Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.080
Filter
1.
Food Chem ; 460(Pt 3): 140576, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39106755

ABSTRACT

The inhibition of amino acids on the formation of protein-bound HAs was assessed in both model systems and roast beef patties, and the synergism between these amino acids was also investigated. The amino acids can promote the formation of protein-bound HAs at low addition amount, and the total content of protein-bound HAs increased from 444.05 ± 4.98 ng/g of the control group to 517.36 ± 16.51 ng/g when 0.05 % cysteine was added. Amino acid combinations exhibited stable inhibitory effects, with the maximum inhibitory rate of 64 % in the treatment with histidine-proline combination (1:4). The synergistic inhibition may be caused by simultaneously scavenging intermediates and competing for the binding sites of muscle proteins, and the reaction with protein-bound HAs to form adduct can serve as supporting factors to co-mitigate the promotion in protein-bound HAs from increased protein solubility. These findings proposed the potential mitigation strategies against protein-bound HAs formation.

2.
Food Chem ; 460(Pt 2): 140730, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39106810

ABSTRACT

This study aimed to elucidate the effects of storage temperature on various fruit quality attributes, physiological disorders, and associated metabolites in the 0.5, 3, or 10 °C stored hardy kiwifruit. Peel pitting, which was highest in the 0.5 °C stored fruit, was identified as a chilling injury symptom of hardy kiwifruit. Proline and branched-chain amino acid contents showed higher values at 0.5 °C stored fruit as chilling responses. On the other hand, fruit shriveling and decay were highest in the 10 °C after 5 weeks of storage. The 10 °C storage induced fruit ripening during 3 weeks, but fruit shriveling and decay were severe after 5 weeks of storage. Therefore, storing the 'Autumn Sense' hardy kiwifruit at proper temperatures would be more beneficial, as it alters targeted metabolites and helps reduce the incidence of physiological disorders during cold storage.

3.
Front Nutr ; 11: 1400719, 2024.
Article in English | MEDLINE | ID: mdl-39091679

ABSTRACT

Amino acids form the building blocks of body protein. Dietary protein sources provide the amino acids needed, but protein sources vary widely in amio acid composition. To ensure humans can meet body demands for amino acids, amino acid intake recommendations are provided by the Dietary Reference Intakes (DRI) and by Food and Agriculture Organization/World Health Organization/United Nations University (FAO/WHO/UNU). Current amino acid intake recommendations, however, are based on data collected predominantly from young adult males. The development of the minimally invasive indicator amino acid oxidation (IAAO) method has permitted the evaluation of amino acid requirements in various vulnerable populations. The purpose of this review is to discuss recent amino acid requirement studies in school-age children, pregnant females and the elderly determined using the IAAO technique. These requirements will help to inform evidence-based recommendations that will help to guide dietary guidelines.

4.
Nutr Res ; 128: 94-104, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39096661

ABSTRACT

Animal studies showed a detrimental effect of dietary branched chain amino acids (BCAAs) on metabolic health, while epidemiological evidence on dietary BCAAs and obesity is limited and inconclusive. We hypothesized that high dietary and circulating BCAAs are unfavorably associated with obesity in community-dwelling adults. We evaluated the 1-year longitudinal associations of dietary BCAA intake and circulating BCAAs with body fat measures. Body weight, height, and circumferences of the waist (WC) and hip (HC) were measured at baseline and again after 1-year. Body composition and liver fat [indicated by controlled attenuation parameter (CAP)] were also assessed after 1-year. Serum BCAA concentrations at baseline were quantified by liquid chromatography mass spectrometry. Diet was collected using 4 quarterly 3-day recalls during the 1-year. The correlation coefficients between dietary and serum BCAAs were 0.12 (P = .035) for total dietary BCAAs, and ranged from -0.02 (soy foods, P = .749) to 0.18 (poultry, P = .001). Total dietary BCAA intake was associated with increase in body weight (ß = 0.044, P = .022) and body mass index (BMI, ß = 0.047, P = .043). BCAAs from animal foods were associated with increase in HC, while BCAAs from soy foods were associated with weight gain and higher CAP (all P < .05). Serum BCAAs were associated with higher WC, HC, BMI, body fat mass, visceral fat level, and CAP (all P < .05). These results support that dietary and circulating BCAAs are positively associated with the risk of obesity. More cohort studies with validated dietary assessment tools and long-term follow-up among diverse populations are needed to confirm our findings.

