Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters








Publication year range
1.
Small ; 20(17): e2307089, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38185784

ABSTRACT

Composites comprising copper-doped zinc sulfide phosphor microparticles embedded in polydimethylsiloxane (ZnS:Cu-PDMS) have received significant attention over the past decade because of their bright and durable mechanoluminescence (ML); however, the underlying mechanism of this unique ML remains unclear. This study reports empirical and theoretical findings that confirm this ML is an electroluminescence (EL) of the ZnS:Cu phosphor induced by the triboelectricity generated at the ZnS:Cu microparticle-PDMS matrix interface. ZnS:Cu microparticles that exhibit bright ML are coated with alumina, an oxide with strong positive triboelectric properties; the contact separation between this oxide coating and PDMS, a polymer with strong negative triboelectric properties, produces sufficient interfacial triboelectricity to induce EL in ZnS:Cu microparticles. The ML of ZnS:Cu-PDMS composites varies on changing the coating material, exhibiting an intensity that is proportional to the amount of interfacial triboelectricity generated in the system. Finally, based on these findings, a mechanism that explains the ML of phosphor-polymer elastic composites (interfacial triboelectric field-driven alternating-current EL model) is proposed in this study. It is believed that understanding this mechanism will enable the development of new materials (beyond ZnS:Cu-PDMS systems) with bright and durable ML.

2.
Adv Sci (Weinh) ; 10(17): e2207722, 2023 06.
Article in English | MEDLINE | ID: mdl-37075741

ABSTRACT

The energy crisis and global shift toward sustainability drive the need for sustainable technologies that utilize often-wasted forms of energy. A multipurpose lighting device with a simplistic design that does not need electricity sources or conversions can be one such futuristic device. This study investigates the novel concept of a powerless lighting device driven by stray magnetic fields induced by power infrastructure for obstruction warning light systems. The device consists of mechanoluminescence (ML) composites of a Kirigami-shaped polydimethylsiloxane (PDMS) elastomer, ZnS:Cu particles, and a magneto-mechano-vibration (MMV) cantilever beam. Finite element analysis and luminescence characterization of the Kirigami structured ML composites are discussed, including the stress-strain distribution map and comparisons between different Kirigami structures based on stretchability and ML characteristic trade-offs. By coupling a Kirigami-structured ML material and an MMV cantilever structure, a device that can generate visible light as luminescence from a magnetic field can be created. Significant factors that contribute to luminescence generation and intensity are identified and optimized. Furthermore, the feasibility of the device is demonstrated by placing it in a practical environment. This further proves the functionality of the device in harvesting weak magnetic fields into luminescence or light, without complicated electrical energy conversion steps.

3.
J Environ Manage ; 326(Pt A): 116615, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36395641

ABSTRACT

Novel ZnS-Cu7S4 nanohybrid supported on chitosan matrix, as an ideal photocatalyst, was fabricated by the sonochemical method wherein high-resolution transmission electron microscopy (HRTEM) and X-ray powder diffraction (XRD) analysis confirmed the co-existence of both ZnS and Cu7S4; presence of vacancy sites in ZnS was verified by electron paramagnetic resonance (EPR) analysis and their introduction could promote two-photon excitation facilitated visible light response and charge transport/separation. The type II interface is formed in the ZnS-Cu7S4/Chitosan heterojunction owing to interstitial states that promote charge separation. The ZnS-Cu7S4/Chitosan was used for the photodegradation of a pharmaceutical pollutant, p-chlorophenol (PCP); over 98.8% of PCP photodegradation was achieved under visible-light irradiation where the ensued ·O2- and ·OH serve a key role in the photodegradation of PCP. In vitro cytotoxicity studies substantiated that the ZnS-Cu7S4/Chitosan is nontoxic to the ecosystem and human beings and endowed with promising photodegradation properties and accessibility via an environmentally friendly design, bodes well for its potential remediation applications.


Subject(s)
Chitosan , Humans , Photolysis , Ecosystem
4.
ACS Appl Mater Interfaces ; 14(3): 4775-4782, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35020344

ABSTRACT

The related studies and applications of ZnS-based phosphorescent materials involve various aspects such as lighting, display, sensing, electronic signatures, and confidential information. Here, triboelectrification-induced electroluminescence (TIEL) of the ZnS:Cu due to the triboelectric leakage field is discovered via a gently horizontal sliding between a ZnS:Cu particle-doped polydimethylsiloxane (PDMS) film and a polytetrafluoroethylene (PTFE) or fluorinated ethylene propylene (FEP) film, whose intensity is positively correlated with the temperature, the doping ratio of ZnS:Cu, the pressure, and the frequency. It is also demonstrated that the TIEL mainly occurs inside the bulk film, where the ZnS:Cu phosphor particles can be polarized instantaneously by the leakage electric field of triboelectrification. The polarization will lead to a tilted energy band of the ZnS, resulting in an emitting of green light due to electrons detrapped into the conduction band and recombined with holes in the impurity state. This study not only reveals great fundamental physics for understanding of luminescence induced by a simple sliding between two triboelectric materials but also indicates another way for triboelectrification to be used in advanced optoelectronic devices.

5.
Chem Asian J ; 16(7): 761-768, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33484093

ABSTRACT

Core-shell nanocolloids with tailored physical and chemical merits hold attractive potential for energy-related applications. Herein, core-shell nanocolloids composed of zinc/copper sulfide (ZnS/CuSx ) shells and silica (SiO2 ) cores were fabricated by a template-engaged synthetic method. Interestingly, the sizes of SiO2 cores can be tuned by different sulfurization time. In virtue of the light scattering and reflection on the SiO2 surface, the efficiencies of light capture by ZnS/Cu2 S shells were highly dependent on the SiO2 sizes. The as-fabricated SiO2 @ZnS/Cu2 S with a core size of 205 nm exhibited the highest and broadest absorption within a light wavelength of 380-700 nm. In virtue of the structural and componential features of these nanocolloids, maximum photocatalytic hydrogen (H2 ) production rates of 2968 and 1824 µmol h-1 g-1 under UV-vis and visible light have been delivered, respectively. This work may provide some evidence for the design and fabrication of core-shell nanomaterials to convert solar energy to green fuels.

6.
Sensors (Basel) ; 19(21)2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31652743

ABSTRACT

Humidity sensors are indispensable for various electronic systems and instrumentations. To develop a new humidity sensing mechanism is the key for the next generation of sensor technology. In this work, a novel flexible paper-based current humidity sensor is proposed. The developed alternating current electroluminescent devices (ACEL) consist of the electroless plating Ni on filter paper and silver nanowires (AgNWs) as the bottom and upper electrodes, and ZnS:Cu as the phosphor layer, respectively. The proposed humidity sensor is based on ACEL with the paper substrate and the ZnS:Cu phosphor layer as the humidity sensing element. The moisture effect on the optical properties of ACELs has been studied firstly. Then, the processing parameters of the paper-based ACELs such as electroless plated bottom electrode and spin-coated phosphor layer as a function of the humidity-sensitive characteristics are investigated. The sensing mechanism of the proposed sensor has been elucidated based on the Q ~ V analysis. The sensor exhibits an excellent linearity ( R 2 = 0.99965 ) within the humidity range from 20% to 90% relative humidity (RH) and shows excellent flexibility. We also demonstrate its potential application in postharvest preservation where the EL light is used for preservation and the humidity can be monitored simultaneously through the current.

7.
ACS Appl Mater Interfaces ; 8(50): 34777-34783, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27998116

ABSTRACT

We developed a hybrid strain sensor by combining mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS composites and piezoresistive CNT/PDMS for qualitative and quantitative analysis of onsite strain. The former guarantees a qualitative onsite measure of strain with red-light emission via mechanoluminescence (ML) and the latter takes part in accurate quantification of strain through the change in electrical resistance. The PDMS matrix enabled a strain sensing in a wider range of strain, spanning up to several hundred percent in comparison to the conventional rigid matrix composites and ceramic-based ML sensors. Red-light emission would be much more effective for the visualization of strain (or stress) when ML is used as a warning sign in actual applications such as social infrastructure safety diagnosis, emergency guide lighting, and more importantly, in biomedical applications such as in the diagnosis of motility and peristalsis disorders in the gastrointestinal tract. Despite the realization of an efficient red-light-emitting ML in a ZnS:Cu/rhodamine/SiO2/PDMS composite, the quantification and standardization of strain throughout the ML has been far from complete. In this regard, the piezoresistive CNT/PDMS compensated for this demerit of mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS composites.

8.
Luminescence ; 30(5): 655-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25377525

ABSTRACT

Copper-doped zinc sulfide (ZnS:Cu) nanoparticles with varying concentrations of capping agent were prepared using a chemical route technique. These particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy and X-ray diffraction (XRD). Optical absorption studies showed that the absorption edge shifted towards the blue region as the concentration of the capping agent increased. Using effective mass approximation, calculation of the nanoparticle size indicated that effective band gap energy increases with decreasing particle size. The thermoluminescence (TL) properties of sodium hexameta phosphate (SHMP)-passivated ZnS:Cu nanoparticles were investigated after UV irradiation at room temperature. The TL glow curve of capped ZnS:Cu showed variations in TL peak position and intensity with the change in capping agent concentration. The photoluminescence (PL) spectra of ZnS:Cu nanoparticles excited at 254 nm exhibited a broad green emission band peaking around 510 nm, which confirmed the characteristic feature of Zn(2+) as well as Cu(2+) ions as the luminescent centres in the lattice. The PL spectra of ZnS:Cu nanoparticles with increasing capping agent concentrations revealed that the emission becomes more intense and shifted towards shorter wavelengths as the sizes of the samples were reduced.


Subject(s)
Copper/chemistry , Metal Nanoparticles/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry , Luminescence , Luminescent Agents/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Particle Size , Phosphates/chemistry , Spectrophotometry, Ultraviolet , X-Ray Diffraction
9.
Luminescence ; 29(3): 288-92, 2014 May.
Article in English | MEDLINE | ID: mdl-23818238

ABSTRACT

Chitosan/alginate multilayers were fabricated using a spin-coating method, and ZnS:Cu nanoparticles were generated within the network of two natural polysaccharides, chitosan and sodium alginate. The synthesized nanoparticles were characterized using an X-ray diffractometer (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM). The results showed that cubic zinc blende-structured ZnS:Cu nanoparticles with an average crystal size of ~ 3 nm were uniformly distributed. UV-vis spectra indicate a large quantum size effect and the absorption edge for the ZnS:Cu nanoparticles slightly shifted to longer wavelengths with increasing Cu ion concentrations. The photoluminescence of the Cu-doped ZnS nanoparticles reached a maximum at a 1% doping level. The ZnS:Cu nanoparticles form and are distributed uniformly in the composite multilayer films with a surface average height of 25 nm.


Subject(s)
Alginates/chemistry , Chitosan/chemistry , Copper/chemistry , Nanoparticles/chemistry , Zinc Sulfate/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Luminescence , Particle Size , X-Ray Diffraction
10.
Article in English | MEDLINE | ID: mdl-23831942

ABSTRACT

The objective of this work is the study of adsorption of Reactive Orange 12 (RO-12) and Direct yellow 12 (DY 12) by zinc sulfide:copper (ZnS-Cu-NP-AC) nanoparticles loaded on activated carbon. This new material with high efficiency in a routine manner was synthesized in our laboratory and its surface properties viz surface area, pore volume and functional groups was characterized with different techniques such FT-IR, SEM, and BET analysis. Generally, in batch adsorption procedure variables including amount of adsorbent, initial dyes concentration, contact time, temperature on dyes removal percentage has great effect on removal percentage that their influence was optimized. The kinetic of proposed adsorption processes efficiently followed, pseudo-second-order, and intra-particle diffusion kinetic models. The equilibrium data the removal strongly follow Langmuir monolayer adsorption with high adsorption capacity in short time. This novel adsorbent by small amount (0.08 g) really is applicable for removal of high amount of both dyes (RO 12 and DY 12) in short time (<20 min). Based on the calculated thermodynamic parameters such as enthalpy (ΔH), entropy (ΔS), activation energy (Ea), sticking probability (S*) and Gibb's free energy changes (ΔG), it is noticeable that the sorption of both dyes onto ZnS:Cu-AC was spontaneous and endothermic process. At optimum values all variables the effect of contact time on adsorption was investigated and the dependency of adsorption data to different kinetic model such as pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion was assessed and it was found that the removal processes follow pseudo second order kinetics and interparticle diffusion mechanism.


Subject(s)
Azo Compounds/isolation & purification , Charcoal/chemistry , Coloring Agents/isolation & purification , Copper/chemistry , Nanoparticles/chemistry , Naphthalenes/isolation & purification , Sulfides/chemistry , Sulfuric Acid Esters/isolation & purification , Zinc Compounds/chemistry , Adsorption , Kinetics , Nanoparticles/ultrastructure , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL