Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters








Publication year range
1.
Molecules ; 29(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39274986

ABSTRACT

The interface connects the reinforced phase and the matrix of materials, with its microstructure and interfacial configurations directly impacting the overall performance of composites. In this study, utilizing seven atomic layers of Mg(0001) and Ti(0001) surface slab models, four different Mg(0001)/Ti(0001) interfaces with varying atomic stacking configurations were constructed. The calculated interface adhesion energy and electronic bonding information of the Mg(0001)/Ti(0001) interface reveal that the HCP2 interface configuration exhibits the best stability. Moreover, Si, Ca, Sc, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, Sn, La, Ce, Nd, and Gd elements are introduced into the Mg/Ti interface layer or interfacial sublayer of the HCP2 configurations, and their interfacial segregation behavior is investigated systematically. The results indicate that Gd atom doping in the Mg(0001)/Ti(0001) interface exhibits the smallest heat of segregation, with a value of -5.83 eV. However, Ca and La atom doping in the Mg(0001)/Ti(0001) interface show larger heat of segregation, with values of 0.84 and 0.63 eV, respectively. This implies that the Gd atom exhibits a higher propensity to segregate at the interface, whereas the Ca and La atoms are less inclined to segregate. Moreover, the electronic density is thoroughly analyzed to elucidate the interfacial segregation behavior. The research findings presented in this paper offer valuable guidance and insights for designing the composition of magnesium-based composites.

2.
Materials (Basel) ; 17(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38930388

ABSTRACT

The continuous industrial development that occurs worldwide generates the need to develop new materials with increasingly higher functional properties. This need also applies to the basic material for electricity purposes, which is copper. In this article, we carry out studies on the influence of various alloying elements such as Mg, In, Si, Nb, Hf, Sb, Ni, Al, Fe, Zr, Cr, Zn, P, Ag, Sc, Pb, Sn, Co, Ti, Mn, Te and Bi on the electrical and mechanical properties of ETP-grade copper. The research involves producing copper alloys using the gravity die casting method with alloy additions of 0.1 wt.%, 0.3 wt.% and 0.5 wt.%. All resulting materials are cold-worked to produce wires, which are subsequently homogenized and annealed. The materials produced in this manner undergo testing to determine their specific electrical conductivity, tensile strength, yield strength, elongation and Vickers hardness (HV10 scale).

3.
Materials (Basel) ; 17(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38793474

ABSTRACT

Low-alloy wear-resistant steel often requires the addition of trace alloy elements to enhance its performance while also considering the cost-effectiveness of production. In order to comparatively analyze the strengthening mechanisms of Mo and Cr elements and further explore economically feasible production processes, we designed two types of low-alloy wear-resistant steels, based on C-Mn series wear-resistant steels, with individually added Mo and Cr elements, comparing and investigating the roles of the alloying elements Mo and Cr in low-alloy wear-resistant steels. Utilizing JMatPro software to calculate Continuous Cooling Transformation (CCT) curves, conducting thermal simulation quenching experiments using a Gleeble-3800 thermal simulator, and employing equipment such as a metallographic microscope, transmission electron microscope, and tensile testing machine, this study comparatively investigated the influence of Mo and Cr on the microstructural transformation and mechanical properties of low-alloy wear-resistant steels under different cooling rates. The results indicate that the addition of the Mo element in low-alloy wear-resistant steel can effectively suppress the transformation of ferrite and pearlite, reduce the martensitic transformation temperature, and lower the critical cooling rate for complete martensitic transformation, thereby promoting martensitic transformation. Adding Cr elements can reduce the austenite transformation zone, decrease the rate of austenite formation, and promote the occurrence of low-temperature phase transformation. Additionally, Mo has a better effect on improving the toughness of low-temperature impact, and Cr has a more significant improvement in strength and hardness. The critical cooling rates of C-Mn-Mo steel and C-Mn-Cr steel for complete martensitic transition are 13 °C/s and 24 °C/s, respectively. With the increase in the cooling rate, the martensitic tissues of the two experimental steels gradually refined, and the characteristics of the slats gradually appeared. In comparison, the C-Mn-Mo steel displays a higher dislocation density, accompanied by dislocation entanglement phenomena, and contains a small amount of residual austenite, while granular ε-carbides are clearly precipitated in the C-Mn-Cr steel. The C-Mn-Mo steel achieves its best performance at a cooling rate of 25 °C/s, whereas the C-Mn-Cr steel only needs to increase the cooling rate to 35 °C/s to attain a similar comprehensive performance to the C-Mn-Mo steel.

4.
Materials (Basel) ; 17(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38255610

ABSTRACT

In this study, metal disks with different chemical composition (two Ag-based alloys and three Cu-based alloys) were buried in the soil of coastal archaeological sites for a period of 15 years. The aim was to naturally induce the growth of corrosion patinas to obtain a deeper insight into the role of alloying elements in the formation of the patinas and into the degradation mechanisms occurring in the very early stages of burial. To reach the aim, the morphological, compositional and structural features of the patinas grown over 15 years were extensively characterized by optical microscopy, field emission scanning electron microscopy coupled with energy dispersive spectrometry, X-ray diffraction and micro-Raman spectroscopy. Results showed that the Cu amount in Ag-based alloys strongly affected the final appearance, as well as the composition and structure of the patinas. Corrosion mechanisms typical of archaeological finds, such as the selective dissolution of Cu, Pb and Zn and internal oxidation of Sn, occurred in the Cu-based alloys, even if areas enriched in Zn and Pb compounds were also detected and attributed to an early stage of degradation. In addition, some unusual and rare compounds were detected in the patinas developed on the Cu-based disks.

5.
Materials (Basel) ; 16(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834566

ABSTRACT

The study presents the results of research on the influence of different contents of main alloying additions, such as Mg (2 ÷ 2.5 wt.%), Cu (1.2 ÷ 1.9 wt.%), and Zn (5.5 ÷ 8 wt.%), on the strength properties and plasticity of selected Al-Zn-Mg-Cu alloys extruded on a bridge die. The test material variants were based on the EN AW-7075 alloy. The research specimens, in the form of 100 mm extrusion billets obtained with the DC casting method, were homogenized and extrusion welded during direct extrusion on a 5 MN horizontal press. A 60 × 6 mm die cross-section was used, with one bridge arranged in a way to extrude a flat bar with a weld along its entire length. The obtained materials in the F and T6 tempers were characterized in terms of their strength properties, hardness, and microstructure, using EBSD and SEM. The extrusion welding process did not significantly affect the properties of the tested materials; the measured differences in the yield strength and tensile strength between the materials, with and without the welding seam, were up to ±5%, regardless of chemical composition. A decrease in plasticity was observed with an increase in the content of the alloying elements. The highest strength properties in the T6 temper were achieved for the alloy with the highest content of alloying elements (10.47 wt.%), both welded and solid. Significant differences in the microstructure between the welded and solid material in the T6 temper were observed.

6.
Materials (Basel) ; 16(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37109807

ABSTRACT

Aluminum alloys have been extensively used as heatproof and heat-dissipation components in automotive and communication industries, and the demand for aluminum alloys with higher thermal conductivity is increasing. Therefore, this review focuses on the thermal conductivity of aluminum alloys. First, we formulate the theory of thermal conduction of metals and effective medium theory, and then analyze the effect of alloying elements, secondary phases, and temperature on the thermal conductivity of aluminum alloys. Alloying elements are the most crucial factor, whose species, existing states, and mutual interactions significantly affect the thermal conductivity of aluminum. Alloying elements in a solid solution weaken the thermal conductivity of aluminum more dramatically than those in the precipitated state. The characteristics and morphology of secondary phases also affect thermal conductivity. Temperature also affects thermal conductivity by influencing the thermal conduction of electrons and phonons in aluminum alloys. Furthermore, recent studies on the effects of casting, heat treatment, and AM processes on the thermal conductivity of aluminum alloys are summarized, in which processes mainly affect thermal conductivity by varying existing states of alloying elements and the morphology of secondary phases. These analyses and summaries will further promote the industrial design and development of aluminum alloys with high thermal conductivity.

7.
Bioelectrochemistry ; 151: 108377, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36731176

ABSTRACT

The microbial corrosion of marine structural steels (09CrCuSb low alloy steel (LAS) and Q235 carbon steel (CS)) in Desulfovibrio vulgaris medium and Pseudomonas aeruginosa medium based on seawater was investigated. In the D. vulgaris medium, the weight loss and maximum pit depth of 09CrCuSb LAS were 0.59 and 0.56 times as much as those of Q235 CS, respectively. Meanwhile, in the P. aeruginosa medium, the values were 0.53 and 0.67 times, respectively. Compared to Q235 CS, 09CrCuSb LAS contains more alloy elements (Cr, Ni, Cu, Al and Sb), which led to obvious inhibition of sessile bacteria growth but had no effect on planktonic bacteria. The number of live sessile cells on the 09CrCuSb LAS surface was 23.4 % and 26.9 % of that on the Q235 CS surface in the D. vulgaris medium and P. aeruginosa medium, respectively. Fewer sessile cells on the steel surface led to a lower extracellular electron transfer (EET) rate so that less corrosion occurred. In addition, the combined effect of alloying elements on grain refinement and passive film formation also improved the anti-corrosion property of the steels.


Subject(s)
Alloys , Steel , Steel/chemistry , Alloys/pharmacology , Electrons , Biofilms , Electron Transport , Pseudomonas aeruginosa/physiology , Carbon/chemistry
8.
J Phys Condens Matter ; 35(11)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36538826

ABSTRACT

Diamond/copper composites with high thermal conductivity and a variable thermal expansion coefficient are promising materials for thermal management applications. However, achieving the desired thermal conductivity of the composite material is difficult due to detachment or weak bonding between diamond and Cu. The interfacial properties of diamond/Cu composites can be improved using metal matrix alloying methods. In this study, we investigate the effects of alloying elements (B, Cr, Hf, Mo, Nb, Si, Ti, V, Zr) on the interfacial properties of diamond/Cu using first-principles calculations. Results showed that all alloying components could increase the interfacial bonding of diamond/Cu. Analysis of the electronic structure revealed that increased interfacial bonding strength after doping was the result of the stronger bonding of the alloying element atoms to the C atoms. The C atoms in the first layer of diamond at the interface formed wave peaks near the Fermi energy level after doping with B or Si atoms, facilitating electron-phonon interaction at the interface. The phonon properties of B4C and SiC were similar to those of diamond, which facilitated phonon-phonon coupling. B and Si were shown to be better alloying elements when interfacial bond strength and heat transfer were considered.

9.
Materials (Basel) ; 17(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38204043

ABSTRACT

Atomistic simulations on the creep of a nickel-based single-crystal superalloy are performed for examining whether the so-called rhenium effect can be tuned by changing the spatial distribution of rhenium in the nickel matrix phase. Results show that Rhenium dopants at {100} phase interfaces facilitate mobile partial dislocations, which intensify the creep, leading to a larger creep strain than that of a pure Ni/Ni3Al system containing no alloying dopants. If all the Re dopants in the matrix phase are far away from phase interfaces, a conventional retarding effect of Re can be observed. The current study implies a tunable Re effect on creep via dislocation triggering at the phase interfaces.

10.
Materials (Basel) ; 15(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35591632

ABSTRACT

In the present study, the statistical design of experiments (DOE) method was applied to study and control the properties of near-eutectic Al-11%Si alloys. In this study, we developed regression equations between response variables, including hardness, yield stress, ultimate tensile stress, elongation, total cutting force, cutting power, and tool life, and varying factors which included the percentage of the alloying element in the composition and the modification level. These equations may be analyzed quantitatively to acquire an understating of the effects of the main variables and their interactions on the mechanical behavior and the machinability of the alloy under investigation. Analysis of variance (ANOVA) was performed to verify the fit and adequacy of the developed mathematical models. The results show that increasing the levels of Cu and Fe results in an increase in hardness, yield stress and ultimate tensile strength in both modified and non-modified alloys. On the other hand, both Cu and Fe appear to affect the elongation adversely, whereas the Sr level shows a positive effect on the elongation percentage. We found that the Sr level had the most significant effect on the cutting forces and cutting power, followed by Fe and Cu contents.

11.
Materials (Basel) ; 15(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35591736

ABSTRACT

The paper is devoted to studying the chemical elements distribution in the material's structure depending on the manufacturing technological parameters and their effect on properties of a new self-lubricating antifriction composite based on powder nickel alloy EP975 with CaF2 solid lubricant for operation at temperature 800 °C and loads up to 5.0 MPa, in air. The study is focused on the features of alloying elements distribution in the composite matrix, which depends on the manufacturing technology. A uniform distribution of all alloying elements in the studied composite was shown. The chemical elements' uniform distribution in the material is associated with one of the most important preparatory technological operations in the general manufacturing technology used. This is a technological operation of mixing powders with subsequent analysis of the finished mixture. The uniform distribution of chemical elements determines the uniform arrangement of carbides and intermetallics in the composite. General manufacturing technology, which includes the main operations, such as hot isostatic pressing technology and hardening heat treatment, contributed to the obtainment of a practically isotropic composite with almost the same properties in the longitudinal and transverse directions. Because of the composite's structural homogeneity, without texturing, characteristics are isotropic. Improving the material's structural homogeneity helps to keep its mechanical and anti-friction qualities stable at high temperatures and stresses in the air. The performed studies demonstrated the correctness of the developed manufacturing technology that was confirmed by the electron microscopy method, micro-X-ray spectral analysis, mechanical and tribological tests. The developed high-temperature antifriction composite can be recommended for severe operating conditions, such as friction units of turbines, gas pumping stations, and high-temperature units of foundry metallurgical equipment.

12.
Materials (Basel) ; 14(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34640097

ABSTRACT

Inconel 738LC (IN738LC) is a nickel-based superalloy specially used in the hot section components of turbine engines. One of its main drawbacks relies on the cracking susceptibility when it is manufactured by laser powder bed fusion (LPBF). This paper analyzes the influence of minor alloying element concentration on cracking tendency of IN738LC superalloy manufactured by LPBF. For that objective, samples were manufactured using two powders, which presented different minor alloying elements concentration (Si, Zr and B). It was shown that the samples crack tendency was very different depending on the powder used for their manufacturing. In fact, the measured crack density value was 2.73 mm/mm2 for the samples manufactured with the powder with higher minor alloying elements concentration, while 0.25 mm/mm2 for the others. Additionally, a special emphasis has been put on elemental composition characterization in cracked grain boundaries in order to quantify possible Si or Zr enrichment. It has been also studied the differences of solidification ranges and grain structures between both samples as a consequence of different minor alloying elements concentration in order to analyze their effect on crack susceptibility. In this sense, Scheil-Gulliver simulation results have shown that samples with higher Si and Zr contents presented higher solidification range temperature. This fact, as well as an increase of the presence of high angle grain boundaries (HAGB), leaded to an increment in the crack formation during solidification. Therefore, in this research work, an understanding of the factors affecting crack phenomenon in the LPBF manufactured IN738LC was accomplished.

13.
Materials (Basel) ; 14(7)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805462

ABSTRACT

This paper reviews the phase structures and oxidation kinetics of complex Ti-Al alloys at oxidation temperatures in the range of 600-1000 °C. The mass gain and parabolic rate constants of the alloys under isothermal exposure at 100 h (or equivalent to cyclic exposure for 300 cycles) is compared. Of the alloying elements investigated, Si appeared to be the most effective in improving the oxidation resistance of Ti-Al alloys at high temperatures. The effect of alloying elements on the mechanical properties of Ti-Al alloys is also discussed. Significant improvement of the mechanical properties of Ti-Al alloys by element additions has been observed through the formation of new phases, grain refinement, and solid solution strengthening.

14.
Bioact Mater ; 6(8): 2569-2612, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33615045

ABSTRACT

Metals and alloys, including stainless steel, titanium and its alloys, cobalt alloys, and other metals and alloys have been widely used clinically as implant materials, but implant-related infection or inflammation is still one of the main causes of implantation failure. The bacterial infection or inflammation that seriously threatens human health has already become a worldwide complaint. Antibacterial metals and alloys recently have attracted wide attention for their long-term stable antibacterial ability, good mechanical properties and good biocompatibility in vitro and in vivo. In this review, common antibacterial alloying elements, antibacterial standards and testing methods were introduced. Recent developments in the design and manufacturing of antibacterial metal alloys containing various antibacterial agents were described in detail, including antibacterial stainless steel, antibacterial titanium alloy, antibacterial zinc and alloy, antibacterial magnesium and alloy, antibacterial cobalt alloy, and other antibacterial metals and alloys. Researches on the antibacterial properties, mechanical properties, corrosion resistance and biocompatibility of antibacterial metals and alloys have been summarized in detail for the first time. It is hoped that this review could help researchers understand the development of antibacterial alloys in a timely manner, thereby could promote the development of antibacterial metal alloys and the clinical application.

15.
Heliyon ; 6(7): e04463, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32728641

ABSTRACT

The high strength-to-weight ratio property of titanium aluminide (TiAl) based intermetallic alloys makes researchers regard this type of material as a potential replacement for the heavier superalloys of nickel. These alloys have been applied as turbocharger wheels of automobile and turbine blades of aircraft engines. A much recent alloy type of TiAl called the TNM alloy has emerged and primarily amenable to mechanical working; while providing the best combinations of mechanical properties that could be achieved through manufacturing processes with subsequent heat treatments. This is attained by solidifying entirely through the disordered ß-phase (A2 structure). Effects of major alloying elements such as strength improvement, microstructural stability and phase formation demand the understanding of these alloying elements addition in TiAl-based intermetallic alloys. This review paper aims at encapsulating several works regarding the effects of major alloying elements on ß-solidifying TiAl-based alloys and summarizing the characteristic effects of Si for these types of alloys. An impetus for future works on these types of intermetallic TiAl-based alloys is also presented.

16.
Materials (Basel) ; 12(19)2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31574926

ABSTRACT

The combustion velocity and the mechanism for a series of Ti-Cr-V alloys with different chemical compositions are studied by a promoted ignition combustion test corresponding to different oxygen pressures to investigate the influence of alloying elements, such as Cr and V, on combustion behavior. The microstructures and composition distributions of the alloying elements in the reaction and oxide areas are observed and analyzed. The thermogravimetry analysis results show that the oxidation mass gain decreases with the increasing Cr content, and the oxidation resistance obviously increases from 10 Cr to 20 Cr. The combustion velocity decreases with increasing Cr content, and it is concluded that elevated Cr content can effectively retard the flame propagation velocity. Importantly, for the Ti-Cr-V alloys, the Cr and V elements accumulate in the melting zone and reduce the heat created by combustion.

17.
Materials (Basel) ; 11(11)2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30380791

ABSTRACT

Non-isothermal oxidation is one of the important issues related to the safe application of high-temperature titanium alloys, so this study focuses on the non-isothermal oxidation behavior and mechanism of near-α titanium alloys. The thermogravimetry-differential scanning calorimetry (TGA/DSC) method was used to study the non-isothermal oxidation behavior of TA29 titanium alloy heated from room temperature to 1450 °C at a heating rate of 40 °C/min under pure oxygen atmosphere. The results show that non-isothermal oxidation behavior can be divided into five stages, including no oxidation, slow oxidation, accelerated oxidation, severe oxidation and deceleration oxidation; for the three-layer TiO2 scale, Zr, Nb, Ta are enriched in the intermediate layer, while Al is rich in the inner layer and Sn is segregated at the oxide-substrate interface, which is related to their diffusion rates in the subsurface α case. The oxidation mechanism for each stage is: oxygen barrier effect of a thin compact oxide film; oxygen dissolution; lattice transformation accelerating the dissolution and diffusion of oxygen; oxide formation; oxygen barrier effect of recrystallization and sintering microstructure in outer oxide scale. The alloying elements with high valence state and high diffusion rate in α-Ti are favorable to slow down the oxidation rate at the stage governed by oxide formation.

18.
Materials (Basel) ; 11(8)2018 Aug 18.
Article in English | MEDLINE | ID: mdl-30126212

ABSTRACT

The structural stability, mechanical properties, and Debye temperature of alloying elements X (X = Sc, Ti, Co, Cu, Zn, Zr, Nb, and Mo) doped Al3Li were systematically investigated by first-principles methods. A negative enthalpy of formation ΔHf is predicted for all Al3Li doped species which has consequences for its structural stability. The Sc, Ti, Zr, Nb, and Mo are preferentially occupying the Li sites in Al3Li while the Co, Cu, and Zn prefer to occupy the Al sites. The Al⁻Li⁻X systems are mechanically stable at 0 K as elastic constants Cij has satisfied the stability criteria. The values of bulk modulus B for Al⁻Li⁻X (X = Sc, Ti, Co, Cu, Zr, Nb, and Mo) alloys (excluding Al⁻Li⁻Zn) increase with the increase of doping concentration and are larger than that for pure Al3Li. The Al6LiSc has the highest shear modulus G and Young's modulus E which indicates that it has stronger shear deformation resistance and stiffness. The predicted universal anisotropy index AU for pure and doped Al3Li is higher than 0, implying the anisotropy of Al⁻Li⁻X alloy. The Debye temperature ΘD of Al12Li3Ti is highest among the Al⁻Li⁻X system which predicts the existence of strong covalent bonds and thermal conductivity compared to that of other systems.

19.
Talanta ; 154: 53-62, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27154648

ABSTRACT

An Inductively Coupled Plasma Optical Emission Spectrometry method for simultaneous determination of Al, Ca, Cu, Fe, In, Mn, Ni, Si, Sr, Y, Zn, Zr and rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in magnesium alloys, including the new rare earth elements-alloyed magnesium, has been developed. Robust conditions have been established as nebulizer argon flow rate of 0.5mLmin(-1) and RF incident power of 1500W, in which matrix effects were significantly reduced around 10%. Three acid digestion procedures were performed at 110°C in closed PFA vessels heated in an oven, in closed TFM vessels heated in a microwave furnace, and in open polypropylene tubes with reflux caps heated in a graphite block. The three digestion procedures are suitable to put into solution the magnesium alloys samples. From the most sensitive lines, one analytical line with lack or low spectral interferences has been selected for each element. Mg, Rh and Sc have been studied as internal standards. Among them, Rh was selected as the best one by using Rh I 343.488nm and Rh II 249.078nm lines as a function of the analytical lines. The trueness and precision have been established by using the Certified Reference Material BCS 316, as well as by means of recovery studies. Quantification limits were between 0.1 and 9mgkg(-1) for Lu and Pr, respectively, in a 2gL(-1) magnesium matrix solution. The method developed has been applied to the commercial alloys AM60, AZ80, ZK30, AJ62, WE54 and AE44.

SELECTION OF CITATIONS
SEARCH DETAIL