5.
Article in English | MEDLINE | ID: mdl-39133120

ABSTRACT

Background: The relationship between gut microbiota and diabetes-related amino acids significantly impacts insulin resistance and obesity. We aimed to quantify two Bacteroidetes species and their correlation with branched-chain amino acids, aromatic amino acids, and glutamate in prediabetes (preDM) and type 2 diabetes mellitus (T2DM). Methods: Fecal samples were collected from 68 participants, including 21 with T2DM, 23 with preDM, and 24 with normal glycemic tolerance (NGT). The abundance of Bacteroides vulgatus and Bacteroides thetaiotaomicron was determined by quantitative real-time polymerase chain reaction. Plasma amino acid measurements were performed using liquid chromatography coupled with tandem mass spectrometry. Results: The quantities of B. vulgatus and B. thetaiotaomicron were reduced in preDM and T2DM than in NGT subjects, but it was not statistically significant. The concentrations of leucine, valine, and tyrosine were significantly higher in preDM and T2DM than in NGT subjects (P < 0.05). A negative correlation was observed between B. thetaiotaomicron abundance and two aromatic amino acids (tyrosine, r = -0.28, P = 0.04; phenylalanine, r = -0.26, P = 0.05). Conclusions: These findings imply that, since gut microbiota varies throughout ethnic groups, further research with many participants will be required to determine the abundance of B. vulgatus and B. thetaiotaomicron in preDM and T2DM and their association with diabetes-related amino acids.

6.
Food Chem X ; 23: 101656, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39113738

ABSTRACT

Corn gluten meal-corn husk mixes (CCM) are an inexpensive and readily available agricultural by-product. This study explores a novel technique by converting CCM into high-value livestock feed protein sources through fermentation with Aspergillus niger AAX and Lactobacillus fermentum LLS, aiming to sustainably meet future global protein needs. The process of fermentation significantly altered the structural composition of high molecular weight proteins, zein, and dietary fibers. This transformation resulted in a marked elevation in the concentrations of peptides, free amino acids, and polyphenols. The acidic environment produced during fermentation prevented lipid oxidation in CCM, thereby extending its storability. After fermentation, the content of anti-nutritional factors decreased, while its antioxidant capacity increased. In vitro simulated digestion suggested that fermentation improved the digestibility of CCM protein. In vivo animal experiments showed that fermented CCM (FCCM) promoted growth and gut health in chicks. This study provides new insights into the utilization of CCM.

7.
Front Physiol ; 15: 1448259, 2024.
Article in English | MEDLINE | ID: mdl-39113936

ABSTRACT

The antiviral agent amantadine is frequently detected in seawater and marine organisms. Because of increasing concentrations, amantadine has become a contaminant of emerging concern. This compound has toxic effects on the brown algae Laminaria japonica. The effects of amantadine on the biological processes of L. japonica and the corresponding toxic mechanisms remain unclear. In this study, amantadine toxicity on L. japonica was investigated using histopathological and physiological characteristics combined with metabolomics analysis. Changes in metabolites were determined by untargeted metabolomics after exposure to 107 ng/L amantadine for 72 h. The catalase activity in the exposure group slightly increased, whereas the superoxide dismutase activity greatly decreased. An increase in the malondialdehyde concentration was observed after amantadine exposure, which suggested that lipid peroxidation and cell damage occurred. Metabolomics analysis showed that there were 406 differentially expressed metabolites after amantadine exposure. These were mainly phospholipids, amino acids, purines, and their derivatives. Inhibition of the glycerophospholipid metabolism affected the lipid bilayer and cell structure, which was aligned with changes in histological observation. Changes in amino acids led to perturbation of protein synthesis and induced oxidative stress through interference with glutathione metabolism and tyrosine metabolism. Amantadine also interfered with energy metabolism in L. japonica by disturbing the tricarboxylic acid cycle and purine metabolism. The results of this study provide new insights into the mechanism of amantadine toxicity on L. japonica.

8.
Front Nutr ; 11: 1445981, 2024.
Article in English | MEDLINE | ID: mdl-39114126

ABSTRACT

Diabetes is a widespread metabolic disorder and results from insulin resistance and impaired insulin secretion. Modifiable factors like diet, physical activity, and body weight play crucial roles in diabetes prevention, with targeted interventions reducing diabetes risk by about 60%. High-protein consumption, above the recommended intake of 0.8 g/kg body weight per day, have often explored in relation to diabetes risk. However, the relationship between dietary protein and diabetes is multifaceted. Observational studies have linked high total and animal protein intake to an increased risk of type 2 diabetes, particularly in obese women. Elevated levels of branched-chain amino acids (BCAA), which can result from dietary intake, protein breakdown, as well as an impaired catabolism, are strong predictors of cardiometabolic risk and insulin resistance. With several mechanism linking BCAA to insulin resistance. On the other hand, intervention studies suggest that high-protein diets can support weight loss and improve cardiometabolic risk factors. However, the impact on insulin sensitivity and glucose homeostasis is not straightforward. Proteins and amino acids stimulate both insulin and glucagon secretion, influencing glucose levels, but chronic effects remain uncertain. This short narrative review aims to provide an update on the relationship between increased dietary protein intake, amino acids, insulin resistance and type 2 diabetes, and to describe protein recommendations for type 2 diabetes.

9.
Article in Chinese | MEDLINE | ID: mdl-39118510

ABSTRACT

Objective:To detect the differences in types and levels of amino acids in the peripheral serum of patients with laryngeal squamous cell carcinoma and non-tumor patients, and explore their relationship with clinical parameters of laryngeal squamous cell carcinoma as well as their clinical value in diagnosis. Methods:High-performance liquid chromatography-tandem mass spectrometry(HPLC-MS) was employed to detect the serum amino acid contents and levels of 62 patients diagnosed with laryngeal carcinoma and 141 non-tumor patients at the First Affiliated Hospital of Jinzhou Medical University between September 2018 and February 2021. The study compared the differences in 22 non-essential and essential amino acids found in the serum between the experimental group and the control group. An ROC curve and risk scoring formula of multivariate linear logic regression model was utilized to evaluate the efficiency of serum amino acids in the early diagnosis of laryngeal carcinoma. Results:There were significant differences in the contents of fourteen types of amino acids between the experimental and control groups, with thirteen amino acids showing higher levels in the experimental group(P<0.05). Seven of these amino acids were essential, including phenylalanine, threonine, leucine, valine, histidine, tyrosine, and citrulline. The other six amino acids were non-essential, including arginine, asparagine, cysteine, glycine, ornithine, and proline. Interestingly, the content of homocysteine in the experimental group was lower than that in the control group(P=0.024). Further analysis showed that patients with laryngeal squamous cell carcinoma in TNM stage Ⅰ and Ⅱ had higher serum methionine levels compared to those in stages Ⅲ and Ⅳ(P=0.026). In addition, the content of serum histidine was higher in patients with poorly differentiated squamous cell carcinoma compared to those with well-differentiated squamous cell carcinoma(P=0.041). The level of asparagine in the serum of patients with laryngeal squamous cell carcinoma older than 64 years old was lower than that in patients younger than 64 years old(P=0.033). The level of tryptophan in the serum of patients with a smoking history was lower than that in patients without a smoking history(P=0.033). The level of citrulline in the serum of patients with a history of alcohol consumption was higher than that in patients with no history of alcohol consumption(P=0.003). ROC curve analysis showed that out of the 14 different amino acids between the experimental and control groups, citrulline and cysteine were relatively effective as independent factors in the diagnosis of laryngeal squamous cell carcinoma, with an AUC of 0.856 and 0.850, respectively. Arginine was the most sensitive factor in the diagnosis of laryngeal squamous cell carcinoma(AUC=0.855). However, citrulline alone had the highest specificity(0.830) in the diagnosis of laryngeal squamous cell carcinoma, and the combination of 12 amino acids significantly improved the diagnostic efficiency of laryngeal squamous cell carcinoma, with an AUC of 0.946, sensitivity of 0.887, and specificity of 0.894. A risk score formula for a multivariate logistic regression model was established based on the differential amino acid content in the serum. The risk score of laryngeal squamous cell carcinoma group was higher than that of the non-tumor group(P<0.001). The AUC of risk score in the diagnosis of laryngeal squamous cell carcinoma was 0.953 with sensitivity and specificity of 0.957 and 0.855. Conclusion:This study found that there are differences in the contents of 14 amino acids among which 13 amino acids were increased in serum of patients with laryngeal squamous cell carcinoma, and were associated with age, clinical stage, pathological differentiation, smoking, and drinking. Combined detection of 12 amino acids can improve the diagnostic efficiency of laryngeal squamous cell carcinoma and serve as potential markers for the auxiliary diagnosis of laryngeal squamous cell carcinoma using peripheral blood samples. Additionally, the established risk score model was found to be more effective in the diagnosis of laryngeal squamous cell carcinoma, indicating its important potential value as an auxiliary diagnostic tool.


Subject(s)
Amino Acids , Carcinoma, Squamous Cell , Laryngeal Neoplasms , Humans , Laryngeal Neoplasms/blood , Laryngeal Neoplasms/diagnosis , Male , Female , Middle Aged , Amino Acids/blood , Carcinoma, Squamous Cell/blood , Carcinoma, Squamous Cell/diagnosis , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , ROC Curve , Case-Control Studies
10.
Foods ; 13(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39123534

ABSTRACT

The aim of the present study was to develop a fermented pistachio beverage as a plant-based alternative to milk-based drinks. For this purpose, a colloidal mill was used to finely grind and homogenize the pistachios to obtain a homogeneous consistency and prevent sedimentation. In addition, lactic acid bacteria fermentation was used to develop unique flavours and characteristics in the final product and to achieve microbiological stability for up to 30 days of storage a 4 °C. The formulated beverages were evaluated for chemical-physical characteristics (pH, organic acid production, and fructose, sucrose, and glucose content), nutritional profile (proximate composition, amino acid and GABA content), and volatile organic composition by HS-SPME-GC/MS analysis. The pistachio-based beverages were characterized by a good source of protein, fat, fiber, and minerals (mainly K and P). The colloidal mill contributed to creating a homogeneous texture and to making the nutrients readily available to the starter microorganisms, which reached concentrations above 108 ufc/mL in the final products. The beverages were characterized by pronounced acidity and some by the presence of acetoin and 2,3-butanedione, volatile components associated with a yogurt- or kefir-like aroma. This innovative approach provides an alternative to traditional milk-based beverages and highlights the role of LAB in the development of nutritious and attractive plant-based beverages.

11.
Animals (Basel) ; 14(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39123754

ABSTRACT

A suitable feed size has a positive effect on animal feeding. For aquatic larvae, the correct feed size is very important for their growth. This experiment analyzed and compared the effect of different particle sizes of feed for larval stages on the growth performance, whole body composition, and muscle amino acid and fatty acid composition of crayfish. Five larval crayfish diets of different particle sizes, namely < 0.40 mm (Group A, control group), 0.40-0.50 mm (Group B), 0.71-0.85 mm (Group C), 0.90-1.00 mm (Group D) and 1.5 mm (Group E), were fed to 2000 crayfish (initial weight 0.0786 ± 0.0031 g) for 100 d. The results showed that as the particle size increased, final weight, weight gain (WG, p = 0.001) and specific growth rate (SGR, p = 0.000) of the crayfish tended to increase and then leveled off, with the control group being the lowest. The feed conversion ratio (FCR, p = 0.000) showed a decreasing and then equalizing trend with increasing particle size, but there was no significant difference between the groups except the control group. Broken-line regression analysis showed that the critical values for the appropriate particle feed size for crayfish larvae were 0.55 mm and 0.537 mm using SGR and FCR as indicators. Groups B, C and D had the highest crude protein content and were significantly higher than the control group (p = 0.001). Group E had the highest umami amino acid (UAA) and was significantly higher than the control group (p = 0.026). The content of isoleucine (Ile, p = 0.038) and phenylalanine (Phe, p = 0.038) was highest in group C and significantly higher than in the control group. Through principal component analysis, groups C and D were shown to contain leucine (Leu), glutamic (Glu), methionine (Met), valine (Val), histidine (His), Phe, and Ile levels significantly induced. The content of linoleic acid (C18:2n6, p = 0.000), linolenic acid (C18:3n3, p = 0.000), saturated fatty acid (SFA, p = 0.000), monounsaturated fatty acid (MUFA, p = 0.001), polyunsaturated fatty acid (PUFA, p = 0.000) and n-6 PUFA (p = 0.000) in group C was the highest and significantly higher than the control group. Principal component analysis showed that group C significantly induced the levels of C18:2n6, C18:3n3, DHA, EPA, n-3 PUFA and n-6 PUFA in muscle. Therefore, our results suggest that appropriate feed particle size can improve the growth performance and nutrient composition of crayfish. Based on the broken-line regression analysis of SGR and FCR, the critical values of optimal particle size for crayfish are 0.55 mm and 0.537 mm, and when the particle size exceeds these critical values (not more than 1.5 mm commercial feed), growth performance and FCR of the crayfish are no longer changed. Nevertheless, group C has high protein and low lipid content, as well as better nutrition with amino acids and fatty acids. Overall, combined with growth performance and nutrient composition, it is recommended that the particle size of the diet at the larval stage for crayfish is between 0.71 and 0.85 mm.

12.
Plants (Basel) ; 13(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39124243

ABSTRACT

The objective of this study was to evaluate the chemical composition of two chickpea varieties, 'Costa 2004' and 'El Patrón', and to characterize their proteins to determine their technological potential for the food industry. For this purpose, chickpea samples of both varieties from the 2019 harvest region of Guanajuato, Mexico, were obtained and chemically characterized to determine the protein fractions using electrophoretic and amino acid profiling. The chickpea variety 'Costa 2004' contained 3% less protein and 7% less dietary fiber content than the variety 'El Patrón'; whereas, the carbohydrate content of 'Costa 2004' was 4% greater. Additionally, the chickpeas demonstrated an antioxidant capacity ranging from 319 to 387 µMET/g and total phenol levels exceeding 500 mg/g. Among the protein fractions, globulins represented the highest proportion in both varieties of chickpea, at approximately 8.73 g/100 g ('Costa 2004') and 10.42 g/100 g ('El Patrón'), followed by albumin, at approximately 1.24 g/100 g and 1.47 g/100 g, respectively. The chickpea proteins ranged in molecular weight between 100 and 25 kDa, with particularly strong signals in the albumin and globulin bands. Regarding the amino acid profile, histidine was predominant in both varieties. In conclusion, both varieties of chickpea have high nutritional value and broad potential for technological use in the food industry.

13.
J Vet Intern Med ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136304

ABSTRACT

BACKGROUND: Occurrence of low blood taurine concentrations (B-TauC) and predisposing factors to taurine deficiency in English Cocker Spaniels (ECS) are incompletely understood. OBJECTIVES: Investigate the occurrence of low B-TauC in a Swedish population of ECS and evaluate the association between B-TauC and dog characteristics, clinical variables, and diet composition. ANIMALS: One-hundred eighty privately owned ECS. METHODS: Dogs were prospectively recruited and underwent physical examination, blood analyses, and echocardiographic and ophthalmic examinations. Dogs with clinical signs of congestive heart failure (CHF) also underwent thoracic radiography. Taurine concentrations were analyzed in plasma (EDTA and heparin) and whole blood. Diets consumed by the dogs at the time of the examination were analyzed for dietary taurine- (D-TauC), cysteine- (D-CysC), and methionine concentrations (D-MetC). RESULTS: Fifty-three of 180 dogs (29%) had low B-TauC, of which 13 (25%) dogs had clinical and radiographic signs of CHF, increased echocardiographic left ventricular (LV) dimensions and volumes, and impaired LV systolic function. Five (9%) dogs with low B-TauC had retinal abnormalities. Dietary MetC, dietary animal protein source (red/white meat), and age were associated with B-TauC in the final multivariable regression model (P < .001, R2 adj = .39). CONCLUSIONS AND CLINICAL IMPORTANCE: Low B-TauC suggests that taurine deficiency may play a role in the development of myocardial failure and CHF in ECS. Low D-MetC and diets with red meat as the animal protein source were associated with low B-TauC. Dogs with B-TauC below the normal reference range were older than dogs with normal concentrations.

14.
Chem Asian J ; : e202400753, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136386

ABSTRACT

The design and synthesis of chiral covalent organic frameworks (COFs) with controlled defect sites are highly desirable but still remain largely unexplored. Herein, we report the synthesis of a defective chiral HD-TAPB-DMTP COF by modifying the chiral monomer helicid (HD) into the framework of an achiral imine-linked TAPB-DMTP COF using a chiral monomer exchange strategy. Upon the introduction of the chiral HD unit, the obtained defective chiral HD-TAPB-DMTP COF not only displays excellent crystallinity, large specific surface area (up to 2338 m2/g) and rich accessible chiral functional sites but also exhibits fluorescence emission, rendering it a good candidate for discrimination of amino acids. Notably, the resultant defective chiral HD-TAPB-DMTP COF can be used as a fluorescent sensor for enantioselective recognition of both tyrosine and phenylalanine enantiomers in water, showing enhanced fluorescent responses for the L conformations over those of the D conformations with enantioselectivity factors being 1.84 and 2.02, respectively. Moreover, molecular docking simulations uncover that stronger binding affinities between chiral HD-TAPB-DMTP COF and L-tyrosine/L-phenylalanine in comparison to those with D-tyrosine/D-phenylalanine play important roles in enantioselective determination. This work provides new insights into the design and construction of highly porous defective chiral COFs for enantioselective fluorescence recognition of amino acids.

15.
Sci Total Environ ; 950: 175236, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39098413

ABSTRACT

Previous field observations from 2018 to 2019 revealed that paralytic shellfish poisoning (PSP) caused by the blooms of toxic dinoflagellate Alexandrium species occurred under low concentrations of dissolved inorganic nitrogen (DIN) and high concentrations of dissolved organic nitrogen (DON) and humic-like fluorescent dissolved organic matter (FDOMH) in Jinhae-Masan Bay, Korea. In this study, we obtained more data for DIN, DON, FDOMH, and Alexandrium cell density from 2020 to 2023 to further validate environmental conditions for the PSP outbreak. We also measured total hydrolyzed amino acids (THAA) to determine the bioavailability of DON fueling the PSP outbreak. Over the 6-year observations, there was a consistent pattern of low DIN concentrations and high DON and FDOMH concentrations during the PSP outbreak periods. The Alexandrium cell densities, together with the PSP toxin concentrations, increased rapidly under this environmental condition. The PSP outbreak occurs when a large amount of DIN originating from the stream waters near the upstream sites is transformed into DON by biological production before entering the PSP outbreak area. The produced DON is characterized by high bioavailability based on the various AA-derived indices (enantiomeric ratio, degradation index, non-protein AA mole%, and nitrogen-normalized AA yield). In addition, the intensities of PSP outbreaks are mainly dependent on the conversion stage of DIN to DON and enhanced FDOMH. We found that the strong PSP outbreak occurred consistently under a low level of DIN (<1.0 µM) and high levels of DON (>9.0 µM) and FDOMH (>1.5 R.U.). Thus, our results suggest that the monitoring data of environmental conditions can be used to predict the PSP outbreak in the coastal oceans.

16.
Nanomaterials (Basel) ; 14(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39120371

ABSTRACT

Organic-inorganic hybrid perovskite quantum dots (QDs) have garnered significant research interest owing to their unique structure and optoelectronic properties. However, their poor optical performance in ambient air remains a significant limitation, hindering their advancement and practical applications. Herein, three amino acids (valine, threonine and cysteine) were chosen as surface ligands to successfully prepare highly luminescent CH3NH3PbBr3 (MAPbBr3) QDs. The morphology and XRD results suggest that the inclusion of the amino acid ligands enhances the octahedral structure of the QD solutions. Moreover, the observed blue-shifted phenomenon in the photoluminescence (PL) aligns closely with the blue-shifted phenomenon observed in the ultraviolet-visible (UV-Vis) absorption spectra, attributed to the quantum confinement effect. The time-resolved spectra indicated that the introduction of the amino acid ligands successfully suppressed non-radiative recombination, consequently extending the fluorescence lifetime of the MAPbBr3 QDs. The photoluminescence quantum yields (PLQYs) of the amino acid-treated MAPbBr3 QDs are increased by 94.8%. The color rendering index (CRI) of the produced white light-emitting diode (WLED) is 85.3, with a correlated color temperature (CCT) of 5453 K. Our study presents a novel approach to enhancing the performance of perovskite QDs by employing specially designed surface ligands for surface passivation.

17.
Article in English | MEDLINE | ID: mdl-39121519

ABSTRACT

Colorectal cancer (CRC) is a common malignant tumor in the gastrointestinal tract. Changes in amino acid metabolites have been implicated in tumorigenesis and disease progression. Biomarkers on the basis of chiral amino acids, especially D-amino acids, have not been established for early diagnosis of CRC. Quantification of chiral amino acids, especially very low concentrations of endogenous D-amino acids, is technically challenging. We report here the quantification of L- and D-amino acids in urine samples collected from 115 CRC patients and 155 healthy volunteers, using an improved method. The method of chiral labeling, liquid chromatography, and tandem mass spectrometry enabled separation and detection of 28 amino acids (14 L-amino acids, 13 D-amino acids and Gly). Orthogonal partial least squares discriminant analysis identified 14 targeted variables among these chiral amino acids that distinguished the CRC from the healthy controls. Binary logistic regression analysis revealed that D-α-aminobutyric acid (D-AABA), L-alanine (L-Ala), D-alanine (D-Ala), D-glutamine (D-Gln) and D-serine (D-Ser) could be potential biomarkers for CRC. A receiver operating characteristic curve analysis of combined multi-variables contributed to an area under the curve (AUC) of 0.995 with 98.3 % sensitivity and 96.8 % specificity. A model constructed with D-AABA, D-Ala, D-Gln, and D-Ser achieved an AUC of 0.988, indicating important contributions of D-amino acids to the association with CRC. Further analysis also demonstrated that the metabolic aberration was associated with age and the development of CRC, D-methionine (D-Met) was decreased in CRC patients with age over 50, and D/L-Gln in patients at stage IV was higher than patients at stage I. This study provides the signature of D-amino acids in urine samples and offers a promising strategy for developing non-invasive diagnosis of CRC.

18.
BMC Genomics ; 25(1): 763, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107700

ABSTRACT

Edible fungi cultivation serves as an efficient biological approach to transforming agroforestry byproducts, particularly Korshinsk peashrub (KP) branches into valuable mushroom (Lentinus edodes) products. Despite the widespread use of KP, the molecular mechanisms underlying its regulation of mushroom development remain largely unknown. In this study, we conducted a combined analysis of transcriptome and metabolism of mushroom fruiting bodies cultivated on KP substrates compared to those on apple wood sawdust (AWS) substrate. Our aim was to identify key metabolic pathways and genes that respond to the effects of KP substrates on mushrooms. The results revealed that KP induced at least a 1.5-fold increase in protein and fat content relative to AWS, with 15% increase in polysaccharide and total sugar content in mushroom fruiting bodies. There are 1196 differentially expressed genes (DEGs) between mushrooms treated with KP relative to AWS. Bioinformatic analysis show significant enrichments in amino acid metabolic process, oxidase activity, malic enzyme activity and carbon metabolism among the 698 up-regulated DEGs induced by KP against AWS. Additionally, pathways associated with organic acid transport and methane metabolism were significantly enriched among the 498 down-regulated DEGs. Metabolomic analysis identified 439 differentially abundant metabolites (DAMs) in mushrooms treated with KP compared to AWS. Consistent with the transcriptome data, KEGG analysis on metabolomic dataset suggested significant enrichments in carbon metabolism, alanine, aspartate and glutamate metabolism among the up-regulated DAMs by KP. In particular, some DAMs were enhanced by 1.5-fold, including D-glutamine, L-glutamate, glucose and pyruvate in mushroom samples treated with KP relative to AWS. Targeted metabolomic analysis confirmed the contents of DAMs related to glutamate metabolism and energy metabolism. In conclusion, our findings suggest that reprogrammed carbon metabolism and oxidoreductase pathways act critical roles in the enhanced response of mushroom to KP substrates.


Subject(s)
Carbon , Transcriptome , Carbon/metabolism , Oxidoreductases/metabolism , Oxidoreductases/genetics , Metabolic Networks and Pathways , Gene Expression Profiling , Gene Expression Regulation, Fungal , Agaricales/genetics , Agaricales/metabolism , Shiitake Mushrooms/metabolism , Shiitake Mushrooms/genetics , Fruiting Bodies, Fungal/metabolism , Fruiting Bodies, Fungal/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics
19.
Molecules ; 29(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125033

ABSTRACT

The toxicity of silver nanoparticles (AgNPs) depends on their physicochemical properties. The ongoing research aims to develop effective methods for modifying AgNPs using molecules that enable control over the processes induced by nanoparticles in both normal and cancerous cells. Application of amino acid-stabilized nanoparticles appears promising, exhibiting tunable electrokinetic properties. Therefore, this study focused on determining the influence of the surface charge of cysteine (CYS)-stabilized AgNPs on their toxicity towards human normal B (COLO-720L) and T (HUT-78) lymphocyte cell lines. CYS-AgNPs were synthesized via the chemical reduction. Transmission electron microcopy (TEM) imaging revealed that they exhibited a quasi-spherical shape with an average size of 18 ± 3 nm. CYS-AgNPs remained stable under mild acidic (pH 4.0) and alkaline (7.4 and 9.0) conditions, with an isoelectric point observed at pH 5.1. Following a 24 h treatment of lymphocytes with CYS-AgNPs, concentration-dependent alterations in cell morphology were observed. Positively charged CYS-AgNPs notably decreased lymphocyte viability. Furthermore, they exhibited grater genotoxicity and more pronounced disruption of biological membranes compared to negatively charged CYZ-AgNPs. Despite both types of AgNPs interacting similarly with fetal bovine serum (FBS) and showing comparable profiles of silver ion release, the biological assays consistently revealed that the positively charged CYS-AgNPs exerted stronger effects at all investigated cellular levels. Although both types of CYS-AgNPs have the same chemical structure in their stabilizing layers, the pH-induced alterations in their surface charge significantly affect their biological activity.


Subject(s)
Cysteine , Metal Nanoparticles , Silver , Silver/chemistry , Cysteine/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Humans , Cell Survival/drug effects , Lymphocytes/drug effects , Cell Line , Surface Properties , Hydrogen-Ion Concentration , Particle Size
20.
Molecules ; 29(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39125087

ABSTRACT

Thiosemicarbazones (TSCs) with their modular character (thiosemicarbazides + carbonyl compound) allow broad variation of up to four substituents on the main R1R2C=N(1)-NH-C(S)-N(4)R3R4 core and are thus interesting tools for the formation of conjugates or the functionalization of nanoparticles (NPs). In this work, di-2-pyridyl ketone was introduced for the coordination of metals and 9-anthraldehyde for luminescence as R1 and R2 to TSCs. R3 and R4 substituents were varied for the formation of conjugates. Amino acids were introduced at the N4 position to produce [R1R2TSC-spacer-amino acid] conjugates. Further, functions such as phosphonic acid (R-P(O)(OH)2), D-glucose, o-hydroquinone, OH, and thiol (SH) were introduced at the N4 position producing [R1R2TSC-spacer-anchor group] conjugates for direct NP anchoring. Phenyl, cyclohexyl, benzyl, ethyl and methyl were used as spacer units. Both phenyl phosphonic acid TSC derivatives were bound on TiO2 NPs as a first example of direct NP anchoring. [R1R2TSC-spacer-end group] conjugates including OH, S-Bn (Bn = benzyl), NH-Boc (Boc = tert-butyloxycarbonyl), COOtBu, C≡CH, or N3 end groups were synthesized for potential covalent binding to functional molecules or functionalized NPs through amide, ester, or triazole functions. The synthesis of the thiosemicarbazides H2NNH-C(S)-NR3R4 starting from amines, including amino acids, SCCl2 or CS2, and hydrazine and their condensation with dipyridyl ketone and anthraldehyde led to 34 new TSC derivatives. They were synthesized in up to six steps with overall yields ranging from 10 to 85% and were characterized by a combination of nuclear magnetic resonance spectroscopy and mass spectrometry. UV-vis absorption and photoluminescence spectroscopy allowed us to easily trace the dipyridyl imine and anthracene chromophores.

SELECTION OF CITATIONS
SEARCH DETAIL