Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Phys Med Biol ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39383886

ABSTRACT

BACKGROUND: Adaptive radiotherapy (ART) requires precise tissue characterization to optimize treatment plans and enhance the efficacy of radiation delivery while minimizing exposure to organs at risk (OAR). Traditional imaging techniques such as cone beam computed tomography (CBCT) used in ART settings often lack the resolution and detail necessary for accurate dosimetry, especially in proton therapy. Purpose: This study aims to enhance ART by introducing an innovative approach that synthesizes dual-energy computed tomography (DECT) images from CBCT scans using a novel 3D conditional denoising diffusion probabilistic model (DDPM) multi-decoder. This method seeks to improve dose calculations in ART planning, enhancing tissue characterization. Methods: We utilized a paired CBCT-DECT dataset from 54 head and neck cancer patients to train and validate our DDPM model. The model employs a multi-decoder Swin-UNET architecture that synthesizes high-resolution DECT images by progressively reducing noise and artifacts in CBCT scans through a controlled diffusion process. Results: The proposed method demonstrated superior performance in synthesizing DECT images (High DECT MAE 39.582 ± 0.855 and Low DECT MAE 48.540± 1.833) with significantly enhanced signal-to-noise ratio and reduced artifacts compared to traditional GAN-based methods. It showed marked improvements in tissue characterization and anatomical structure similarity, critical for precise proton and radiation therapy planning. Conclusions: This research has opened a new avenue in CBCT-CT synthesis for ART/APT by generating DECT images using an enhanced DDPM approach. The demonstrated similarity between the synthesized DECT images and ground truth images suggests that these synthetic volumes can be used for accurate dose calculations, leading to better adaptation in treatment planning.

2.
Phys Med Biol ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39293489

ABSTRACT

OBJECTIVE: This study presents the first clinical implementation of an efficient online daily adaptive proton therapy workflow (DAPT). Approach: The DAPT workflow includes a pre-treatment phase, where a template and a fallback plan are optimized on the planning CT. In the online phase, the adapted plan is re-optimized on daily images from an in-room CT. Daily structures are rigidly propagated from the planning CT. Automated quality assurance (QA) involves geometric, sanity checks and an independent dose calculation from the machine files. Differences from the template plan are analyzed field-by-field, and clinical plan is assessed by reviewing the achieved clinical goals using a traffic light protocol. If the daily adapted plan fails any QA or clinical goals, the fallback plan is used. In the offline phase the delivered dose is recalculated from log-files onto the daily CT, and a gamma analysis is performed (3%/3mm). The DAPT workflow has been applied to selected adult patients treated in rigid anatomy for the last serie of the treatment between October 2023 and April 2024. Main Results: DAPT treatment sessions averaged around 23 minutes [range: 15-30 min] and did not exceed the typical 30-minute time slot. Treatment adaptation, including QA and clinical plan assessment, averaged just under 7 minutes [range: 3:30-16 min] per fraction. All plans passed the online QAs steps. In the offline phase a good agreement with the log-files reconstructed dose was achieved (minimum gamma pass rate of 97.5 %). The online adapted plan was delivered for > 85% of the fractions. In 92% of total fractions, adapted plans exhibited improved individual dose metrics to the targets and/or organs at risk. Significance: This study demonstrates the successful implementation of an online daily DAPT workflow. Notably, the duration of a DAPT session did not exceed the time slot typically allocated for non-DAPT treatment. As far as we are aware, this is a first clinical implementation of daily online adaptive proton therapy. .

3.
Phys Med Biol ; 69(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39214132

ABSTRACT

Objective.A four-dimensional robust optimisation (4DRO) is usually employed when the tumour respiratory motion needs to be addressed. However, it is computationally demanding, and an automated method is preferable for adaptive planning to avoid manual trial-and-error. This study proposes a 4DRO technique based on dose mimicking for automated adaptive planning.Approach.Initial plans for 4DRO intensity modulated proton therapy were created on an average CT for four patients with clinical target volume (CTV) in the lung, oesophagus, or pancreas, respectively. These plans were robustly optimised using three phases of four-dimensional computed tomography (4DCT) and accounting for setup and density uncertainties. Weekly 4DCTs were used for adaptive replanning, using a constant relative biological effectiveness (cRBE) of 1.1. Two methods were used: (1) template-based adaptive (TA) planning and (2) dose-mimicking-based adaptive (MA) planning. The plans were evaluated using variable RBE (vRBE) weighted doses and biologically consistent dose accumulation (BCDA).Main results.MA and TA plans had comparable CTV coverage except for one patient where the MA plan had a higher D98 and lower D2 but with an increased D2 in few organs at risk (OARs). CTV D98 deviations in non-adaptive plans from the initial plans were up to -7.2 percentage points (p.p.) in individual cases and -1.8 p.p. when using BCDA. For the OARs, MA plans showed a reduced mean dose and D2 compared to the TA plans, with few exceptions. The vRBE-weighted accumulated doses had a mean dose and D2 difference of up to 0.3 Gy and 0.5 Gy, respectively, in the OARs with respect to cRBE-weighted doses.Significance.MA plans indicate better performance in target coverage and OAR dose sparing compared to the TA plans in 4DRO adaptive planning. Moreover, MA method is capable of handling both forms of anatomical variation, namely, changes in density and relative shifts in the position of OARs.


Subject(s)
Four-Dimensional Computed Tomography , Proton Therapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Humans , Radiotherapy, Intensity-Modulated/methods , Radiation Dosage , Proof of Concept Study
4.
Phys Med Biol ; 69(17)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39047780

ABSTRACT

Objective. This study describes geometry-based and intensity-based tools for quality assurance (QA) of automatically generated structures for online adaptive radiotherapy, and designs an operator-independent traffic light system that identifies erroneous structure sets.Approach.A cohort of eight head and neck (HN) patients with daily CBCTs was selected for test development. Radiotherapy contours were propagated from planning computed tomography (CT) to daily cone beam CT (CBCT) using deformable image registration. These propagated structures were visually verified for acceptability. For each CBCT, several error scenarios were used to generate what were judged unacceptable structures. Ten additional HN patients with daily CBCTs and different error scenarios were selected for validation. A suite of tests based on image intensity, intensity gradient, and structure geometry was developed using acceptable and unacceptable HN planning structures. Combinations of one test applied to one structure, referred to as structure-test combinations, were selected for inclusion in the QA system based on their discriminatory power. A traffic light system was used to aggregate the structure-test combinations, and the system was evaluated on all fractions of the ten validation HN patients.Results.The QA system distinguished between acceptable and unacceptable fractions with high accuracy, labeling 294/324 acceptable fractions as green or yellow and 19/20 unacceptable fractions as yellow or red.Significance.This study demonstrates a system to supplement manual review of radiotherapy planning structures. Automated QA is performed by aggregating results from multiple intensity- and geometry-based tests.


Subject(s)
Cone-Beam Computed Tomography , Quality Assurance, Health Care , Humans , Radiotherapy Planning, Computer-Assisted/methods , Automation , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/diagnostic imaging , Quality Control
5.
Phys Med Biol ; 69(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39025115

ABSTRACT

Objective.To experimentally validate two online adaptive proton therapy (APT) workflows using Gafchromic EBT3 films and optically stimulated luminescent dosimeters (OSLDs) in an anthropomorphic head-and-neck phantom.Approach.A three-field proton plan was optimized on the planning CT of the head-and-neck phantom with 2.0 Gy(RBE) per fraction prescribed to the clinical target volume. Four fractions were simulated by varying the internal anatomy of the phantom. Three distinct methods were delivered: daily APT researched by the Paul Scherrer Institute (DAPTPSI), online adaptation researched by the Massachusetts General Hospital (OAMGH), and a non-adaptive (NA) workflow. All methods were implemented and measured at PSI. DAPTPSIperformed full online replanning based on analytical dose calculation, optimizing to the same objectives as the initial treatment plan. OAMGHperformed Monte-Carlo-based online plan adaptation by only changing the fluences of a subset of proton beamlets, mimicking the planned dose distribution. NA delivered the initial plan with a couch-shift correction based on in-room imaging. For all 12 deliveries, two films and two sets of OSLDs were placed at different locations in the phantom.Main results.Both adaptive methods showed improved dosimetric results compared to NA. For film measurements in the presence of anatomical variations, the [min-max] gamma pass rates (3%/3 mm) between measured and clinically approved doses were [91.5%-96.1%], [94.0%-95.8%], and [67.2%-93.1%] for DAPTPSI, OAMGH, and NA, respectively. The OSLDs confirmed the dose calculations in terms of absolute dosimetry. Between the two adaptive workflows, OAMGHshowed improved target coverage, while DAPTPSIshowed improved normal tissue sparing, particularly relevant for the brainstem.Significance.This is the first multi-institutional study to experimentally validate two different concepts with respect to online APT workflows. It highlights their respective dosimetric advantages, particularly in managing interfractional variations in patient anatomy that cannot be addressed by non-adaptive methods, such as internal anatomy changes.


Subject(s)
Phantoms, Imaging , Proton Therapy , Radiotherapy Planning, Computer-Assisted , Workflow , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Humans , Radiotherapy Dosage , Monte Carlo Method , Radiometry
6.
Med Phys ; 51(8): 5572-5581, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38837396

ABSTRACT

BACKGROUND: The accuracy of intensity-modulated proton therapy (IMPT) is greatly affected by anatomy variations that might occur during the treatment course. Online plan adaptations have been proposed as a solution to intervene promptly during a treatment session once the anatomy changes are detected. The implementation of online-adaptive proton therapy (OAPT) is still hindered by time-consuming tasks in the workflow. PURPOSE: The study introduces the novel concept of partial adaptation and aims at investigating its feasibility as a potential solution to parallelize tasks during an OAPT workflow for saving valuable in-room time. METHODS: The proof-of-principle simulation study includes datasets from six head and neck cancer (HNC) patients, each consisting of one planning CT (pCT) and three contoured control CTs (cCTs). Robust 3-field normo-fractionated initial IMPT plans were generated on the pCTs with a standardized field configuration, delivering 66 Gy and 54 Gy to the high-risk and low-risk clinical target volume (CTVHigh and CTVLow), respectively. For each cCT, a dose-mimicking-based partial adaptation was applied: two fields were adapted on the current anatomy taking into account the background dose of the first non-adapted field supposedly delivered in the meantime. Fraction doses on the cCTs resulting from partially adapted plans with different first (non-adapted) field assignments were compared against those from non-adapted and fully adapted plans regarding target coverage and organs at risk (OARs) sparing. The robustness of partially adapted plans was also evaluated. RESULTS: Partially adapted plans showed comparable results to fully adapted plans and were superior to non-adapted plans for both target coverage and OAR sparing. Target coverage degradation in the non-adapted plans (median D98%: 95.9% and 97.5% for CTVLow and CTVHigh, respectively) was recovered by both partial (98.0% and 98.5%) and full adaptation (98.2% and 98.7%) in comparison to the initial plans (98.7% and 98.8%). The initial hotspot dose for the CTVHigh (median D2%: 101.8%) increased in the non-adapted plans (102.9%) and was recovered by the adaptive strategies (partial: 102.5%, full: 101.9%). The near-maximum dose (D0.01cc) to brainstem and spinal cord was within clinical constraints for all investigated dose distributions, but clearly increased for no adaptation and improved in the (both partially and fully) adapted plans with respect to the non-adapted ones. The parotids' median doses (D50) were mainly patient-specific depending on the proximity to the target region, but anyway lower for the partially and fully adapted plans compared to the non-adapted ones. OAR sparing was furthermore improved for the partially adapted plans in comparison to full adaptation. Robustness of the target dose metrics was preserved in all evaluated scenarios. CONCLUSIONS: For OAPT of HNC patients, partial adaptation is able to generate plans of superior conformity to non-adapted plans and of comparable conformity as fully adapted plans, while having the potential to speed up the online-adaptive workflows. Thus, partial adaptation represents an intermediate approach until fast online adaptation workflows become available. Furthermore, it can be applied in workflows where online treatment verification stops the delivery and triggers an online adaptation for the remaining fraction.


Subject(s)
Head and Neck Neoplasms , Proton Therapy , Radiotherapy Planning, Computer-Assisted , Humans , Proton Therapy/methods , Head and Neck Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Proof of Concept Study , Radiotherapy, Intensity-Modulated , Radiotherapy Dosage , Organs at Risk/radiation effects , Tomography, X-Ray Computed
7.
Phys Med Biol ; 69(15)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38861995

ABSTRACT

We previously proposed range-guided adaptive proton therapy (RGAPT) that uses mid-range treatment beams as probing beams and intra-fractionated range measurements for online adaptation. In this work, we demonstrated experimental verification and reported the dosimetric accuracy for RGAPT. A STEEV phantom was used for the experiments, and a 3 × 3 × 3 cm3cube inside the phantom was assigned to be the treatment target. We simulated three online range shift scenarios: reference, overshoot, and undershoot, by placing upstream Lucite sheets, 4, 0, and 8 that corresponded to changes of 0, 6.8, and -6.8 mm, respectively, in water-equivalent path length. The reference treatment plan was to deliver single-field uniform target doses in pencil beam scanning mode and generated on the Eclipse treatment planning system. Different numbers of mid-range layers, including single, three, and five layers, were selected as probing beams to evaluate beam range (BR) measurement accuracy in positron emission tomography (PET). Online plans were modified to adapt to BR shifts and compensate for probing beam doses. In contrast, non-adaptive plans were also delivered and compared to adaptive plans by film measurements. The mid-range probing beams of three (5.55MU) and five layers (8.71MU) yielded accurate range shift measurements in 60 s of PET acquisition with uncertainty of 0.5 mm while the single-layer probing (1.65MU) was not sufficient for measurements. The adaptive plans achieved an average gamma (2%/2 mm) passing rate of 95%. In contrast, the non-adaptive plans only had an average passing rate of 69%. RGAPT planning and delivery are feasible and verified by the experiments. The probing beam delivery, range measurements, and adaptive planning and delivery added a small increase in treatment delivery workflow time but resulted in substantial dose improvement. The three-layer mid-range probing was most suitable considering the balance of high range measurement accuracy and the low number of probing beam layers.


Subject(s)
Phantoms, Imaging , Proton Therapy , Radiotherapy Planning, Computer-Assisted , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Humans , Dose Fractionation, Radiation , Radiotherapy, Image-Guided/methods , Radiometry
8.
Med Phys ; 51(7): 4922-4935, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38569141

ABSTRACT

BACKGROUND: Proton therapy is a form of radiotherapy commonly used to treat various cancers. Due to its high conformality, minor variations in patient anatomy can lead to significant alterations in dose distribution, making adaptation crucial. While cone-beam computed tomography (CBCT) is a well-established technique for adaptive radiation therapy (ART), it cannot be directly used for adaptive proton therapy (APT) treatments because the stopping power ratio (SPR) cannot be estimated from CBCT images. PURPOSE: To address this limitation, Deep Learning methods have been suggested for converting pseudo-CT (pCT) images from CBCT images. In spite of convolutional neural networks (CNNs) have shown consistent improvement in pCT literature, there is still a need for further enhancements to make them suitable for clinical applications. METHODS: The authors introduce the 3D vision transformer (ViT) block, studying its performance at various stages of the proposed architectures. Additionally, they conduct a retrospective analysis of a dataset that includes 259 image pairs from 59 patients who underwent treatment for head and neck cancer. The dataset is partitioned into 80% for training, 10% for validation, and 10% for testing purposes. RESULTS: The SPR maps obtained from the pCT using the proposed method present an absolute relative error of less than 5% from those computed from the planning CT, thus improving the results of CBCT. CONCLUSIONS: We introduce an enhanced ViT3D architecture for pCT image generation from CBCT images, reducing SPR error within clinical margins for APT workflows. The new method minimizes bias compared to CT-based SPR estimation and dose calculation, signaling a promising direction for future research in this field. However, further research is needed to assess the robustness and generalizability across different medical imaging applications.


Subject(s)
Cone-Beam Computed Tomography , Head and Neck Neoplasms , Proton Therapy , Cone-Beam Computed Tomography/methods , Proton Therapy/methods , Humans , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/diagnostic imaging , Imaging, Three-Dimensional/methods , Image Processing, Computer-Assisted/methods , Deep Learning
9.
J Appl Clin Med Phys ; 25(5): e14308, 2024 May.
Article in English | MEDLINE | ID: mdl-38368614

ABSTRACT

PURPOSE: Proton therapy is sensitive to anatomical changes, often occurring in head-and-neck (HN) cancer patients. Although multiple studies have proposed online adaptive proton therapy (APT), there is still a concern in the radiotherapy community about the necessity of online APT. We have performed a retrospective study to investigate the potential dosimetric benefits of online APT for HN patients relative to the current offline APT. METHODS: Our retrospective study has a patient cohort of 10 cases. To mimic online APT, we re-evaluated the dose of the in-use treatment plan on patients' actual treatment anatomy captured by cone-beam CT (CBCT) for each fraction and performed a templated-based automatic replanning if needed, assuming that these were performed online before treatment delivery. Cumulative dose of the simulated online APT course was calculated and compared with that of the actual offline APT course and the designed plan dose of the initial treatment plan (referred to as nominal plan). The ProKnow scoring system was employed and adapted for our study to quantify the actual quality of both courses against our planning goals. RESULTS: The average score of the nominal plans over the 10 cases is 41.0, while those of the actual offline APT course and our simulated online course is 25.8 and 37.5, respectively. Compared to the offline APT course, our online course improved dose quality for all cases, with the score improvement ranging from 0.4 to 26.9 and an average improvement of 11.7. CONCLUSION: The results of our retrospective study have demonstrated that online APT can better address anatomical changes for HN cancer patients than the current offline replanning practice. The advanced artificial intelligence based automatic replanning technology presents a promising avenue for extending potential benefits of online APT.


Subject(s)
Head and Neck Neoplasms , Organs at Risk , Proton Therapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Retrospective Studies , Head and Neck Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Proton Therapy/methods , Radiotherapy, Intensity-Modulated/methods , Organs at Risk/radiation effects , Cone-Beam Computed Tomography/methods , Prognosis
10.
Med Phys ; 51(3): 1536-1546, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38230803

ABSTRACT

BACKGROUND: Daily CTs generated by CBCT correction are required for daily replanning in online-adaptive proton therapy (APT) to effectively deal with inter-fractional changes. Out of the currently available methods, the suitability of a daily CT generation method for proton dose calculation also depends on the anatomical site. PURPOSE: We propose an anatomy-preserving virtual CT (APvCT) method as a hybrid method of CBCT correction, which is especially suitable for large anatomy deformations. The accuracy of the hybrid method was assessed by comparison with the corrected CBCT (cCBCT) and virtual CT (vCT) methods in the context of online APT. METHODS: Seventy-one daily CBCTs of four prostate cancer patients treated with intensity modulated proton therapy (IMPT) were converted to daily CTs using cCBCT, vCT, and the newly proposed APvCT method. In APvCT, planning CT (pCT) were mapped to CBCT geometry using deformable image registration with boundary conditions on controlling regions of interest (ROIs) created with deep learning segmentation on cCBCT. The relative frequency distribution (RFD) of HU, mass density and stopping power ratio (SPR) values were assessed and compared with the pCT. The ROIs in the APvCT and vCT were compared with cCBCT in terms of Dice similarity coefficient (DSC) and mean distance-to-agreement (mDTA). For each patient, a robustly optimized IMPT plan was created on the pCT and subsequent daily adaptive plans on daily CTs. For dose distribution comparison on the same anatomy, the daily adaptive plans on cCBCT and vCT were recalculated on the corresponding APvCT. The dose distributions were compared in terms of isodose volumes and 3D global gamma-index passing rate (GPR) at γ(2%, 2 mm) criterion. RESULTS: For all patients, no noticeable difference in RFDs was observed amongst APvCT, vCT, and pCT except in cCBCT, which showed a noticeable difference. The minimum DSC value was 0.96 and 0.39 for contours in APvCT and vCT respectively. The average value of mDTA for APvCT was 0.01 cm for clinical target volume and ≤0.01 cm for organs at risk, which increased to 0.18 cm and ≤0.52 cm for vCT. The mean GPR value was 90.9%, 64.5%, and 67.0% for APvCT versus cCBCT, vCT versus cCBCT, and APvCT versus vCT, respectively. When recalculated on APvCT, the adaptive cCBCT and vCT plans resulted in mean GPRs of 89.5 ± 5.1% and 65.9 ± 19.1%, respectively. The mean DSC values for 80.0%, 90.0%, 95.0%, 98.0%, and 100.0% isodose volumes were 0.97, 0.97, 0.97, 0.95, and 0.91 for recalculated cCBCT plans, and 0.89, 0.88, 0.87, 0.85, and 0.81 for recalculated vCT plans. Hausdorff distance for the 100.0% isodose volume in some cases of recalculated cCBCT plans on APvCT exceeded 1.00 cm. CONCLUSIONS: APvCT contours showed good agreement with reference contours of cCBCT which indicates anatomy preservation in APvCT. A vCT with erroneous anatomy can result in an incorrect adaptive plan. Further, slightly lower values of GPR between the APvCT and cCBCT-based adaptive plans can be explained by the difference in the cCBCT's SPR RFD from the pCT.


Subject(s)
Head and Neck Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Male , Humans , Radiotherapy Dosage , Proton Therapy/methods , Cone-Beam Computed Tomography/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Image Processing, Computer-Assisted/methods
11.
Med Phys ; 51(4): 2499-2509, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37956266

ABSTRACT

BACKGROUND: Deep learning has shown promising results to generate MRI-based synthetic CTs and to enable accurate proton dose calculations on MRIs. For clinical implementation of synthetic CTs, quality assurance tools that verify their quality and reliability are required but still lacking. PURPOSE: This study aims to evaluate the predictive value of uncertainty maps generated with Monte Carlo dropout (MCD) for verifying proton dose calculations on deep-learning-based synthetic CTs (sCTs) derived from MRIs in online adaptive proton therapy. METHODS: Two deep-learning models (DCNN and cycleGAN) were trained for CT image synthesis using 101 paired CT-MR images. sCT images were generated using MCD for each model by performing 10 inferences with activated dropout layers. The final sCT was obtained by averaging the inferred sCTs, while the uncertainty map was obtained from the HU variance corresponding to each voxel of 10 sCTs. The resulting uncertainty maps were compared to the observed HU-, range-, WET-, and dose-error maps between the sCT and planning CT. For range and WET errors, the generated uncertainty maps were projected along the 90-degree angle. To evaluate the dose distribution, a mask based on the 5%-isodose curve was applied to only include voxels along the beam paths. Pearson's correlation coefficients were calculated to determine the correlation between the uncertainty maps and HUs, range, WET, and dose errors. To evaluate the dosimetric accuracy of synthetic CTs, clinical proton treatment plans were recalculated and compared to the pCTs RESULTS: Evaluation of the correlation showed an average of r = 0.92 ± 0.03 and r = 0.92 ± 0.03 for errors between uncertainty-HU, r = 0.66 ± 0.09 and r = 0.62 ± 0.06 between uncertainty-range, r = 0.64 ± 0.06 and r = 0.58 ± 0.07 between uncertainty-WET, and r = 0.65 ± 0.09 and r = 0.67 ± 0.07 between uncertainty and dose difference for DCNN and cycleGAN model, respectively. Dosimetric comparison for target volumes showed an average 3%/3 mm gamma pass rate of 99.76 ± 0.43 (DCNN) and 99.10 ± 1.27 (cycleGAN). CONCLUSION: The observed correlations between uncertainty maps and the various metrics (HU, range, WET, and dose errors) demonstrated the potential of MCD-based uncertainty maps as a reliable QA tool to evaluate the accuracy of deep learning-based sCTs.


Subject(s)
Deep Learning , Proton Therapy , Tomography, X-Ray Computed/methods , Proton Therapy/methods , Protons , Feasibility Studies , Reproducibility of Results , Uncertainty , Radiotherapy Planning, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Radiotherapy Dosage , Image Processing, Computer-Assisted/methods
12.
Med Phys ; 50(12): 8023-8033, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37831597

ABSTRACT

BACKGROUND: Adaptive proton therapy workflows rely on accurate imaging throughout the treatment course. Our centre currently utilizes weekly repeat CTs (rCTs) for treatment monitoring and plan adaptations. However, deep learning-based methods have recently shown to successfully correct CBCT images, which suffer from severe imaging artifacts, and generate high quality synthetic CT (sCT) images which enable CBCT-based proton dose calculations. PURPOSE: To compare daily CBCT-based sCT images to planning CTs (pCT) and rCTs of head and neck (HN) cancer patients to investigate the dosimetric accuracy of CBCT-based sCTs in a scenario mimicking actual clinical practice. METHODS: Data of 56 HN cancer patients, previously treated with proton therapy was used to generate 1.962 sCT images, using a previously developed and trained deep convolutional neural network. Clinical IMPT treatment plans were recalculated on the pCT, weekly rCTs and daily sCTs. The dosimetric accuracy of sCTs was compared to same day rCTs and the initial planning CT. As a reference, rCTs were also compared to pCTs. The dose difference between sCTs and rCTs/pCT was quantified by calculating the D98 difference for target volumes and Dmean difference for organs-at-risk. To investigate the clinical relevancy of possible dose differences, NTCP values were calculated for dysphagia and xerostomia. RESULTS: For target volumes, only minor dose differences were found for sCT versus rCT and sCT versus pCT, with dose differences mostly within ±1.5%. Larger dose differences were observed in OARs, where a general shift towards positive differences was found, with the largest difference in the left parotid gland. Delta NTCP values for grade 2 dysphagia and xerostomia were within ±2.5% for 90% of the sCTs. CONCLUSIONS: Target doses showed high similarity between rCTs and sCTs. Further investigations are required to identify the origin of the dose differences at OAR levels and its relevance in clinical decision making.


Subject(s)
Deep Learning , Deglutition Disorders , Head and Neck Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Xerostomia , Humans , Proton Therapy/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Cone-Beam Computed Tomography , Radiotherapy, Intensity-Modulated/methods
13.
Phys Imaging Radiat Oncol ; 27: 100459, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37397874

ABSTRACT

Background and purpose: Efficient workflows for adaptive proton therapy are of high importance. This study evaluated the possibility to replace repeat-CTs (reCTs) with synthetic CTs (sCTs), created based on cone-beam CTs (CBCTs), for flagging the need of plan adaptations in intensity-modulated proton therapy (IMPT) treatment of lung cancer patients. Materials and methods: Forty-two IMPT patients were retrospectively included. For each patient, one CBCT and a same-day reCT were included. Two commercial sCT methods were applied; one based on CBCT number correction (Cor-sCT), and one based on deformable image registration (DIR-sCT). The clinical reCT workflow (deformable contour propagation and robust dose re-computation) was performed on the reCT as well as the two sCTs. The deformed target contours on the reCT/sCTs were checked by radiation oncologists and edited if needed. A dose-volume-histogram triggered plan adaptation method was compared between the reCT and the sCTs; patients needing a plan adaptation on the reCT but not on the sCT were denoted false negatives. As secondary evaluation, dose-volume-histogram comparison and gamma analysis (2%/2mm) were performed between the reCT and sCTs. Results: There were five false negatives, two for Cor-sCT and three for DIR-sCT. However, three of these were only minor, and one was caused by tumour position differences between the reCT and CBCT and not by sCT quality issues. An average gamma pass rate of 93% was obtained for both sCT methods. Conclusion: Both sCT methods were judged to be of clinical quality and valuable for reducing the amount of reCT acquisitions.

14.
Phys Eng Sci Med ; 46(3): 963-975, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37382744

ABSTRACT

In recent years, proton therapy centres have begun to shift from conventional 2D-kV imaging to volumetric imaging systems for image guided proton therapy (IGPT). This is likely due to the increased commercial interest and availability of volumetric imaging systems, as well as the shift from passively scattered proton therapy to intensity modulated proton therapy. Currently, there is no standard modality for volumetric IGPT, leading to variation between different proton therapy centres. This article reviews the reported clinical use of volumetric IGPT, as available in published literature, and summarises their utilisation and workflow where possible. In addition, novel volumetric imaging systems are also briefly summarised highlighting their potential benefits for IGPT and the challenges that need to be overcome before they can be used clinically.


Subject(s)
Proton Therapy , Radiotherapy, Image-Guided , Proton Therapy/methods , Radiotherapy, Image-Guided/methods , Diagnostic Imaging , Protons
15.
Phys Med Biol ; 68(11)2023 05 30.
Article in English | MEDLINE | ID: mdl-37164020

ABSTRACT

Objective. To evaluate the impact of setup uncertainty reduction (SUR) and adaptation to geometrical changes (AGC) on normal tissue complication probability (NTCP) when using online adaptive head and neck intensity modulated proton therapy (IMPT).Approach.A cohort of ten retrospective head and neck cancer patients with daily scatter corrected cone-beam CT (CBCT) was studied. For each patient, two IMPT treatment plans were created: one with a 3 mm setup uncertainty robustness setting and one with no explicit setup robustness. Both plans were recalculated on the daily CBCT considering three scenarios: the robust plan without adaptation, the non-robust plan without adaptation and the non-robust plan with daily online adaptation. Online-adaptation was simulated using an in-house developed workflow based on GPU-accelerated Monte Carlo dose calculation and partial spot-intensity re-optimization. Dose distributions associated with each scenario were accumulated on the planning CT, where NTCP models for six toxicities were applied. NTCP values from each scenario were intercompared to quantify the reduction in toxicity risk induced by SUR alone, AGC alone and SUR and AGC combined. Finally, a decision tree was implemented to assess the clinical significance of the toxicity reduction associated with each mechanism.Main results. For most patients, clinically meaningful NTCP reductions were only achieved when SUR and AGC were performed together. In these conditions, total reductions in NTCP of up to 30.48 pp were obtained, with noticeable NTCP reductions for aspiration, dysphagia and xerostomia (mean reductions of 8.25, 5.42 and 5.12 pp respectively). While SUR had a generally larger impact than AGC on NTCP reductions, SUR alone did not induce clinically meaningful toxicity reductions in any patient, compared to only one for AGC alone.SignificanceOnline adaptive head and neck proton therapy can only yield clinically significant reductions in the risk of long-term side effects when combining the benefits of SUR and AGC.


