Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.347
Filter
1.
Cell Rep ; 43(9): 114676, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217614

ABSTRACT

Obesity and fatty liver diseases-metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH)-affect over one-third of the global population and are exacerbated in individuals with reduced functional aldehyde dehydrogenase 2 (ALDH2), observed in approximately 560 million people. Current treatment to prevent disease progression to cancer remains inadequate, requiring innovative approaches. We observe that Aldh2-/- and Aldh2-/-Sptbn1+/- mice develop phenotypes of human metabolic syndrome (MetS) and MASH with accumulation of endogenous aldehydes such as 4-hydroxynonenal (4-HNE). Mechanistic studies demonstrate aberrant transforming growth factor ß (TGF-ß) signaling through 4-HNE modification of the SMAD3 adaptor SPTBN1 (ß2-spectrin) to pro-fibrotic and pro-oncogenic phenotypes, which is restored to normal SMAD3 signaling by targeting SPTBN1 with small interfering RNA (siRNA). Significantly, therapeutic inhibition of SPTBN1 blocks MASH and fibrosis in a human model and, additionally, improves glucose handling in Aldh2-/- and Aldh2-/-Sptbn1+/- mice. This study identifies SPTBN1 as a critical regulator of the functional phenotype of toxic aldehyde-induced MASH and a potential therapeutic target.

2.
Life Sci ; 356: 123033, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39222837

ABSTRACT

Human ALDH comprise 19 subfamilies in which ALDH1A1, ALDH1A3, ALDH3A1, ALDH5A1, ALDH7A1, and ALDH18A1 are implicated in CSC. Studies have shown that ALDH can also be involved in drug resistance and standard chemotherapy regimens are ineffective in treating patients at the stage of disease recurrence. Existing chemotherapeutic drugs eliminate the bulk of tumors but are usually not effective against CSC which express ALDH+ population. Henceforth, targeting ALDH is convincing to treat the patient's post-relapse. Combination therapies that interlink signaling mechanisms seem promising to increase the overall disease-free survival rate. Therefore, targeting ALDH through ALDH inhibitors along with immunotherapies may create a novel platform for translational research. This review aims to fill in the gap between ALDH1 family members in relation to its cell signaling mechanisms, highlighting their potential as molecular targets to sensitize recurrent tumors and bring forward the future development concerning the current progress and draw backs. This review summarizes the role of cancer stem cells and their upregulation by maintaining the tumor microenvironment in which ALDH is specifically highlighted. It discusses the regulation of ALDH family proteins and the crosstalk between ALDH and CSC in relation to cancer metabolism. Furthermore, it establishes the correlation between ALDH involved signaling mechanisms and their specific targeted inhibitors, as well as their functional modularity, bioavailability, and mechanistic role in various cancers.

5.
Cancer Diagn Progn ; 4(5): 579-585, 2024.
Article in English | MEDLINE | ID: mdl-39238625

ABSTRACT

Background/Aim: The role of alcohol consumption and aldehyde dehydrogenase 2 (ALDH2) genotype in hepatocellular carcinoma (HCC) development remains uncertain. Materials and Methods: We conducted genotyping of the ALDH2 rs671 single nucleotide polymorphism in 298 patients with HCC and 889 non-cancerous healthy controls. We assessed associations stratified by sex and alcohol consumption status. Results: Distribution of ALDH2 rs671 variant genotypes differed significantly between HCC patients and controls (ptrend=0.0311). Logistic regression analyses indicated that compared to the wild-type GG genotype, the heterozygous variant AG genotype and homozygous variant AA genotype conferred 1.22- and 1.77-fold increases in HCC risk (p=0.1794 and 0.0150, respectively). Allelic frequency analysis showed that the A allele was associated with a 1.29-fold increased HCC risk (p=0.0123). Additionally, AA genotype carriers had significantly higher HCC risk than GG genotype carriers among males (p=0.0145) and non-alcohol drinkers (p<0.001). Conclusion: HCC risk is influenced by ALDH2 genotype, with effects modified by sex and alcohol consumption. Particularly, individuals with the ALDH2 rs671 AA genotype should avoid alcohol consumption, especially males.

7.
Adv Sci (Weinh) ; : e2402710, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39159058

ABSTRACT

Acetaminophen (APAP) overdose is a major cause of drug-induced liver injury. Sirtuins 5 (SIRT5) has been implicated in the development of various liver diseases. However, its involvement in APAP-induced acute liver injury (AILI) remains unclear. The present study aimed to explore the role of SIRT5 in AILI. SIRT5 expression is dramatically downregulated by APAP administration in mouse livers and AML12 hepatocytes. SIRT5 deficiency not only exacerbates liver injury and the inflammatory response, but also worsens mitochondrial oxidative stress. Conversely, the opposite pathological and biochemical changes are observed in mice with SIRT5 overexpression. Mechanistically, quantitative succinylome analysis and site mutation experiments revealed that SIRT5 desuccinylated aldehyde dehydrogenase 2 (ALDH2) at lysine 385 and maintained the enzymatic activity of ALDH2, resulting in the suppression of inflammation and mitochondrial oxidative stress. Furthermore, succinylation of ALDH2 at lysine 385 abolished its protective effect against AILI, and the protective effect of SIRT5 against AILI is dependent on the desuccinylation of ALDH2 at K385. Finally, virtual screening of natural compounds revealed that Puerarin promoted SIRT5 desuccinylase activity and further attenuated AILI. Collectively, the present study showed that the SIRT5-ALDH2 axis plays a critical role in AILI progression and might be a strategy for therapeutic intervention.

8.
Cell Metab ; 36(8): 1696-1710.e10, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39111285

ABSTRACT

Patients with high ALDH1A3-expressing glioblastoma (ALDH1A3hi GBM) show limited benefit from postoperative chemoradiotherapy. Understanding the mechanisms underlying such resistance in these patients is crucial for the development of new treatments. Here, we show that the interaction between ALDH1A3 and PKM2 enhances the latter's tetramerization and promotes lactate accumulation in glioblastoma stem cells (GSCs). By scanning the lactylated proteome in lactate-accumulating GSCs, we show that XRCC1 undergoes lactylation at lysine 247 (K247). Lactylated XRCC1 shows a stronger affinity for importin α, allowing for greater nuclear transposition of XRCC1 and enhanced DNA repair. Through high-throughput screening of a small-molecule library, we show that D34-919 potently disrupts the ALDH1A3-PKM2 interaction, preventing the ALDH1A3-mediated enhancement of PKM2 tetramerization. In vitro and in vivo treatment with D34-919 enhanced chemoradiotherapy-induced apoptosis of GBM cells. Together, our findings show that ALDH1A3-mediated PKM2 tetramerization is a potential therapeutic target to improve the response to chemoradiotherapy in ALDH1A3hi GBM.


Subject(s)
Glioblastoma , Thyroid Hormone-Binding Proteins , X-ray Repair Cross Complementing Protein 1 , Glioblastoma/metabolism , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Animals , Cell Line, Tumor , Mice , X-ray Repair Cross Complementing Protein 1/metabolism , X-ray Repair Cross Complementing Protein 1/genetics , Drug Resistance, Neoplasm/drug effects , Mice, Nude , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Membrane Proteins/metabolism , Carrier Proteins/metabolism , Thyroid Hormones/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Aldehyde Oxidoreductases , Oxidoreductases Acting on CH-NH Group Donors
9.
J Exp Clin Cancer Res ; 43(1): 237, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39164746

ABSTRACT

BACKGROUND: Activator protein-1 (AP-1) represents a transcription factor family that has garnered growing attention for its extensive involvement in tumor biology. However, the roles of the AP-1 family in the evolution of lung cancer remain poorly characterized. FBJ Murine Osteosarcoma Viral Oncogene Homolog B (FOSB), a classic AP-1 family member, was previously reported to play bewilderingly two-polarized roles in non-small cell lung cancer (NSCLC) as an enigmatic double-edged sword, for which the reasons and significance warrant further elucidation. METHODS AND RESULTS: Based on the bioinformatics analysis of a large NSCLC cohort from the TCGA database, our current work found the well-known tumor suppressor gene TP53 served as a key code to decipher the two sides of FOSB - its expression indicated a positive prognosis in NSCLC patients harboring wild-type TP53 while a negative one in those harboring mutant TP53. By constructing a panel of syngeneically derived NSCLC cells expressing p53 in different statuses, the radically opposite prognostic effects of FOSB expression in NSCLC population were validated, with the TP53-R248Q mutation site emerging as particularly meaningful. Transcriptome sequencing showed that FOSB overexpression elicited diversifying transcriptomic landscapes across NSCLC cells with varying genetic backgrounds of TP53 and, combined with the validation by RT-qPCR, PREX1 (TP53-Null), IGFBP5 (TP53-WT), AKR1C3, and ALDH3A1 (TP53-R248Q) were respectively identified as p53-dependent transcriptional targets of FOSB. Subsequently, the heterogenous impacts of FOSB on the tumor biology in NSCLC cells via the above selective transcriptional targets were confirmed in vitro and in vivo. Mechanistic investigations revealed that wild-type or mutant p53 might guide FOSB to recognize and bind to distinct promoter sequences via protein-protein interactions to transcriptionally activate specific target genes, thereby creating disparate influences on the progression and prognosis in NSCLC. CONCLUSIONS: FOSB expression holds promise as a novel prognostic biomarker for NSCLC in combination with a given genetic background of TP53, and the unique interactions between FOSB and p53 may serve as underlying intervention targets for NSCLC.


Subject(s)
Disease Progression , Lung Neoplasms , Proto-Oncogene Proteins c-fos , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Prognosis , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Mice , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Female , Male , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
10.
Mol Carcinog ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136580

ABSTRACT

Gene fusions are common somatic alterations in cancers, and fusions with tumorigenic features have been identified as novel drivers of cancer and therapeutic targets. Few studies have determined whether the oncogenic ability of fusion genes is related to the induction of stemness in cells. Cancer stem cells (CSCs) are a subset of cells that contribute to cancer progression, metastasis, and recurrence, and are critical components of the aggressive features of cancer. Here, we investigated the CSC-like properties induced by CD63-BCAR4 fusion gene, previously reported as an oncogenic fusion, and its potential contribution for the enhanced metastasis as a notable characteristic of CD63-BCAR4. CD63-BCAR4 overexpression facilitates sphere formation in immortalized bronchial epithelial cells. The significantly enhanced sphere-forming activity observed in tumor-derived cells from xenografted mice of CD63-BCAR4 overexpressing cells was suppressed by silencing of BCAR4. RNA microarray analysis revealed that ALDH1A1 was upregulated in the BCAR4 fusion-overexpressing cells. Increased activity and expression of ALDH1A1 were observed in the spheres of CD63-BCAR4 overexpressing cells compared with those of the empty vector. CD133 and CD44 levels were also elevated in BCAR4 fusion-overexpressing cells. Increased NANOG, SOX2, and OCT-3/4 protein levels were observed in metastatic tumor cells derived from mice injected with CD63-BCAR4 overexpressing cells. Moreover, DEAB, an ALDH1A1 inhibitor, reduced the migration activity induced by CD63-BCAR4 as well as the sphere-forming activity. Our findings suggest that CD63-BCAR4 fusion induces CSC-like properties by upregulating ALDH1A1, which contributes to its metastatic features.

11.
Exp Cell Res ; 442(1): 114213, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39173941

ABSTRACT

Since metastasis accounts for the majority of cancer morbidity and mortality, attempts are focused to block metastasis and metastasis initiating cellular programs. It is generally believed that hypoxia, reactive oxygen species (ROS) and the dysregulated redox pathways regulate metastasis. Although induction of epithelial to mesenchymal transition (EMT) can initiate cell motility to different sites other than the primary site, the initiation of a secondary tumor at a distant site depends on self-renewal property of cancer stem cell (CSC) property. That subset of metastatic cells possessing CSC property are referred to as metastasis initiating cells (MICs). Among the different cellular intermediates regulating metastasis in response to hypoxia by inducing EMT and self-renewal property, ALDH1A1 is a critical molecule, which can be used as a marker for MICs in a wide variety of malignancies. The cytosolic ALDHs can irreversibly convert retinal to retinoic acid (RA), which initiates RA signaling, important for self-renewal and EMT. The metastasis permissive tumor microenvironment increases the expression of ALDH1A1, primarily through HIF1α, and leads to metabolic reprograming through OXPHOS regulation. The ALDH1A1 expression and its high activity can reprogram the cancer cells with the transcriptional upregulation of several genes, involved in EMT through RA signaling to manifest hybrid EMT or Hybrid E/M phenotype, which is important for acquiring the characteristics of MICs. Thus, the review on this topic highlights the use of ALDH1A1 as a marker for MICs, and reporters for the marker can be effectively used to trace the population in mouse models, and to screen drugs that target MICs.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Biomarkers, Tumor , Epithelial-Mesenchymal Transition , Neoplasm Metastasis , Neoplastic Stem Cells , Retinal Dehydrogenase , Humans , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Retinal Dehydrogenase/metabolism , Retinal Dehydrogenase/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Epithelial-Mesenchymal Transition/genetics , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Tumor Microenvironment , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/genetics
12.
Sci Rep ; 14(1): 20222, 2024 08 30.
Article in English | MEDLINE | ID: mdl-39215116

ABSTRACT

The adult mammalian heart has extremely limited cardiac regenerative capacity. Most cardiomyocytes live in a state of permanent cell-cycle arrest and are unable to re-enter the cycle. Cardiomyocytes switch from cell proliferation to a maturation state during neonatal development. Although several signaling pathways are involved in this transition, the molecular mechanisms by which these inputs coordinately regulate cardiomyocyte maturation are not fully understood. Retinoic acid (RA) plays a pivotal role in development, morphogenesis, and regeneration. Despite the importance of RA signaling in embryo heart development, little is known about its function in the early postnatal period. We found that mRNA expression of aldehyde dehydrogenase 1 family member A2 (Aldh1a2), which encodes the key enzyme for synthesizing all-trans retinoic acid (ATRA) and is an important regulator for RA signaling, was transiently upregulated in neonatal mouse ventricles. Single-cell transcriptome analysis and immunohistochemistry revealed that Aldh1a2 expression was enriched in cardiac fibroblasts during the early postnatal period. Administration of ATRA inhibited cardiomyocyte proliferation in cultured neonatal rat cardiomyocytes and human cardiomyocytes. RNA-seq analysis indicated that cell proliferation-related genes were downregulated in prenatal rat ventricular cardiomyocytes treated with ATRA, while cardiomyocyte maturation-related genes were upregulated. These findings suggest that RA signaling derived from cardiac fibroblasts is one of the key regulators of cardiomyocyte proliferation and maturation during neonatal heart development.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Cell Proliferation , Myocytes, Cardiac , Retinal Dehydrogenase , Signal Transduction , Tretinoin , Animals , Tretinoin/pharmacology , Tretinoin/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Mice , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Retinal Dehydrogenase/metabolism , Retinal Dehydrogenase/genetics , Cell Proliferation/drug effects , Rats , Humans , Up-Regulation , Animals, Newborn , Cell Cycle/drug effects , Cell Differentiation/drug effects , Heart/drug effects , Heart/growth & development , Cells, Cultured
13.
Pharmaceutics ; 16(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39204369

ABSTRACT

Cancer stem cells (CSCs) possess a significant ability to renew themselves, which gives them a strong capacity to form tumors and expand to encompass additional body areas. In addition, they possess inherent resistance to chemotherapy and radiation therapies used to treat many forms of cancer. Scientists have focused on investigating the signaling pathways that are highly linked to the ability of CSCs to renew themselves and maintain their stem cell properties. The pathways encompassed are Notch, Wnt/ß-catenin, hedgehog, STAT3, NF-κB, PI-3K/Akt/mTOR, sirtuin, ALDH, MDM2, and ROS. Recent studies indicate that directing efforts towards CSC cells is essential in eradicating the overall cancer cell population and reducing the likelihood of tumor metastasis. As our comprehension of the mechanisms that stimulate CSC activity, growth, and resistance to chemotherapy advances, the discovery of therapeutic drugs specifically targeting CSCs, such as small-molecule compounds, holds the potential to revolutionize cancer therapy. This review article examines and analyzes the novel anti-CSC compounds that have demonstrated effective and selective targeting of pathways associated with the renewal and stemness of CSCs. We also discussed their special drug metabolism and absorption mechanisms. CSCs have been the subject of much study in cancer biology. As a possible treatment for malignancies, small-molecule drugs that target CSCs are gaining more and more attention. This article provides a comprehensive review of the current state of key small-molecule compounds, summarizes their recent developments, and anticipates the future discovery of even more potent and targeted compounds, opening up new avenues for cancer treatment.

14.
J Cancer ; 15(15): 4879-4892, 2024.
Article in English | MEDLINE | ID: mdl-39132147

ABSTRACT

Background: Tryptophan (Trp) metabolism is closely related to tumor immunity, and its disorder can cause an immunosuppressive microenvironment, promoting the occurrence and development of hepatocellular carcinoma (HCC). The aim of this study is to explore and validate the independent prognostic genes in patients suffered from HCC. Methods: The transcriptome data of GSE87630 from GEO database were downloaded to analyze differentially expressed genes (DECs) which were intersected with the gene sets of Trp metabolism from MsigDB database. Univariate/multivariate COX regression was performed to identify the genes with independent prognostic significance. TCGA, GTEx, UALCAN, and GEPIA2 databases were applied to analyze DEGs for prognosis. RNA seq data of HCC from TCGA database were collected for Lasso regression analysis. The ssGSEA algorithm was used to perform the analysis of TCGA data. The effects of the candidate differential gene on HCC cells proliferation and migration were evaluated using EdU immunofluorescence and transwell assays. Results: Trp metabolism-related DECs for HCCs were obtained, including MAOB, CYP1A2, KYNU, CYP2E1, ALDH2, CYP2C18, TDO2, AOX1, CYP3A4 and INMT. Moreover, multivariate COX regression results showed that ALDH2 can serve as an independent prognostic molecule and its transcriptional and translational levels were significantly reduced in the tumor tissues. The low expression of ALDH2 was associated with poor prognosis. Overexpression of ALDH2 dramatically reduced the HCC cells proliferation and migration. Conclusion: ALDH2 is associated with Trp metabolism and its downregulation in HCC has a potential value on prognosis. Overexpression of ALDH2 can reduce the proliferation and migration of HCC cells.

15.
Redox Biol ; 76: 103318, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39178733

ABSTRACT

The aldehyde dehydrogenase 2 (ALDH2) rs671 polymorphism commonly exists in the East Asian populations and is associated with high risks of cardiovascular disease (CVD). However, the cellular and molecular mechanisms that underlie the ALDH2 rs671 mutant-linked high CVD remain elusive. Here, we show that macrophages derived from human ALDH2 rs671 carriers and ALDH2 knockout mice exhibited an enhanced pro-inflammatory macrophage phenotype and an impaired anti-inflammatory macrophage phenotype. Transplanting bone marrow from ALDH2-/-ApoE-/- to ApoE-/- mice significantly increased atherosclerotic plaque growth and pro-inflammatory macrophage polarization in vivo. Mechanistically, ALDH2 inhibited activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in macrophages. Pharmacological inhibition of cGAS by RU.521 completely neutralized ALDH2-deficiency-induced macrophage polarization. In-depth mechanistic investigation showed that ALDH2 accelerated cGAS K48-linked polyubiquitination degradation at lysine 282 in macrophages by reducing the interaction between ubiquitin-specific protease 14 (USP14) and cGAS, mainly through its enzymatic role in mitigating 4-hydroxy-2-nonenal (4-HNE) accumulation. Consistently, USP14 knockdown in bone marrow cells alleviated proinflammatory responses in macrophages and protected against atherosclerosis. Our findings provide new mechanistic insights of ALDH2 deficiency-associated proinflammation and atherosclerosis and new therapeutic and preventive paradigms for treatment of atherosclerosis-associated CVD.

16.
Chem Biol Interact ; 402: 111202, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39128802

ABSTRACT

High-grade gliomas, including glioblastoma multiforme (GBM), continue to be a leading aggressive brain tumor in adults, marked by its rapid growth and invasive nature. Aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), an enzyme, plays a significant role in tumor progression, yet its function in high-grade gliomas is still poorly investigated. In this study, we evaluated ALDH1A1 levels in clinical samples of GBM. We also assessed the prognostic significance of ALDH1A1 expression in GBM and LGG (low grade glioma) patients using TCGA (The Cancer Genome Atlas) database analysis. The MTT and transwell assays were utilized to examine cell growth and the invasive capability of U87 cells, respectively. We quantitatively examined markers for cell proliferation (Ki-67 and cyclin D1) and invasion (MMP2 and 9). A Western blot test was conducted to determine the downstream signaling of ALDH1A1. We found a notable increase in ALDH1A1 expression in high-grade gliomas compared to their low-grade counterparts. U87 cells that overexpressed ALDH1A1 showed increased cell growth and invasion. We found that ALDH1A1 promotes the phosphorylation of AKT, and inhibiting AKT phosphorylation mitigates the ALDH1A1's effects on tumor growth and migration. In summary, our findings suggest ALDH1A1 as a potential therapeutic target for GBM treatment.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Brain Neoplasms , Cell Movement , Cell Proliferation , Glioblastoma , Neoplasm Invasiveness , Retinal Dehydrogenase , Humans , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Cell Line, Tumor , Retinal Dehydrogenase/metabolism , Retinal Dehydrogenase/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphorylation , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Cyclin D1/metabolism , Cyclin D1/genetics , Signal Transduction
17.
Article in English | MEDLINE | ID: mdl-39012380

ABSTRACT

PURPOSE: Cyclophosphamide, Epirubicin/Doxorubicin, 5-fluorouracil (CEF or CAF) chemotherapy has long been a standard first-line treatment for breast cancer. The genetic variations of enzymes that are responsible for the metabolism of these drugs have been linked to altered treatment response and toxicity. Two drug-metabolizing enzymes ALDH1A1 and NQO1 are critically involved in the pathways of CEF/CAF metabolism. This study aimed to evaluate the effect of ALDH1A1 (rs13959) and NQO1 (rs1800566) polymorphisms on treatment response and toxicities caused by adjuvant (ACT) and neoadjuvant chemotherapy (NACT) where CEF/CAF combination was used to treat Bangladeshi breast cancer patients. METHODS: A total of 330 patients were recruited from various hospitals, with 150 receiving neoadjuvant chemotherapy and 180 receiving adjuvant chemotherapy. To extract genomic DNA, a non-enzymatic simple salting out approach was adopted. The polymerase chain reaction-restriction fragment length polymorphism method was used to detect genetic polymorphisms. Unconditional logistic regression was used to derive odds ratios (ORs) with 95% confidence intervals (CIs) to study the association between genetic polymorphisms and clinical outcome and toxicity. RESULTS: A statistically significant association was observed between ALDH1A1 (rs13959) polymorphism and treatment response (TT vs. CC: aOR = 6.40, p = 0.007; recessive model: aOR = 6.38, p = 0.002; allele model: p = 0.032). Patients with the genotypes TT and CT + TT of the NQO1 (rs1800566) polymorphism had a significantly higher risk of toxicities such as anemia (aOR = 0.34, p = 0.006 and aOR = 0.58, p = 0.021), neutropenia (aOR = 0.42, p = 0.044 and aOR = 0.57, p = 0.027), leukopenia (aOR = 0.33, p = 0.010 and aOR = 0.46, p = 0.005), and gastrointestinal toxicity (aOR = 0.30, p = 0.02 and aOR = 0.38, p = 0.006) when compared to the wild CC genotype, while patients with the genotype CT had a significant association with gastrointestinal toxicity (aOR = 0.42, p = 0.02) and leukopenia (aOR = 0.52, p = 0.010). The TT and CT + TT genotypes of rs13959 had a significantly higher risk of anemia (aOR = 2.00, p = 0.037 and aOR = 1.68, p = 0.029). There was no significant association between rs1800566 polymorphism and treatment response. CONCLUSION: Polymorphisms in ALDH1A1 (rs13959) and NQO1 (rs1800566) may be useful in predicting the probability of treatment response and adverse effects from CEF or CAF-based chemotherapy in breast cancer patients.

18.
Front Genet ; 15: 1405468, 2024.
Article in English | MEDLINE | ID: mdl-39011401

ABSTRACT

Genomic sequencing offers an untargeted, data-driven approach to genetic diagnosis; however, variants of uncertain significance often hinder the diagnostic process. The discovery of rare genomic variants without previously known functional evidence of pathogenicity often results in variants being overlooked as potentially causative, particularly in individuals with undifferentiated phenotypes. Consequently, many neurometabolic conditions, including those in the GABA (gamma-aminobutyric acid) catabolism pathway, are underdiagnosed. Succinic semialdehyde dehydrogenase deficiency (SSADHD, OMIM #271980) is a neurometabolic disorder in the GABA catabolism pathway. The disorder is due to bi-allelic pathogenic variants in ALDH5A1 and is usually characterized by moderate-to-severe developmental delays, hypotonia, intellectual disability, ataxia, seizures, hyperkinetic behavior, aggression, psychiatric disorders, and sleep disturbances. In this study, we utilized an integrated approach to diagnosis of SSADHD by examining molecular, clinical, and metabolomic data from a single large commercial laboratory. Our analysis led to the identification of 16 patients with likely SSADHD along with three novel variants. We also showed that patients with this disorder have a clear metabolomic signature that, along with molecular and clinical findings, may allow for more rapid and efficient diagnosis. We further surveyed all available pathogenic/likely pathogenic variants and used this information to estimate the global prevalence of this disease. Taken together, our comprehensive analysis allows for a global approach to the diagnosis of SSADHD and provides a pathway to improved diagnosis and potential incorporation into newborn screening programs. Furthermore, early diagnosis facilitates referral to genetic counseling, family support, and access to targeted treatments-taken together, these provide the best outcomes for individuals living with either GABA-TD or SSADHD, as well as other rare conditions.

19.
Res Sq ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38978598

ABSTRACT

The striatonigral neurons are known to promote locomotion1,2. These neurons reside in both the patch (also known as striosome) and matrix compartments of the dorsal striatum3-5. However, the specific contribution of patch and matrix striatonigral neurons to locomotion remain largely unexplored. Using molecular identifier Kringle-Containing Protein Marking the Eye and the Nose (Kremen1) and Calbidin (Calb1)6, we showed in mouse models that patch and matrix striatonigral neurons exert opposite influence on locomotion. While a reduction in neuronal activity in matrix striatonigral neurons precedes the cessation of locomotion, fiber photometry recording during self-paced movement revealed an unexpected increase of patch striatonigral neuron activity, indicating an inhibitory function. Indeed, optogenetic activation of patch striatonigral neurons suppressed locomotion, contrasting with the locomotion-promoting effect of matrix striatonigral neurons. Consistently, patch striatonigral neuron activation markedly inhibited dopamine release, whereas matrix striatonigral neuron activation initially promoted dopamine release. Moreover, the genetic deletion of inhibitory GABA-B receptor Gabbr1 in Aldehyde dehydrogenase 1A1-positive (ALDH1A1+) nigrostriatal dopaminergic neurons (DANs) completely abolished the locomotion-suppressing effect caused by activating patch striatonigral neurons. Together, our findings unravel a compartment-specific mechanism governing locomotion in the dorsal striatum, where patch striatonigral neurons suppress locomotion by inhibiting the activity of ALDH1A1+ nigrostriatal DANs.

20.
Clin Exp Med ; 24(1): 152, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970690

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer characterized by metabolic reprogramming. Glutamine metabolism is pivotal in metabolic reprogramming, contributing to the significant heterogeneity observed in ccRCC. Consequently, developing prognostic markers associated with glutamine metabolism could enhance personalized treatment strategies for ccRCC patients. This study obtained RNA sequencing and clinical data from 763 ccRCC cases sourced from multiple databases. Consensus clustering of 74 glutamine metabolism related genes (GMRGs)- profiles stratified the patients into three clusters, each of which exhibited distinct prognosis, tumor microenvironment, and biological characteristics. Then, six genes (SMTNL2, MIOX, TMEM27, SLC16A12, HRH2, and SAA1) were identified by machine-learning algorithms to develop a predictive signature related to glutamine metabolism, termed as GMRScore. The GMRScore showed significant differences in clinical prognosis, expression profile of immune checkpoints, abundance of immune cells, and immunotherapy response of ccRCC patients. Besides, the nomogram incorporating the GMRScore and clinical features showed strong predictive performance in prognosis of ccRCC patients. ALDH18A1, one of the GRMGs, exhibited elevated expression level in ccRCC and was related to markedly poorer prognosis in the integrated cohort, validated by proteomic profiling of 232 ccRCC samples from Fudan University Shanghai Cancer Center (FUSCC). Conducting western blotting, CCK-8, transwell, and flow cytometry assays, we found the knockdown of ALDH18A1 in ccRCC significantly promoted apoptosis and inhibited proliferation, invasion, and epithelial-mesenchymal transition (EMT) in two human ccRCC cell lines (786-O and 769-P). In conclusion, we developed a glutamine metabolism-related prognostic signature in ccRCC, which is tightly linked to the tumor immune microenvironment and immunotherapy response, potentially facilitating precision therapy for ccRCC patients. Additionally, this study revealed the key role of ALDH18A1 in promoting ccRCC progression for the first time.


Subject(s)
Carcinoma, Renal Cell , Glutamine , Kidney Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Glutamine/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Prognosis , Cell Line, Tumor , Male , Female , Gene Expression Regulation, Neoplastic , Cell Proliferation , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Nomograms , Middle Aged , Apoptosis , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL