63.18, 69.20, and 70.77 ppm. The FT-IR spectra of cisplatin loaded PEGylated nanoparticles show the existence of many fingerprint regions at 3186.52, 2931.68, 1453.19, 1333.98, 1253.71, 1085.19, 1019.60, 969.98, 929.53, 888.80, 706.13, and 623.67 cm-1. The drug release kinetics of cisplatin loaded PEGylated chitosan nanoparticles showed zero order kinetics with 48% of drug release linearity fashion which has R2 value of 0.9778. Studies on the MCF-7 ATCC human breast cancer cell line in vitro revealed that the IC50 value 82.08 µg /mL. Injectable nanoparticles had good physicochemical and cytotoxic properties. This method is novel since the application of the PEGylation processes leads to an increased solubility of chitosan nanoparticles at near neutral pH.

5.
Membranes (Basel) ; 13(2)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36837629

ABSTRACT

Silver/silver halide materials are considered as efficient and highly stable plasmonic photocatalysts for the organic pollutant degradation and hydrogen evolution from water splitting under solar irradiation, and they possess promising antibacterial activity. Ordered mesoporous silica materials including porous glasses are considered as the most promising template for silver-containing structures. In the present work, Ag/AgHal-doped (Hal = Cl, Br) vitreous membranes on a base of the mesoporous glasses were prepared via step-by-step single-stage impregnation procedure. The chemical and phase composition of the modified membranes were identified by the X-ray photoelectron spectroscopy, the X-ray diffraction and the energy-dispersive X-ray spectroscopy. The structure and morphology of inner membrane space were studied by the scanning electron microscopy. Electrokinetic properties of the silver-containing vitreous membranes were determined by the differential method and the streaming potential method. The inner membrane space is modified unevenly with appearance of the clearly defined regions with different silver content. The formation of the Ag/AgCl clusters along with the individual nanoparticles over thickness of the 1-mm membrane with mean pore radius of 23 nm was detected. The modification of the pore space by Ag-containing structures and the type of halogen ion almost do not affect the electrochemical behavior of the mesoporous vitreous membranes.

6.
Environ Sci Technol ; 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36633933

ABSTRACT

Adding CrIII or AlIII salts into the water suspension of platinum group metal (PGM) catalysts accelerated oxyanion pollutant reduction by up to 600%. Our initial attempts of adding K2CrVIO4, K2CrVI2O7, or KCrIII(SO4)2 into Pd/C enhanced BrO3- reduction with 1 atm H2 by 6-fold. Instrument characterizations and kinetic explorations collectively confirmed the immobilization of reduced CrVI as CrIII(OH)3 on the catalyst surface. This process altered the ζ-potentials from negative to positive, thus substantially enhancing the Langmuir-Hinshelwood adsorption equilibrium constant for BrO3- onto Pd/C by 37-fold. Adding AlIII(OH)3 from alum at pH 7 achieved similar enhancements. The Cr-Pd/C and Al-Pd/C showed top-tier efficiency of catalytic performance (normalized with Pd dosage) among all the reported Pd catalysts on conventional and nanostructured support materials. The strategy of adding inert metal hydroxides works for diverse PGMs (palladium and rhodium), substrates (BrO3- and ClO3-), and support materials (carbon, alumina, and silica). This work shows a simple, inexpensive, and effective example of enhancing catalyst activity and saving PGMs for environmental applications.

7.
Crit Rev Biotechnol ; 43(3): 342-368, 2023 May.
Article in English | MEDLINE | ID: mdl-35168457

ABSTRACT

Microalgal biomass has garnered attention as a renewable and sustainable resource for producing biodiesel. The harvesting of microalgal biomass is a significant bottleneck being faced by the industries as it is the crucial cost driver in the downstream processing of biomass. Bioharvesting of microalgal biomass mediated by: microbial, animal, and plant-based polymeric flocculants has gained a higher probability of utility in accumulation due to: its higher dewatering potential, less toxicity, and ecofriendly properties. The present review summarizes the key challenges and the technological advancements associated with various such harvesting techniques. The economic and technical aspects of different microalgal harvesting techniques, particularly the cationic polymeric flocculant-based harvesting of microalgal biomass, are also discussed. Furthermore, interactions of flocculants with microalgal biomass and the effects of these interactions on metabolite and lipid extractions are discussed to offer a promising solution for suitability in selecting the most efficient and economical method of microalgal biomass harvesting for cost-effective biodiesel production.


Subject(s)
Biofuels , Microalgae , Microalgae/metabolism , Biomass , Polymers/metabolism
8.
Polymers (Basel) ; 14(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36145976

ABSTRACT

The solvent casting method was used for five types of polyvinylidene difluoride (PVDF) nanocomposite film preparation. The effect of nanofillers in PVDF nanocomposite films on the structural, phase, and friction and mechanical properties was examined and compared with that of the natural PVDF film. The surface topography of PVDF nanocomposite films was investigated using a scanning electron microscope (SEM) and correlative imaging (CPEM, combinate AFM and SEM). A selection of 2D CPEM images was used for a detailed study of the spherulitic morphologies (grains size around 6-10 µm) and surface roughness (value of 50-68 nm). The chemical interactions were evaluated by Fourier transform infrared spectroscopy (FTIR). Dominant polar γ-phase in the original PVDF, PVDF_ZnO and PVDF_ZnO/V, the most stable non-polar α-phase in the PVDF_V_CH nanocomposite film and mixture of γ and α phases in the PVDF_V and PVDF_ZnO/V_CH nanocomposite films were confirmed. Moderately hydrophilic PVDF nanocomposite films with water contact angle values (WCA) in the range of 58°-69° showed surface stability with respect to the Zeta potential values. The effect of positive or negative Zeta-potential values of nanofillers (ζn) on the resulting negative Zeta-potential values (ζ) of PVDF nanocomposite films was demonstrated. Interaction of PVDF chains with hydroxy groups of vermiculite and amino and imino groups of CH caused transformation of γ-phase to α. The friction properties were evaluated based on the wear testing and mechanical properties were evaluated from the tensile tests based on Young's modulus (E) and tensile strength (Rm) values. Used nanofillers caused decreasing of friction and mechanical properties of PVDF nanocomposite material films.

9.
Materials (Basel) ; 15(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35744158

ABSTRACT

Three bismuth silicate-based photocatalysts (composites of Bi2SiO5 and Bi12SiO20) prepared via the hydro-/solvothermal approach were studied using electrochemical methods. The characteristic parameters of semiconductors, such as flat band potential, donor density, and mobility of their charge carriers, were obtained and compared with the materials' photocatalytic activity. An attempt was made to study the effect of solution components on the semiconductor/liquid interface (SLI). In particular, the Mott-Schottky characterization was made in a common model electrolyte (Na2SO4) and with the addition of glycerol as a model organic compound for photocatalysis. Thus, a medium close to those in photocatalytic experiments was simulated, at least within the limits allowed by electrochemical measurements. Zeta-potential measurements and electrochemical impedance spectroscopy were used to reveal the processes taking place at the SLI. It was found that the medium in which measurements were carried out dramatically impacted the results. The flat band potential values (Efb) obtained via the Mott-Schottky technique were shown to differ significantly depending on the solution used in the experiment, which is explained by different processes taking place at the SLI. A strong influence of specific adsorption of commonly used sulfate ions and neutral molecules on the measured values of Efb was shown.

10.
Mol Nutr Food Res ; 66(13): e2200076, 2022 07.
Article in English | MEDLINE | ID: mdl-35506751

ABSTRACT

While proteins have been widely used to encapsulate, protect, and regulate the release of bioactive food compounds, little is known about the influence of co-consumed proteins on the absorption of lipophilic constituents following digestion, such as vitamins (A, D, E, K), carotenoids, and curcumin. Their bioavailability is often low and very variable, depending on the food matrix and host factors. Some proteins can act as emulsifiers during digestion. Their liberated peptides have amphiphilic properties that can facilitate the absorption of microconstituents, by improving their transition from lipid droplets into mixed micelles. Contrarily, the less well digested proteins could negatively impinge on enzymatic accessibility to the lipid droplets, slowing down their processing into mixed micelles and entrapping apolar food compounds. Interactions with mixed micelles and proteins are also plausible, as shown earlier for drugs. This review focuses on the ability of proteins to act as effective emulsifiers of lipophilic vitamins, carotenoids, and curcumin during digestion. The functional properties of proteins, their chemical interactions with enzymes and food constituents during gastro-intestinal digestion, potentials and limitations for their use as emulsifiers are emphasized and data from human, animal, and in vitro trials are summarized.


Subject(s)
Carotenoids , Curcumin , Animals , Biological Availability , Carotenoids/metabolism , Digestion , Emulsions/chemistry , Micelles , Vitamin A/metabolism , Vitamins
11.
Molecules ; 27(3)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35164264

ABSTRACT

Pharmaceutical design of protein formulations aims at maximum efficiency (protein concentration) and minimum viscosity. Therefore, it is important to know the nature of protein-protein interactions and their influence on viscosity. In this work, we investigated the dependence of the viscosity of BSA in an aqueous 20 mM acetate buffer at pH = 4.3 on protein concentration and on temperature (5-45 °C). The viscosity of the solution increased with protein concentration and was 230% higher than the viscosity of the protein-free formulation at 160 mg/mL. The viscosity decreased by almost 60% in the temperature range from 5 to 45 °C. The agreement of the modified Arrhenius theory with experiment was quantitative, whereas a hard-sphere model provided only a qualitative description of the experimental results. We also investigated the viscosity of a 100 mg/mL BSA solution as a function of the concentration of added low molecular weight salts (LiCl, NaCl, KCl, RbCl, CsCl, NaBr, NaI) in the range of salt concentrations up to 1.75 mol/L. In addition, the particle size and zeta potential of BSA-salt mixtures were determined for solutions containing 0.5 mol/L salt. The trends with respect to the different anions followed a direct Hofmeister series (Cl- > Br- > I-), whereas for cations in the case of viscosity the indirect Hofmeister series was observed (Li+ > Na+ > K+ > Rb+ > Cs+), but the values of particle sizes and zeta potential did not show cation-specific effects. Since the protein is positively charged at pH = 4.3, anions are more attracted to the protein surface and shield its charge, while the interaction with cations is less pronounced. We hypothesize that salt surface charge shielding reduces protein colloidal stability and promotes protein aggregate formation.


Subject(s)
Salts/chemistry , Serum Albumin, Bovine/chemistry , Buffers , Molecular Weight , Solutions , Viscosity
12.
Pharmaceutics ; 14(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35057027

ABSTRACT

This work aimed to optimize a celecoxib (CXB)-loaded solid lipid nanoparticles (SLN) colon delivery system for the enhancement of anticancer activity. An ultrasonic melt-emulsification method was employed in this work for the preparation of SLN. The physical attributes were characterized for their particle sizes, charges, morphology, and entrapment efficiency (%EE), in addition to DSC and FTIR. The in vitro drug release profiles were evaluated, and the anticancer activity was examined utilizing an MTT assay in three cancer cell lines: the colon cancer HT29, medulloblastoma Daoy, and hepatocellular carcinoma HepG2 cells. All of the prepared SLN formulations had nanoscale particle sizes ranging from 238 nm to 757 nm. High zeta-potential values (mv) within -30 s mv were reported. The %EE was in the range 86.76-96.6%. The amorphous nature of the SLN-entrapped CXB was confirmed from SLN DSC thermograms. The in vitro release profile revealed a slow constant rate of release with no burst release, which is unusual for SLN. Both the F9 and F14 demonstrated almost complete CXB release within 24 h, with only 25% completed within the first 5 h. F9 caused a significant percentage of cell death in the three cancer cell lines tested after 24 h of incubation and maintained this effect for 72 h. The prepared CXB-loaded SLN exhibited unique properties such as slow release with no burst and a high %EE. The anticancer activity of one formulation was extremely significant in all tested cancer cell lines at all incubation times, which is very promising.

13.
Colloids Surf B Biointerfaces ; 211: 112308, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34973602

ABSTRACT

Lantibiotics are promising candidates to address the worldwide problem of antibiotic resistance. They belong to a class of natural compounds exhibiting strong activity against clinically relevant Gram-positive bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). Lichenicidin is a class II two-peptide lantibiotic. The presence of the two mature peptides, Bliα and Bliß, is necessary for full activity against target bacteria. This work aims at clarifying the synergistic activity of both peptides in their interaction with the target membranes. The effect of lichenicidin was tested against S. aureus cells and large unilamellar vesicles. Lichenicidin increases the net surface charge of S. aureus, as shown by zeta-potential measurements, without reaching electroneutralization. In addition, lichenicidin causes cell surface perturbations that culminate in the leakage of its internal contents, as observed by atomic force microscopy. Bliα seems to have low affinity for S. aureus, however, it contributes to increase the affinity of Bliß, because together they present higher affinity than separately. In contrast, Bliα seems to provide an anchoring site for lichenicidin in lipid II-containing membranes. Interestingly, Bliß alone can induce high levels of membrane leakage, but this effect appears to be faster in the presence of Bliα. Based on this information, we propose a mechanism of action of lichenicidin.


Subject(s)
Bacteriocins , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Bacteriocins/chemistry , Microbial Sensitivity Tests , Peptides/pharmacology , Staphylococcus aureus/metabolism
14.
Electrophoresis ; 43(12): 1259-1262, 2022 06.
Article in English | MEDLINE | ID: mdl-34755360

ABSTRACT

We describe an improved method for determining the electroosmotic mobility and zeta potential of surfaces based on a current-monitoring method. This technique eliminates the requirement for measurements of channel dimensions and sample conductivities, leading to a simple high precision measurement. The zeta potential of PDMS is measured for native surfaces and surfaces treated with a nonionic surfactant in low-conductivity electrolytes.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Electrolytes , Electroosmosis/methods , Microfluidic Analytical Techniques/methods
15.
Nanomaterials (Basel) ; 11(12)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34947643

ABSTRACT

The production of stable and homogeneous batches during nanoparticle fabrication is challenging. Surface charging, as a stability determinant, was estimated for 3-aminopropyltriethoxysilane (APTES) coated pre-formed magnetite nanoparticles (MNPs). An important consideration for preparing stable and homogenous MNPs colloidal systems is the dispersion stage of pre-formed samples, which makes it feasible to increase the MNP reactive binding sites, to enhance functionality. The results gave evidence that the samples that had undergone stirring had a higher loading capacity towards polyanions, in terms of filler content, compared to the sonicated ones. These later results were likely due to the harsh effects of sonication (extremely high temperature and pressure in the cavities formed at the interfaces), which induced the destruction of the MNPs.

16.
J Food Sci ; 86(12): 5148-5158, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34755898

ABSTRACT

Three peppermint oil emulsions using polyglycerol esters of fatty acids-casein (PGFE-CN), polyglycerol esters of fatty acids-sodium caseinate (PGFE-NaCN), and polyglycerol esters of fatty acids-whey protein isolate (PGFE-WPI) as emulsifiers were fabricated, and the droplet size, zeta potential, viscosity, and stability of emulsions were determined. The experimental results showed that the emulsion containing PGFE-CN has relatively smaller droplet size of 231.77 ± 0.49 nm. No significant changes were observed on the average particle size, polydispersity index and zeta potential during 4-week of storage, indicating that the emulsions kept stable against pH, salt ion, freeze-thaw, and storage. Fourier transform infrared spectrometer (FTIR) results showed that the electrostatic interaction occurs between CN and PGFE in the emulsion. The confocal laser scanning microscope (CLSM) was used to observe the microstructure of the emulsion, proving that droplets were evenly distributed throughout the aqueous phase by PGFE-CN emulsifier. The protein-stabilized emulsions can be used as potential carriers for the delivery of the lipophilic nutrients such as peppermint oil. PRACTICAL APPLICATION: PGFE-CN emulsifier can be directly added to the beverage systems containing oil or protein, such as coconut milk, peanut milk, and walnut milk. It can enhance the stability of beverage, prevent the precipitation, stratification, and oil floating, improve the homogeneity of the system and therefore extend the shelf life.


Subject(s)
Esters , Milk Proteins , Emulsions , Fatty Acids , Glycerol , Mentha piperita , Plant Oils , Polymers
17.
Micromachines (Basel) ; 12(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34577699

ABSTRACT

One approach to achieve a homogeneous mixture in microfluidic systems in the quickest time and shortest possible length is to employ electroosmotic flow characteristics with heterogeneous surface properties. Mixing using electroosmotic flow inside microchannels with homogeneous walls is done primarily under the influence of molecular diffusion, which is not strong enough to mix the fluids thoroughly. However, surface chemistry technology can help create desired patterns on microchannel walls to generate significant rotational currents and improve mixing efficiency remarkably. This study analyzes the function of a heterogeneous zeta-potential patch located on a microchannel wall in creating mixing inside a microchannel affected by electroosmotic flow and determines the optimal length to achieve the desired mixing rate. The approximate Helmholtz-Smoluchowski model is suggested to reduce computational costs and simplify the solving process. The results show that the heterogeneity length and location of the zeta-potential patch affect the final mixing proficiency. It was also observed that the slip coefficient on the wall has a more significant effect than the Reynolds number change on improving the mixing efficiency of electroosmotic micromixers, benefiting the heterogeneous distribution of zeta-potential. In addition, using a channel with a heterogeneous zeta-potential patch covered by a slip surface did not lead to an adequate mixing in low Reynolds numbers. Therefore, a homogeneous channel without any heterogeneity would be a priority in such a range of Reynolds numbers. However, increasing the Reynolds number and the presence of a slip coefficient on the heterogeneous channel wall enhances the mixing efficiency relative to the homogeneous one. It should be noted, though, that increasing the slip coefficient will make the mixing efficiency decrease sharply in any situation, especially in high Reynolds numbers.

18.
Int J Mol Sci ; 22(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068436

ABSTRACT

Extracellular vesicles (EVs) are small lipid vesicles released by either any prokaryotic or eukaryotic cell, or both, with a biological role in cell-to-cell communication. In this work, we characterize the proteomes and nanomechanical properties of EVs released by tissue-culture cell-derived trypomastigotes (mammalian infective stage; (TCT)) and epimastigotes (insect stage; (E)) of Trypanosoma cruzi, the etiologic agent of Chagas disease. EVs of each stage were isolated by differential centrifugation and analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), electron microscopy and atomic force microscopy (AFM). Measurements of zeta-potential were also included. Results show marked differences in the surface molecular cargos of EVs between both stages, with a noteworthy expansion of all groups of trans-sialidase proteins in trypomastigote's EVs. In contrast, chromosomal locations of trans-sialidases of EVs of epimastigotes were dramatically reduced and restricted to subtelomeric regions, indicating a possible regulatable expression of these proteins between both stages of the parasite. Regarding mechanical properties, EVs of trypomastigotes showed higher adhesion compared to the EVs of epimastigotes. These findings demonstrate the remarkable surface remodeling throughout the life cycle of T. cruzi, which shapes the physicochemical composition of the extracellular vesicles and could have an impact in the ability of these vesicles to participate in cell communication in completely different niches of infection.


Subject(s)
Chagas Disease/metabolism , Extracellular Vesicles/metabolism , Life Cycle Stages , Proteome/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/metabolism , Animals , Chagas Disease/parasitology , Chlorocebus aethiops , Extracellular Vesicles/parasitology , Host-Parasite Interactions , Male , Mice , Mice, Inbred BALB C , Proteome/analysis , Vero Cells
19.
Nanotechnology ; 32(31)2021 May 10.
Article in English | MEDLINE | ID: mdl-33853053

ABSTRACT

A set of cerium dioxide nanoparticles (CeO2NPs) was synthesized by precipitation in water-alcohol solutions under conditions when the physical-chemical parameters of synthesized NPs were controlled by changing the ratio of the reaction components. The size of CeO2NPs is controlled largely by the dielectric constant of the reaction solution. An increase of the percentage of Ce3+ions at the surface was observed with a concomitant reduction of the NP sizes. All synthesized CeO2NPs possess relatively high positive values of zeta-potential (ζ > 40 mV) suggesting good stability in aqueous suspensions. Analysis of the valence- and size-dependent rate of hydrogen peroxide decomposition revealed that catalase/peroxidase-like activity of CeO2NPs is higher at a low percentage of Ce3+at the NP surface. In contrast, smaller CeO2NPs with a higher percentage of Ce3+at the NP surface display a higher oxidase-like activity.

20.
Curr Res Food Sci ; 4: 53-62, 2021.
Article in English | MEDLINE | ID: mdl-33665619

ABSTRACT

In this study, the complex coacervation mechanism of Lauric arginate ester (LAE) with λ-carrageenan was studied using turbidimetry, light scattering and electrophoresis. The complexes formed were found to have a bilayer-like structure using small angle X-ray scattering (SAXS) and cryo-TEM (transmission electron microscopy). It was observed that mixing LAE with Sodium dodecyl sulfate (SDS) could significantly reduce the interactions between mixed micelles and λ-carrageenan. The interactions between LAE/SDS and λ-carrageenan were found to be predominantly entropy driven. Mixed micelles of LAE/Tween 20 and LAE/SDS showed significantly less interactions with carrageenan compared to pure LAE micelles. Interfacial properties of complexes were measured using surface tension measurements. It was observed that pure LAE showed good foaming behavior and when mixed with increasing amounts of carrageenan the foaming capacity decreased. Reduction in foam volume was due to reduced availability of free LAE molecules for foam stabilization and due to hydrophilic nature of complexes.

SELECTION OF CITATIONS
SEARCH DETAIL