Subject(s)
Head and Neck Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Uncertainty , Proton Therapy/adverse effects , Proton Therapy/methods , Retrospective Studies , Radiotherapy Dosage , Head and Neck Neoplasms/radiotherapy , Probability , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Organs at Risk
16.
Phys Med Biol ; 68(10)2023 05 02.
Article in English | MEDLINE | ID: mdl-37023774

ABSTRACT

Objective.To compare a not adapted (NA) robust planning strategy with three fully automated online adaptive proton therapy (OAPT) workflows based on the same optimization method: dose mimicking (DM). The added clinical value and limitations of the OAPT methods are investigated for head and neck cancer (HNC) patients.Approach.The three OAPT strategies aimed at compensating for inter-fractional anatomical changes by mimiking different dose distributions on corrected cone beam CT images (corrCBCTs). Order by complexity, the OAPTs were: (1) online adaptive dose restoration (OADR) where the approved clinical dose on the planning-CT (pCT) was mimicked, (2) online adaptation using DM of the deformed clinical dose from the pCT to corrCBCTs (OADEF), and (3) online adaptation applying DM to a predicted dose on corrCBCTs (OAML). Adaptation was only applied in fractions where the target coverage criteria were not met (D98% < 95% of the prescribed dose). For 10 HNC patients, the accumulated dose distributions over the 35 fractions were calculated for NA, OADR, OADEF, and OAML.Main results.Higher target coverage was observed for all OAPT strategies compared to no adaptation. OADEF and OAML outperformed both NA and OADR and were comparable in terms of target coverage to initial clinical plans. However, only OAML provided comparable NTCP values to those from the clinical dose without statistically significant differences. When the NA initial plan was evaluated on corrCBCTs, 51% of fractions needed adaptation. The adaptation rate decreased significantly to 25% when the last adapted plan with OADR was selected for delivery, to 16% with OADEF, and to 21% with OAML. The reduction was even greater when the best plan among previously generated adapted plans (instead of the last one) was selected.Significance. The implemented OAPT strategies provided superior target coverage compared to no adaptation, higher OAR sparing, and fewer required adaptations.


Subject(s)
Head and Neck Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Dosage , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Organs at Risk
17.
Clin Transl Radiat Oncol ; 39: 100598, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36860581

ABSTRACT

Background: Intensity Modulated Proton Therapy (IMPT) in head and neck cancer (HNC) is susceptible to anatomical changes and patient set-up inaccuracies during the radiotherapy course, which can cause discrepancies between planned and delivered dose. The discrepancies can be counteracted by adaptive replanning strategies. This article reviews the observed dosimetric impact of adaptive proton therapy (APT) and the timing to perform a plan adaptation in IMPT in HNC. Methods: A literature search of articles published in PubMed/MEDLINE, EMBASE and Web of Science from January 2010 to March 2022 was performed. Among a total of 59 records assessed for possible eligibility, ten articles were included in this review. Results: Included studies reported on target coverage deterioration in IMPT plans during the RT course, which was recovered with the application of an APT approach. All APT plans showed an average improved target coverage for the high- and low-dose targets as compared to the accumulated dose on the planned plans. Dose improvements up to 2.5 Gy (3.5 %) and up to 4.0 Gy (7.1 %) in the D98 of the high- and low dose targets were observed with APT. Doses to the organs at risk (OARs) remained equal or decreased slightly after APT was applied. In the included studies, APT was largely performed once, which resulted in the largest target coverage improvement, but eventual additional APT improved the target coverage further. There is no data showing what is the most appropriate timing for APT. Conclusion: APT during IMPT for HNC patients improves target coverage. The largest improvement in target coverage was found with a single adaptive intervention, and an eventual second or more frequent APT application improved the target coverage further. Doses to the OARs remained equal or decreased slightly after applying APT. The most optimal timing for APT is yet to be determined.

18.
Med Phys ; 50(5): 2625-2636, 2023 May.
Article in English | MEDLINE | ID: mdl-36810708

ABSTRACT

BACKGROUND: Stereotactic body radiation therapy (SBRT) of central lung tumors with photon or proton therapy has a risk of increased toxicity. Treatment planning studies comparing accumulated doses for state-of-the-art treatment techniques, such as MR-guided radiotherapy (MRgRT) and intensity modulated proton therapy (IMPT), are currently lacking. PURPOSE: We conducted a comparison of accumulated doses for MRgRT, robustly optimized non-adaptive IMPT, and online adaptive IMPT for central lung tumors. A special focus was set on analyzing the accumulated doses to the bronchial tree, a parameter linked to high-grade toxicities. METHODS: Data of 18 early-stage central lung tumor patients, treated at a 0.35 T MR-linac in eight or five fractions, were analyzed. Three gated treatment scenarios were compared: (S1) online adaptive MRgRT, (S2) non-adaptive IMPT, and (S3) online adaptive IMPT. The treatment plans were recalculated or reoptimized on the daily imaging data acquired during MRgRT, and accumulated over all treatment fractions. Accumulated dose-volume histogram (DVH) parameters of the gross tumor volume (GTV), lung, heart, and organs-at-risk (OARs) within 2 cm of the planning target volume (PTV) were extracted for each scenario and compared in Wilcoxon signed-rank tests between S1 & S2, and S1 & S3. RESULTS: The accumulated GTV D98% was above the prescribed dose for all patients and scenarios. Significant reductions (p < 0.05) of the mean ipsilateral lung dose (S2: -8%; S3: -23%) and mean heart dose (S2: -79%; S3: -83%) were observed for both proton scenarios compared to S1. The bronchial tree D0.1cc was significantly lower for S3 (S1: 48.1 Gy; S3: 39.2 Gy; p = 0.005), but not significantly different for S2 (S2: 45.0 Gy; p = 0.094), compared to S1. The D0.1cc for S2 and S3 compared to S1 was significantly (p < 0.05) smaller for OARs within 1-2 cm of the PTV (S1: 30.2 Gy; S2: 24.6 Gy; S3: 23.1 Gy), but not significantly different for OARs within 1 cm of the PTV. CONCLUSIONS: A significant dose sparing potential of non-adaptive and online adaptive proton therapy compared to MRgRT for OARs in close, but not direct proximity of central lung tumors was identified. The near-maximum dose to the bronchial tree was not significantly different for MRgRT and non-adaptive IMPT. Online adaptive IMPT achieved significantly lower doses to the bronchial tree compared to MRgRT.


Subject(s)
Lung Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology , Lung/diagnostic imaging , Lung/pathology , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage , Organs at Risk
19.
Clin Oncol (R Coll Radiol) ; 35(4): 245-254, 2023 04.
Article in English | MEDLINE | ID: mdl-36764878

ABSTRACT

PURPOSE: To characterize on-treatment changes in GTV morphology in children with parameningeal rhabdomyosarcoma receiving upfront proton therapy with concurrent chemotherapy and thereby provide guidance on the timing of on-treatment imaging and adaptive replanning. METHODS AND MATERIALS: GTV was delineated on 86 simulation and weekly MR images of 15 prospectively enrolled patients (aged 1-21 years). Temporal changes from baseline in volume and surface (95% Hausdorff distance) were analyzed in relation to the need for plan verification and the resultant doses with hypothetical no treatment adaptation. RESULTS: The median time was 6 days from the initiation of chemotherapy to CT+MR simulation and 15 days from the simulation to the start of radiotherapy. All but 1 patient showed a continuous decrease in GTV (0.16-1.52%/day) after simulation. At 3 weeks from simulation, 10 of 15 patients exhibited a significant reduction in volume (median, 20%; range, 6-29%). Without replanning, these changes could lead to a reduction in CTV V95 by 7-14% (n = 2) and/or an increase in D0.01 cc/Dmean of adjacent organs at risk by 6-21% of the prescribed target dose (n = 7). Significant dosimetric consequences occurred in cases with (1) a considerable weight gain, (2) shrinkage of the skin surface, or (3) tumor regression in the oral or nasal cavity and sinus that altered air-tissue components in the beam path. The subsequent GTV and dosimetry after 3 weeks from simulation (4 weeks from chemotherapy initiation) demonstrated a relatively stable trend. CONCLUSIONS: On-treatment imaging at 3 weeks after simulation is recommended, if the simulation is performed at 1 week after the initiation of chemotherapy, to detect significant anatomic changes that could result in >5% deviation from planned target coverage and/or organ doses in pediatric patients with parameningeal rhabdomyosarcoma receiving early proton therapy.


Subject(s)
Proton Therapy , Radiotherapy, Intensity-Modulated , Rhabdomyosarcoma, Embryonal , Rhabdomyosarcoma , Humans , Child , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/radiotherapy , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods
20.
Med Phys ; 50(3): 1756-1765, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36629844

ABSTRACT

BACKGROUND: Proton radiography (PR) uses highly energetic proton beams to create images where energy loss is the main contrast mechanism. Water-equivalent path length (WEPL) measurements using flat panel PR (FP-PR) have potential for in vivo range verification. However, an accurate WEPL measurement via FP-PR requires irradiation with multiple energy layers, imposing high imaging doses. PURPOSE: A FP-PR method is proposed for accurate WEPL determination based on a patient-specific imaging field with a reduced number of energies (n) to minimize imaging dose. METHODS: Patient-specific FP-PRs were simulated and measured for a head and neck (HN) phantom. An energy selection algorithm estimated spot-wise the lowest energy required to cross the anatomy (Emin) using a water-equivalent thickness map. Starting from Emin, n was restricted to certain values (n = 26, 24, 22, …, 2 for simulations, n = 10 for measurements), resulting in patient-specific FP-PRs. A reference FP-PR with a complete set of energies was compared against patient-specific FP-PRs covering the whole anatomy via mean absolute WEPL differences (MAD), to evaluate the impact of the developed algorithm. WEPL accuracy of patient-specific FP-PRs was assessed using mean relative WEPL errors (MRE) with respect to measured multi-layer ionization chamber PRs (MLIC-PR) in the base of skull, brain, and neck regions. RESULTS: MADs ranged from 2.1 mm (n = 26) to 21.0 mm (n = 2) for simulated FP-PRs, and 7.2 mm for measured FP-PRs (n = 10). WEPL differences below 1 mm were observed across the whole anatomy, except at the phantom surfaces. Measured patient-specific FP-PRs showed good agreement against MLIC-PRs, with MREs of 1.3 ± 2.0%, -0.1 ± 1.0%, and -0.1 ± 0.4% in the three regions of the phantom. CONCLUSION: A method to obtain accurate WEPL measurements using FP-PR with a reduced number of energies selected for the individual patient anatomy was established in silico and validated experimentally. Patient-specific FP-PRs could provide means of in vivo range verification.


Subject(s)
Proton Therapy , Protons , Humans , Water , Radiography , Phantoms, Imaging , Head/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL