Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 327
Filter
1.
Eur Biophys J ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256261

ABSTRACT

The maintenance of homeostasis and the retention of ordered epithelial cell self-organization are essential for morphogenesis, wound healing, and the spread of cancer across the epithelium. However, cell-cell interactions in an overcrowded environment introduce a diversity of complications. Such interactions arise from an interplay between the cell compressive and shear stress components that accompany increased cell packing density. They can lead to various kinds of cell rearrangement such as: the epithelial-to-mesenchymal cell state transition; live cell extrusion; and cell jamming. All of these scenarios of cell rearrangement under mechanical stress relate to changes in the strengths of the cell-cell and cell-matrix adhesion contacts. The objective of this review study is twofold: first, to provide a comprehensive summary of the biological and physical factors influencing the effects of cell mechanical stress on cell-cell interactions, and the consequences of these interactions for the status of cell-cell and cell-matrix adhesion contacts; and secondly, to offer a bio-physical/mathematical analysis of the aforementioned biological aspects. By presenting these two approaches in conjunction, we seek to highlight the intricate nature of biological systems, which manifests in the form of complex bio-physical/mathematical equations. Furthermore, the juxtaposition of these apparently disparate approaches underscores the importance of conducting experiments to determine the multitude of parameters that contribute to the development of these intricate bio-physical/mathematical models.

2.
Tissue Barriers ; : 2398875, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230159

ABSTRACT

The contribution of Erk1/2 to endothelial barrier regulation is convoluted and differs depending on the vascular bed. We explored the effects of Erk1/2 inhibition on endothelial barrier maintenance and its relationship with cAMP-dependent barrier strengthening. Thus, myocardial endothelial cells (MyEnd) were isolated and protein expression, localization and activity of structural and signaling molecules involved in maintenance of endothelial function were investigated by Western blot, immunostainings and G-LISA, respectively. The transendothelial electrical resistance (TEER) from confluent MyEnd monolayers was measured and used as a direct indicator of barrier integrity in vitro. Miles assay was performed to evaluate vascular permeability in vivo. Erk1/2 inhibition with U0126 affected neither the structural organization of adherens or tight junctions nor the protein level of their components, However, TEER drop significantly upon U0126 application, but the effect was transitory as the barrier function recovered 30 min after treatment. Erk1/2 inhibition delayed cAMP-mediated barrier strengthening but did not prevent barrier fortification despite diminishing Rac1 activation. Moreover, Erk1/2 inhibition, induced vascular leakage that could be prevented by local cAMP elevation in vivo. Our data demonstrate that Erk1/2 is required to prevent vascular permeability but is not critical for cAMP-mediated barrier enhancement.

3.
Liver Int ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115254

ABSTRACT

Cell junctions, including anchoring, occluding and communicating junctions, play an indispensable role in the structural and functional organization of multicellular tissues, including in liver. Specifically, hepatic cell junctions mediate intercellular adhesion and communication between liver cells. The establishment of the hepatic cell junction network is a prerequisite for normal liver functioning. Hepatic cell junctions indeed support liver-specific features and control essential aspects of the hepatic life cycle. This review paper summarizes the role of cell junctions and their components in relation to liver physiology, thereby also discussing their involvement in hepatic dysfunctionality, including liver disease and toxicity.

4.
Front Cell Dev Biol ; 12: 1405454, 2024.
Article in English | MEDLINE | ID: mdl-39040043

ABSTRACT

The actin cytoskeleton regulates the integrity and repair of epithelial barriers by mediating the assembly of tight junctions (TJs), and adherens junctions (AJs), and driving epithelial wound healing. Actin filaments undergo a constant turnover guided by numerous actin-binding proteins, however, the roles of actin filament dynamics in regulating intestinal epithelial barrier integrity and repair remain poorly understood. Coactosin-like protein 1 (COTL1) is a member of the ADF/cofilin homology domain protein superfamily that binds and stabilizes actin filaments. COTL1 is essential for neuronal and cancer cell migration, however, its functions in epithelia remain unknown. The goal of this study is to investigate the roles of COTL1 in regulating the structure, permeability, and repair of the epithelial barrier in human intestinal epithelial cells (IEC). COTL1 was found to be enriched at apical junctions in polarized IEC monolayers in vitro. The knockdown of COTL1 in IEC significantly increased paracellular permeability, impaired the steady state TJ and AJ integrity, and attenuated junctional reassembly in a calcium-switch model. Consistently, downregulation of COTL1 expression in Drosophila melanogaster increased gut permeability. Loss of COTL1 attenuated collective IEC migration and decreased cell-matrix attachment. The observed junctional abnormalities in COTL1-depleted IEC were accompanied by the impaired assembly of the cortical actomyosin cytoskeleton. Overexpression of either wild-type COTL1 or its actin-binding deficient mutant tightened the paracellular barrier and activated junction-associated myosin II. Furthermore, the actin-uncoupled COTL1 mutant inhibited epithelial migration and matrix attachment. These findings highlight COTL1 as a novel regulator of the intestinal epithelial barrier integrity and repair.

5.
Biomolecules ; 14(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39062486

ABSTRACT

Helicobacter pylori is a highly prevalent human gastric pathogen that causes gastritis, ulcer disease, and gastric cancer. It is not yet fully understood how H. pylori injures the gastric epithelium. The Na,K-ATPase, an essential transporter found in virtually all mammalian cells, has been shown to be important for maintaining the barrier function of lung and kidney epithelia. H. pylori decreases levels of Na,K-ATPase in the plasma membrane of gastric epithelial cells, and the aim of this study was to demonstrate that this reduction led to gastric injury by impairing the epithelial barrier. Similar to H. pylori infection, the inhibition of Na,K-ATPase with ouabain decreased transepithelial electrical resistance and increased paracellular permeability in cell monolayers of human gastric cultured cells, 2D human gastric organoids, and gastric epithelium isolated from gerbils. Similar effects were caused by a partial shRNA silencing of Na,K-ATPase in human gastric organoids. Both H. pylori infection and ouabain exposure disrupted organization of adherens junctions in human gastric epithelia as demonstrated by E-cadherin immunofluorescence. Functional and structural impairment of epithelial integrity with a decrease in Na,K-ATPase amount or activity provides evidence that the H. pylori-induced downregulation of Na,K-ATPase plays a role in the complex mechanism of gastric disease induced by the bacteria.


Subject(s)
Gastric Mucosa , Helicobacter Infections , Helicobacter pylori , Ouabain , Sodium-Potassium-Exchanging ATPase , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Humans , Animals , Ouabain/pharmacology , Helicobacter Infections/metabolism , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Gastric Mucosa/metabolism , Gastric Mucosa/microbiology , Gastric Mucosa/pathology , Gastric Mucosa/drug effects , Gerbillinae , Cell Membrane/metabolism , Cell Membrane/drug effects , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Epithelial Cells/drug effects , Organoids/metabolism , Organoids/microbiology
6.
Cell Signal ; 121: 111295, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996955

ABSTRACT

Calpain2 is a conventional member of the non-lysosomal calpain protease family that has been shown to affect the dynamics of focal and cell-cell adhesions by proteolyzing the components of adhesion complexes. Here, we inactivated calpain2 using CRISPR/Cas9 in epithelial MDCK cells. We show that depletion of calpain2 has multiple effects on cell morphology and function. Calpain2-depleted cells develop epithelial shape, however, they cover a smaller area, and cell clusters are more compact. Inactivation of calpain2 enhanced restoration of transepithelial electrical resistance after calcium switch, decreased cell migration, and delayed cell scattering induced by HGF/SF. In addition, calpain2 depletion prevented morphological changes induced by ERK2 overexpression. Interestingly, proteolysis of several calpain2 targets, including E-cadherin, ß-catenin, talin, FAK, and paxillin, was not discernibly affected by calpain2 depletion. Taken together, these data suggest that calpain2 regulates the stability of cell-cell and cell-substratum adhesions indirectly without affecting the proteolysis of these adhesion complexes.


Subject(s)
Calpain , Cell Adhesion , Epithelial Cells , Animals , Dogs , beta Catenin/metabolism , Cadherins/metabolism , Calcium/metabolism , Calpain/metabolism , Cell Movement , CRISPR-Cas Systems , Epithelial Cells/metabolism , Epithelial Cells/cytology , Hepatocyte Growth Factor/metabolism , Madin Darby Canine Kidney Cells , Mitogen-Activated Protein Kinase 1/metabolism , Proteolysis
7.
Arterioscler Thromb Vasc Biol ; 44(9): 1944-1959, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38989578

ABSTRACT

BACKGROUND: Mitral valve (MV) disease including myxomatous degeneration is the most common form of valvular heart disease with an age-dependent frequency. Genetic evidence indicates that mutations of the human transcription factor FOXC1 are associated with MV defects, including MV regurgitation. In this study, we sought to determine whether murine Foxc1 and its closely related factor, Foxc2, are required in valvular endothelial cells (VECs) for the maintenance of MV leaflets, including VEC junctions and the stratified trilaminar ECM (extracellular matrix). METHODS: Adult mice carrying tamoxifen-inducible, vascular endothelial cell (EC), and lymphatic EC-specific, compound Foxc1;Foxc2 mutations (ie, EC-Foxc-DKO and lymphatic EC-Foxc-DKO mice, respectively) were used to study the function of Foxc1 and Foxc2 in the maintenance of MVs. The EC and lymphatic EC mutations of Foxc1/c2 were induced at 7 to 8 weeks of age by tamoxifen treatment, and abnormalities in the MVs of these mutant mice were assessed via whole-mount immunostaining, immunohistochemistry/RNAscope, Movat pentachrome/Masson Trichrome staining, and Evans blue injection. RESULTS: EC deletions of Foxc1 and Foxc2 in mice resulted in abnormally extended and thicker MVs by causing defects in the regulation of ECM organization with increased proteoglycan and decreased collagen. Notably, reticular adherens junctions were found in VECs of control MV leaflets, and these reticular structures were severely disrupted in EC-Foxc-DKO mice. PROX1 (prospero homeobox protein 1), a key regulator in a subset of VECs on the fibrosa side of MVs, was downregulated in EC-Foxc1/c2 mutant VECs. Furthermore, we determined the precise location of lymphatic vessels in murine MVs, and these lymphatic vessels were aberrantly expanded and dysfunctional in EC-Foxc1/c2 mutant MVs. Lymphatic EC deletion of Foxc1/c2 also resulted in similar structural/ECM abnormalities as seen in EC-Foxc1/c2 mutant MVs. CONCLUSIONS: Our results indicate that Foxc1 and Foxc2 are required for maintaining the integrity of the MV, including VEC junctions, ECM organization, and lymphatic vessel formation/function to prevent myxomatous MV degeneration.


Subject(s)
Disease Models, Animal , Endothelial Cells , Forkhead Transcription Factors , Lymphangiogenesis , Lymphatic Vessels , Mice, Knockout , Animals , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Mitral Valve/metabolism , Mitral Valve/pathology , Mutation , Mice , Intercellular Junctions/metabolism , Intercellular Junctions/pathology , Heart Valve Diseases/metabolism , Heart Valve Diseases/pathology , Heart Valve Diseases/genetics , Phenotype , Mice, Inbred C57BL , Mitral Valve Prolapse/metabolism , Mitral Valve Prolapse/genetics , Mitral Valve Prolapse/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology
8.
World J Microbiol Biotechnol ; 40(9): 273, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030443

ABSTRACT

Helicobacter pylori is a common resident in the stomach of at least half of the world's population and recent evidence suggest its emergence in other organs such as the pancreas. In this organ, the presence of H. pylori DNA has been reported in cats, although the functional implications remain unknown. In this work, we determined distinct features related to the H. pylori manifestation in pancreas in a rodent model, in order to analyse its functional and structural effect. Gerbils inoculated with H. pylori exhibited the presence of this bacterium, as revealed by the expression of some virulence factors, as CagA and OMPs in stomach and pancreas, and confirmed by urease activity, bacterial culture, PCR and immunofluorescence assays. Non-apparent morphological changes were observed in pancreatic tissue of infected animals; however, delocalization of intercellular junction proteins (claudin-1, claudin-4, occludin, ZO-1, E-cadherin, ß-catenin, desmoglein-2 and desmoplakin I/II) and rearrangement of the actin-cytoskeleton were exhibited. This structural damage was consistent with alterations in the distribution of insulin and glucagon, and a systemic inflammation, event demonstrated by elevated IL-8 levels. Overall, these findings indicate that H. pylori can reach the pancreas, possibly affecting its function and contributing to the development of pancreatic diseases.


Subject(s)
Gerbillinae , Helicobacter Infections , Helicobacter pylori , Intercellular Junctions , Pancreas , Animals , Helicobacter pylori/pathogenicity , Helicobacter pylori/genetics , Helicobacter Infections/microbiology , Pancreas/microbiology , Pancreas/pathology , Intercellular Junctions/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Antigens, Bacterial/metabolism , Antigens, Bacterial/genetics , Virulence Factors/metabolism , Virulence Factors/genetics , Stomach/microbiology , Stomach/pathology , Disease Models, Animal , Male , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics
9.
Cardiovasc Res ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38870316

ABSTRACT

AIMS: SCUBE2 (Signal peptide-CUB-epidermal growth factor-like domain-containing protein 2) is a secreted or membrane-bound protein originally identified from endothelial cells (ECs). Our previous work showed that SCUBE2 forms a complex with E-cadherin and stabilizes epithelial adherens junctions (AJs) to promote epithelial phenotypes. However, it remains unclear whether SCUBE2 also interacts with vascular endothelial (VE)-cadherin and modulates EC barrier function. In this study, we investigated whether and how SCUBE2 in ECs regulates vascular barrier maintenance. METHODS AND RESULTS: We showed that SCUBE2 colocalized and interacted with VE-cadherin and VE-protein tyrosine phosphatase (VE-PTP) within EC AJs. Furthermore, SCUBE2 knockdown disrupted EC AJs and increased EC permeability. Expression of EC SCUBE2 was suppressed at both mRNA and protein levels via the nuclear factor-κB (NF-κB) signaling pathway in response to pro-inflammatory cytokines or permeability-inducing agents. In line with these findings, EC-specific deletion of Scube2 (EC-KO) in mice impaired baseline barrier function and worsened vascular leakiness of peripheral capillaries after local injection of histamine or vascular endothelial growth factor. EC-KO mice were also sensitive to pulmonary vascular hyperpermeability and leukocyte infiltration in response to acute endotoxin- or influenza virus-induced systemic inflammation. Meanwhile, EC-specific SCUBE2-overexpressing mice were protected from these effects. Molecular studies suggested that SCUBE2 acts as a scaffold molecule enabling VE-PTP to dephosphorylate VE-cadherin, which prevents VE-cadherin internalization and stabilizes EC AJs. As such, loss of SCUBE2 resulted in hyperphosphorylation of VE-cadherin at tyrosine 685, which led to its endocytosis, thus destabilizing EC AJs and reducing barrier function. All of these effects were exacerbated by inflammatory insults. CONCLUSIONS: We found that SCUBE2 contributes to vascular integrity by recruiting VE-PTP to dephosphorylate VE-cadherin and stabilize AJs, thereby promoting EC barrier function. Moreover, our data suggest that genetic overexpression or pharmacological upregulation of SCUBE2 may help to prevent vascular leakage and edema in inflammatory diseases.

10.
Cells ; 13(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38727316

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a process during which epithelial cells lose epithelial characteristics and gain mesenchymal features. Here, we used several cell models to study migratory activity and redistribution of cell-cell adhesion proteins in cells in different EMT states: EGF-induced EMT of epithelial IAR-20 cells; IAR-6-1 cells with a hybrid epithelial-mesenchymal phenotype; and their more mesenchymal derivatives, IAR-6-1-DNE cells lacking adherens junctions. In migrating cells, the cell-cell adhesion protein α-catenin accumulated at the leading edges along with ArpC2/p34 and α-actinin. Suppression of α-catenin shifted cell morphology from fibroblast-like to discoid and attenuated cell migration. Expression of exogenous α-catenin in MDA-MB-468 cells devoid of α-catenin drastically increased their migratory capabilities. The Y654 phosphorylated form of ß-catenin was detected at integrin adhesion complexes (IACs). Co-immunoprecipitation studies indicated that α-catenin and pY654-ß-catenin were associated with IAC proteins: vinculin, zyxin, and α-actinin. Taken together, these data suggest that in cells undergoing EMT, catenins not participating in assembly of adherens junctions may affect cell migration.


Subject(s)
Actin Cytoskeleton , Cell Movement , Epithelial-Mesenchymal Transition , Animals , Actin Cytoskeleton/metabolism , Actinin/metabolism , Adherens Junctions/metabolism , alpha Catenin/metabolism , beta Catenin/metabolism , Cell Adhesion , Cell Line, Tumor , Epithelial Cells/metabolism , Integrins/metabolism , Phosphorylation , Vinculin/metabolism , Zyxin/metabolism , Rats
11.
Tissue Barriers ; : 2347766, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695199

ABSTRACT

Celiac disease (CD) is characterized by the disruption of the intestinal barrier integrity and alterations in the microbiota composition. This study aimed to evaluate the changes in the fecal microbiota profile and mRNA expressions of intracellular junction-related genes in pediatric patients with CD compared to healthy controls (HCs). Thirty treated CD patients, 10 active CD, and 40 HCs were recruited. Peripheral blood (PB) and fecal samples were collected. Microbiota analysis was performed using quantitative real-time PCR (qPCR) test. The mRNA expressions of ZO-1, occludin, ß-catenin, E-cadherin, and COX-2 were also evaluated. In active and treated CD patients, the PB expression levels of ZO-1 (p = 0.04 and 0.002, respectively) and ß-catenin (p = 0.006 and 0.02, respectively) were lower than in HCs. PB Occludin's level was upregulated in both active and treated CD patients compared to HCs (p = 0.04 and 0.02, respectively). However, PB E-cadherin and COX-2 expression levels and fecal mRNA expressions of ZO-1, occludin, and COX-2 did not differ significantly between cases and HCs (P˃0.05). Active CD patients had a higher relative abundance of the Firmicutes (p = 0.04) and Actinobacteria (p = 0.03) phyla compared to treated subjects. The relative abundance of Veillonella (p = 0.04) and Staphylococcus (p = 0.01) genera was lower in active patients in comparison to HCs. Researchers should explore the precise impact of the gut microbiome on the molecules and mechanisms involved in intestinal damage of CD. Special attention should be given to Bifidobacteria and Enterobacteriaceae, as they have shown a significant correlation with the expression of tight junction-related genes.

12.
Dev Cell ; 59(12): 1593-1608.e6, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38640926

ABSTRACT

Epithelial remodeling of the Drosophila retina depends on the pulsatile contraction and expansion of apical contacts between the cells that form its hexagonal lattice. Phosphoinositide PI(3,4,5)P3 (PIP3) accumulates around tricellular adherens junctions (tAJs) during contact expansion and dissipates during contraction, but with unknown function. Here, we found that manipulations of Pten or PI3-kinase (PI3K) that either decreased or increased PIP3 resulted in shortened contacts and a disordered lattice, indicating a requirement for PIP3 dynamics and turnover. These phenotypes are caused by a loss of branched actin, resulting from impaired activity of the Rac1 Rho GTPase and the WAVE regulatory complex (WRC). We additionally found that during contact expansion, PI3K moves into tAJs to promote the cyclical increase of PIP3 in a spatially and temporally precise manner. Thus, dynamic control of PIP3 by Pten and PI3K governs the protrusive phase of junctional remodeling, which is essential for planar epithelial morphogenesis.


Subject(s)
Actins , Adherens Junctions , Drosophila Proteins , Morphogenesis , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases , Phosphatidylinositol Phosphates , Retina , Animals , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Actins/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Adherens Junctions/metabolism , Retina/metabolism , Retina/cytology , Drosophila melanogaster/metabolism , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics
13.
Article in English | MEDLINE | ID: mdl-38426816

ABSTRACT

A key step in regulation of Hippo pathway signaling in response to mechanical tension is recruitment of the LIM domain proteins TRIP6 and LIMD1 to adherens junctions. Mechanical tension also triggers TRIP6 and LIMD1 to bind and inhibit the Hippo pathway kinase LATS1. How TRIP6 and LIMD1 are recruited to adherens junctions in response to tension is not clear, but previous studies suggested that they could be regulated by the known mechanosensory proteins α-catenin and vinculin at adherens junctions. We found that the three LIM domains of TRIP6 and LIMD1 are necessary and sufficient for tension-dependent localization to adherens junctions. The LIM domains of TRIP6, LIMD1, and certain other LIM domain proteins have been shown to bind to actin networks under strain/tension. Consistent with this, we show that TRIP6 and LIMD1 colocalize with the ends of actin fibers at adherens junctions. Point mutations in a key conserved residue in each LIM domain that are predicted to impair binding to f-actin under strain inhibits TRIP6 and LIMD1 localization to adherens junctions and their ability to bind to and recruit LATS1 to adherens junctions. Together these results show that the ability of TRIP6 and LIMD1 to bind to strained actin underlies their ability to localize to adherens junctions and regulate LATS1 in response to mechanical tension.

14.
bioRxiv ; 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38496457

ABSTRACT

Cortical myosin contraction and cell adhesion work together to promote tissue shape changes, but how they are modulated to achieve diverse morphogenetic outcomes remains unclear. Epithelial folding occurs via apical constriction, mediated by apical accumulation of contractile myosin engaged with adherens junctions, as in Drosophila ventral furrow formation. While levels of contractile myosin correlate with apical constriction, whether levels of adherens junctions modulate apical constriction is unknown. We identified a novel Drosophila gene moat that maintains low levels of Bazooka/Par3-dependent adherens junctions and thereby restricts apical constriction to ventral furrow cells with high-level contractile myosin. In moat mutants, abnormally high levels of Bazooka/Par3-dependent adherens junctions promote ectopic apical constriction in cells with low-level contractile myosin, insufficient for apical constriction in wild type. Such ectopic apical constriction expands infolding behavior from ventral furrow to ectodermal anterior midgut, which normally forms a later circular invagination. In moat mutant ventral furrow, a perturbed apical constriction gradient delays infolding. Our results indicate that levels of adherens junctions can modulate the outcome of apical constriction, providing an additional mechanism to define morphogenetic boundaries.

15.
bioRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496678

ABSTRACT

Cadherins are transmembrane adhesion receptors. Cadherin ectodomains form adhesive 2D clusters through cooperative trans and cis interactions, whereas its intracellular region interacts with specific cytosolic proteins, termed catenins, to anchor the cadherin-catenin complex (CCC) to the actin cytoskeleton. How these two types of interactions are coordinated in the formation of specialized cell-cell adhesions, adherens junctions (AJ), remains unclear. We focus here on the role of the actin-binding domain of α-catenin (αABD) by showing that the interaction of αABD with actin generates actin-bound CCC oligomers (CCC/actin strands) incorporating up to six CCCs. The strands are primarily formed on the actin-rich cell protrusions. Once in cell-cell interface, the strands become involved in cadherin ectodomain clustering. Such combination of the extracellular and intracellular oligomerizations gives rise to the composite oligomers, trans CCC/actin clusters. To mature, these clusters then rearrange their actin filaments using several redundant pathways, two of which are characterized here: one depends on the α-catenin-associated protein, vinculin and the second one depends on the unstructured C-terminus of αABD. Thus, AJ assembly proceeds through spontaneous formation of trans CCC/actin clusters and their successive reorganization.

16.
Cells ; 13(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474334

ABSTRACT

The integrity and permeability of epithelial and endothelial barriers depend on the formation of tight junctions, adherens junctions, and a junction-associated cytoskeleton. The establishment of this junction-cytoskeletal module relies on the correct folding and oligomerization of its protein components. Molecular chaperones are known regulators of protein folding and complex formation in different cellular compartments. Mammalian cells possess an elaborate chaperone network consisting of several hundred chaperones and co-chaperones. Only a small part of this network has been linked, however, to the regulation of intercellular adhesions, and the systematic analysis of chaperone functions at epithelial and endothelial barriers is lacking. This review describes the functions and mechanisms of the chaperone-assisted regulation of intercellular junctions. The major focus of this review is on heat shock protein chaperones, their co-chaperones, and chaperonins since these molecules are the focus of the majority of the articles published on the chaperone-mediated control of tissue barriers. This review discusses the roles of chaperones in the regulation of the steady-state integrity of epithelial and vascular barriers as well as the disruption of these barriers by pathogenic factors and extracellular stressors. Since cytoskeletal coupling is essential for junctional integrity and remodeling, chaperone-assisted assembly of the actomyosin cytoskeleton is also discussed.


Subject(s)
Cytoskeleton , Intercellular Junctions , Animals , Cytoskeleton/metabolism , Intercellular Junctions/metabolism , Actin Cytoskeleton/metabolism , Actomyosin/metabolism , Molecular Chaperones/metabolism , Mammals/metabolism
17.
Cell Rep ; 43(3): 113818, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38402586

ABSTRACT

Intricate cerebral cortex formation is orchestrated by the precise behavior and division dynamics of radial glial cells (RGCs). Endocytosis functions in the recycling and remodeling of adherens junctions (AJs) in response to changes in RGC activity and function. Here, we show that conditional disruption of ubiquitin-associated protein 1 (UBAP1), a component of endosomal sorting complex required for transport (ESCRT), causes severe brain dysplasia and prenatal ventriculomegaly. UBAP1 depletion disrupts the AJs and polarity of RGCs, leading to failure of apically directed interkinetic nuclear migration. Accordingly, UBAP1 knockout or knockdown results in reduced proliferation and precocious differentiation of neural progenitor cells. Mechanistically, UBAP1 regulates the expression and surface localization of cell adhesion molecules, and ß-catenin over-expression significantly rescues the phenotypes of Ubap1 knockdown in vivo. Our study reveals a critical physiological role of the ESCRT machinery in cortical neurogenesis by regulating AJs of RGCs.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Ependymoglial Cells , Female , Pregnancy , Humans , Ependymoglial Cells/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Ubiquitin/metabolism , Adherens Junctions/metabolism , Cerebral Cortex/metabolism , Neurogenesis , Carrier Proteins/metabolism
18.
Cell Rep ; 43(3): 113859, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38421873

ABSTRACT

Oct4 is a pioneer transcription factor regulating pluripotency. However, it is not well known whether Oct4 has an impact on epidermal cells. We generated OCT4 knockout clonal cell lines using immortalized human skin keratinocytes to identify a functional role for the protein. Here, we report that Oct4-deficient cells transitioned into a mesenchymal-like phenotype with enlarged size and shape, exhibited accelerated migratory behavior, decreased adhesion, and appeared arrested at the G2/M cell cycle checkpoint. Oct4 absence had a profound impact on cortical actin organization, with loss of microfilaments from the cell membrane, increased puncta deposition in the cytoplasm, and stress fiber formation. E-cadherin, ß-catenin, and ZO1 were almost absent from cell-cell contacts, while fibronectin deposition was markedly increased in the extracellular matrix (ECM). Mapping of the transcriptional and chromatin profiles of Oct4-deficient cells revealed that Oct4 controls the levels of cytoskeletal, ECM, and differentiation-related genes, whereas epithelial identity is preserved through transcriptional and non-transcriptional mechanisms.


Subject(s)
Cadherins , Keratinocytes , Humans , Cadherins/metabolism , Keratinocytes/metabolism , Cytoskeleton/metabolism , Actins/metabolism , beta Catenin/metabolism , Skin/metabolism , Cell Adhesion/physiology
19.
Elife ; 132024 Feb 02.
Article in English | MEDLINE | ID: mdl-38305711

ABSTRACT

Barrier functions of proliferative epithelia are constantly challenged by mechanical and chemical constraints. How epithelia respond to and cope with disturbances of barrier functions to allow tissue integrity maintenance is poorly characterised. Cellular junctions play an important role in this process and intracellular traffic contribute to their homeostasis. Here, we reveal that, in Drosophila pupal notum, alteration of the bi- or tricellular septate junctions (SJs) triggers a mechanism with two prominent outcomes. On one hand, there is an increase in the levels of E-cadherin, F-actin, and non-muscle myosin II in the plane of adherens junctions. On the other hand, ß-integrin/Vinculin-positive cell contacts are reinforced along the lateral and basal membranes. We found that the weakening of SJ integrity, caused by the depletion of bi- or tricellular SJ components, alters ESCRT-III/Vps32/Shrub distribution, reduces degradation and instead favours recycling of SJ components, an effect that extends to other recycled transmembrane protein cargoes including Crumbs, its effector ß-Heavy Spectrin Karst, and ß-integrin. We propose a mechanism by which epithelial cells, upon sensing alterations of the SJ, reroute the function of Shrub to adjust the balance of degradation/recycling of junctional cargoes and thereby compensate for barrier junction defects to maintain epithelial integrity.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Epithelial Cells/metabolism , Intercellular Junctions/metabolism , Integrins/metabolism
20.
Int J Cancer ; 154(10): 1857-1868, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38212892

ABSTRACT

Distinguishing primary liver cancer (PLC), namely hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), from liver metastases is of crucial clinical importance. Histopathology remains the gold standard, but differential diagnosis may be challenging. While absent in most epithelial, the expression of the adherens junction glycoprotein N-cadherin is commonly restricted to neural and mesenchymal cells, or carcinoma cells that undergo the phenomenon of epithelial-to-mesenchymal transition (EMT). However, we recently established N- and E-cadherin expression as hallmarks of normal hepatocytes and cholangiocytes, which are also preserved in HCC and iCCA. Therefore, we hypothesized that E- and/or N-cadherin may distinguish between carcinoma derived from the liver vs carcinoma of other origins. We comprehensively evaluated E- and N-cadherin in 3359 different tumors in a multicenter study using immunohistochemistry and compared our results with previously published 882 cases of PLC, including 570 HCC and 312 iCCA. Most carcinomas showed strong positivity for E-cadherin. Strong N-cadherin positivity was present in HCC and iCCA. However, except for clear cell renal cell carcinoma (23.6% of cases) and thyroid cancer (29.2%), N-cadherin was only in some instances faintly expressed in adenocarcinomas of the gastrointestinal tract (0%-0.5%), lung (7.1%), pancreas (3.9%), gynecological organs (0%-7.4%), breast (2.2%) as well as in urothelial (9.4%) and squamous cell carcinoma (0%-5.6%). As expected, N-cadherin was detected in neuroendocrine tumors (25%-75%), malignant melanoma (46.2%) and malignant mesothelioma (41%). In conclusion, N-cadherin is a useful marker for the distinction of PLC vs liver metastases of extrahepatic carcinomas (P < .01).


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Cholangiocarcinoma/pathology , Cadherins/metabolism , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL