Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.274
Filter
1.
Biomaterials ; 312: 122744, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39106820

ABSTRACT

Inflammation within the central nervous system (CNS), which may be triggered by surgical trauma, has been implicated as a significant factor contributing to postoperative cognitive dysfunction (POCD). The relationship between mitigating inflammation at peripheral surgical sites and its potential to attenuate the CNS inflammatory response, thereby easing POCD symptoms, remains uncertain. Notably, carbon monoxide (CO), a gasotransmitter, exhibits pronounced anti-inflammatory effects. Herein, we have developed carbon monoxide-releasing micelles (CORMs), a nanoparticle that safely and locally liberates CO upon exposure to 650 nm light irradiation. In a POCD mouse model, treatment with CORMs activated by light (CORMs + hv) markedly reduced the concentrations of interleukin (IL)-6, IL-1ß, and tumor necrosis factor-alpha (TNF-α) in both the peripheral blood and the hippocampus, alongside a decrease in ionized calcium-binding adapter molecule 1 in the hippocampal CA1 region. Furthermore, CORMs + hv treatment diminished Evans blue extravasation, augmented the expression of tight junction proteins zonula occludens-1 and occludin, enhanced neurocognitive functions, and fostered fracture healing. Bioinformatics analysis and experimental validation has identified Htr1b and Trhr as potential key regulators in the neuroactive ligand-receptor interaction signaling pathway implicated in POCD. This work offers new perspectives on the mechanisms driving POCD and avenues for therapeutic intervention.


Subject(s)
Carbon Monoxide , Light , Postoperative Cognitive Complications , Animals , Postoperative Cognitive Complications/etiology , Postoperative Cognitive Complications/metabolism , Male , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Micelles , Red Light
2.
Food Chem ; 462: 140920, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39208732

ABSTRACT

The use of direct injection ion mobility mass spectrometry (DI-IM-MS) to detect and identify betacyanin pigments in A. hortensis 'rubra' extracts was explored for the first time, with results compared to conventional LC-MS/MS analysis. The anti-inflammatory activities of leaf and seed extracts, alongside purified amaranthin and celosianin pigments, were investigated using a model of lipopolysaccharide (LPS)-activated murine macrophages. Extracts and purified pigments significantly inhibited the production of prostaglandin E2 and NO by up to 90% and 70%, respectively, and reduced the expression of Il6, Il1b, Nos2, and Cox2. Leaf and seed extracts also decreased secretion of Il6 and Il1b cytokines and reduced protein levels of Nos2 and Cox2. Furthermore, extracts and purified pigments demonstrated potent dose-dependent radical scavenging activity in a cellular antioxidant activity assay (CAA) without any cytotoxic effects. Our research highlights the promising biological potential of edible, climate-resilient A. hortensis 'rubra' as a valuable source of bioactive compounds.


Subject(s)
Lipopolysaccharides , Macrophages , Oxidative Stress , Plant Extracts , Mice , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , RAW 264.7 Cells , Oxidative Stress/drug effects , Macrophages/drug effects , Macrophages/immunology , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Cyclooxygenase 2/genetics , Cyclooxygenase 2/immunology , Cyclooxygenase 2/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Tandem Mass Spectrometry
3.
J Ethnopharmacol ; 336: 118728, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39186990

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Chinese traditional medicine frankincense, which can promote blood circulation, is often used to treat skin lesions, including frostbite. AIM OF THE STUDY: To explore the properties of frankincense oil extract (FOE) and its active ingredients and their effect on frostbite wound recovery as an approach to understand the mechanism associated with microcirculation-improvement therapy. MATERIALS AND METHODS: The microcirculation-improving effects of FOE and its active ingredients were evaluated using liquid nitrogen-induced frostbite animal models. The rewarming capacity of FOE on the skin was determined through infrared detection, and frostbite wound healing was evaluated following haematoxylin and eosin (H&E) staining and fibre analysis. Moreover, related factors were examined to determine the anti-apoptotic, anti-inflammatory, and microcirculatory properties of FOE and its active ingredients on affected tissue in the context of frostbite. RESULTS: FOE and its active ingredients rapidly rewarmed wound tissue after frostbite by increasing the temperature. Moreover, these treatments improved wound healing and restored skin structure through collagen and elastin fibre remodelling. In addition, they exerted anti-apoptotic effects by decreasing the number of apoptotic cells, reducing caspase-3 expression, and eliciting anti-inflammatory effects by decreasing COX-2 and ß-catenin expression. They also improved microcirculatory disorders by decreasing HIF-1α expression and increasing CD31 expression. CONCLUSIONS: FOE and its active components can effectively treat frostbite by enhancing microcirculation, inhibiting the infiltration of inflammatory cells, decreasing cell apoptosis, and exerting antinociceptive effects. These findings highlight FOE as a new treatment option for frostbite, providing patients with an effective therapeutic strategy.


Subject(s)
Frostbite , Microcirculation , Wound Healing , Frostbite/drug therapy , Animals , Microcirculation/drug effects , Male , Wound Healing/drug effects , Skin/drug effects , Skin/blood supply , Skin/pathology , Apoptosis/drug effects , Rats , Disease Models, Animal , Mice , Administration, Topical , Rats, Sprague-Dawley , Plant Oils/pharmacology , Plant Oils/therapeutic use , Plant Extracts/pharmacology
4.
Article in English | MEDLINE | ID: mdl-39225201

ABSTRACT

BACKGROUND: Rutin, often known as vitamin P, is a natural flavonoid compound, which offers a broad spectrum of therapeutic potentials. Rutin is metabolised to different compounds by the gut bacteria after consumption, therefore, very little is absorbed. Higher plants contribute to rutin synthesis in large quantities, and it may also be found in many fruits and fruity rinds, particularly citrus fruits and berries. OBJECTIVE: The present paper highlights several studies conducted on rutin along with its nanoformulations regarding its broad spectrum of therapeutic potentials. METHOD: Numerous electronic databases, including Springer, PubMed, Science Direct, Pubchem, etc. were searched to extract relevant published literature demonstrating rutin effectiveness in various ailments. RESULTS: The reviewed literature showed that rutin and related flavonoids possess a variety of physiological properties that protects human beings, plants and animals. Antioxidant, anti-inflammatory, anti-allergic, cytoprotective, vasoprotective, anticarcinogenic, neuroprotective, cardioprotective, antibacterial, antiviral, antiprotozoal, antitumor, anti-hypertensive antiplatelet, antispasmodic and hypolipidemic, activities. Nanotechnology has been implemented for the improvement of the bioavailability of rutin using novel drug-delivery carriers. CONCLUSION: The study concludes that the development of rutin nanoformulations for multiple therapeutic approaches contributes towards enhanced aqueous solubility as well as tailored pharmacokinetics compared to conventional delivery of rutin. However, more investigations should be conducted to confirm the improved bioavailability of the rutin nanoformulations.

5.
Article in English | MEDLINE | ID: mdl-39225208

ABSTRACT

INTRODUCTION: Argemone mexicana, commonly known as the Mexican prickly poppy, has been historically employed in traditional medicine for various ailments, including liver disorders. Given the rising prevalence of liver diseases, including cancer, investigating the potential efficacy of Argemone mexicana in promoting liver health is of paramount importance. This review aims to provide a comprehensive analysis of the existing literature on the hepatoprotective and anticancer properties of Argemone mexicana. METHODOLOGY: A systematic literature search was conducted across PubMed, Google Scholar, and relevant botanical and pharmacological databases. Studies from various sources, including in vitro experiments, animal models, and clinical trials, were included in the review. The search focused on articles published up to 2010-2023, encompassing research that explored the botanical characteristics, chemical composition, traditional uses, and pharmacological properties of Argemone mexicana, specifically emphasizing its impact on liver health and cancer. RESULTS: The review revealed a wealth of studies highlighting the diverse pharmacological properties of Argemone mexicana. The botanical composition includes compounds with antioxidant and anti-inflammatory potential, suggesting hepatoprotective effects. Studies using in vitro and in vivo models demonstrated promising outcomes regarding liver function improvement and inhibition of liver cancer cell proliferation. While some clinical studies supported the traditional uses of Argemone mexicana, further well-designed trials are warranted to establish its clinical efficacy. CONCLUSION: In conclusion, Argemone mexicana shows promise as a natural agent for promoting liver health and combating liver cancer. Bioactive compounds with antioxidant and anti-inflammatory properties suggest potential hepatoprotective effects. However, translating these findings into clinical practice requires further rigorous investigation, including well-designed clinical trials. This review provides a foundation for future research efforts aimed at elucidating the full therapeutic potential of Argemone mexicana in liver health and cancer management.

6.
Nat Prod Res ; : 1-8, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225394

ABSTRACT

A new steroid named persteroid (1) and seven known compounds (2-8) were isolated from the marine-derived fungus Penicillium sp. ZYX-Z-143. The structure of 1 was determined by HRESIMS, NMR, and ECD calculations. Compound 1 showed inhibitory activity against protein tyrosine phosphatase 1B (PTP1B) with IC50 value of 46.31 ± 0.52 µM. Moreover, compound 1 potently suppressed nitric oxide (NO) production on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The cytotoxicity and antibacterial activity of all isolates were tested.

7.
Adv Sci (Weinh) ; : e2403976, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225563

ABSTRACT

In this study, a novel bionic periosteum (BP)-bioactive glass fiber membrane (BGFM) is designed. The introduction of magnesium ion (Mg2+) and zinc ion (Zn2+) change the phase separation during the electrospinning (ES) jet stretching process. The fiber's pore structure transitions from connected to closed pores, resulting in a decrease in the rapid release of metal ions while also improving degradation via reducing filling quality. Additionally, the introduction of magnesium (Mg) and zinc (Zn) lead to the formation of negative charged tetrahedral units (MgO4 2- and ZnO4 2-) in the glass network. These units effectively trap positive charged metal ions, further inhibiting ion release. In vitro experiments reveal that the deigned bionic periosteum regulates the polarization of macrophages toward M2 type, thereby establishing a conducive immune environment for osteogenic differentiation. Bioinformatics analysis indicate that BP enhanced bone repair via the JAK-STAT signaling pathway. The slow release of metal ions from the bionic periosteum can directly enhance osteogenic differentiation and vascularization, thereby accelerating bone regeneration. Finally, the bionic periosteum exhibits remarkable capabilities in angiogenesis and osteogenesis, demonstrating its potential for bone repair in a rat calvarial defect model.

8.
Fitoterapia ; 178: 106196, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218231

ABSTRACT

Withania somnifera (W. somnifera) has a long history of safety in the amelioration of neuro-active ailments. The current study aims to explore Withania somnifera phyto-active principle anti-microbial, ant-neuropathic, and anti-inflammatory activities, and to modify these activities utilizing nano-cubosomes exploiting their mechanisms of action. Bio-guided fractionation technique was utilized, to identify the most phyto-active compound, using LC-MS-NMR online technique and biological models of diabetes, neuropathy, and inflammation. In-vitro antibacterial activity was also monitored. The HbA1c, in-vivo antioxidant (serum-catalase, TBARS, and GSH), serum insulin, and pro-inflammatory serum cytokines (TNF alpha, IL-six, and IL-ten) levels have been assessed to establish the anti-neuropathic and anti-inflammatory mechanisms. The nano-cubosomal formulations (CUB 1-3) were utilized to improve the W. somnifera most active compound efficacy. W. somnifera has shown ten major peaks; coagulin Q (10.2 %), dihydrowithanolide A (2.4 %), dihydrowithaferin D (1.8 %), physagulin D (7.6 %), withanoside V (2.3 %), withanolide A (WDA, 10.3 %), withafrin A (4.9 %), withaferin D (7.7 %), withanone 9 (9.9 %), withanolide D (4.8 %). The bio-guided fractionation technique utilizing LC-MS-NMR technique has proved that withanolide A (WDA) is the most phyto-active compound in W. somnifera. The latter has shown better results than WDA, which might be due to other effective compounds in Ws. However, CUB 3 (WDA nano-cubosomes dispersion) has shown more prominent anti-diabetic, anti-neuropathic, anti-inflammatory, and anti-bacterial potentials than Ws and WDA. Thus, CUB 3 modified WDA activity, and improved its efficacy. The normalization of HbA1c levels, increased insulin secretagogue potential, and the amelioration of the oxidative-stress may be the underlying Ws, WDA, and CUB 3 antidiabetic neuropathy mechanism. Moreover, the Ws, WDA, and CUB 1-3 anti-inflammatory mechanism might be due to the amelioration of the pro-inflammatory serum cytokines (decreasing TNF alpha and IL-six levels and increasing IL-ten). Thus, CUB 3 might be a powerful tool in augmenting Withania somnifera activity as an oral drug-delivery system and improving its efficacy against neuropathy and inflammation.

9.
Int J Biol Macromol ; 279(Pt 3): 135324, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39241996

ABSTRACT

Wound healing in diabetic patients is often complicated by issues like inflammation, infection, bleeding, and fluid retention. To tackle these challenges, it is essential to create hydrogel dressings with anti-inflammatory, antibacterial, and antioxidative properties. This study aimed to synthesize Phlorizin-Liposomes (PL) through the thin-film dispersion method and integrate them into an oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMCS) hydrogel scaffold, resulting in an OSA/CMCS/PL (PLOCS) composite hydrogel via a Schiff base reaction. Characterization of the composite was performed using FTIR, TEM, and SEM techniques. The research assessed the swelling behavior, antibacterial effectiveness, and biocompatibility of the PLOCS composite hydrogel, while also investigating how PLOCS facilitates diabetic wound healing. The results demonstrated that PLOCS effectively controls drug release, possesses favorable swelling and degradation characteristics, and shows significant antioxidative properties along with in vitro biocompatibility. Histological analysis confirmed that PLOCS supports the proliferation of healthy epithelial tissue and collagen production. Western blotting indicated that PLOCS diminishes inflammation by inhibiting the TLR4/NF-κB/MyD88 pathway and activates Nrf2 to boost wound healing, increasing the levels of antioxidative enzymes such as HO-1, NQO1, and GCLC. In summary, PLOCS presents a promising new option for advanced wound dressings aimed at treating diabetic ulcers.

10.
Chem Biodivers ; : e202401514, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242337

ABSTRACT

The Yellow River Delta possesses lots of characteristic medicinal plants due to its high salinity and high alkaline environment and Limonium sinense is an iconic plant. However, there are very few studies on L. sinense and its chemical constituents have not been investigated in recent ten years. In the present study, the chemical constituents and bioactivities of L. sinense were fully studied for the first time. UPLC-MS/MS method combined with database comparison identified 109 compounds mainly including flavonoids, alkaloids and polyphenols. In addition, the potential bioactivities of L. sinense were considerated as anti-inflammatory, anti-oxidative, anti-tumor, hepatoprotective and hpyerglycemic activities based on these identified compounds and their related literature. Furthermore, four derivatives of 12-oxo-phytodienoic acid and butenolide including two new ones (1 and 2) were isolated from the whole plants of L. sinense. Their structures, including the absolute configurations, were determined by the analysis of comprehensive spectroscopic data. All isolates were evaluated for their anti-inflammatory activity. Compound 1 exhibited moderate anti-inflammatory activity with IC50 value of 37.5 ± 1.2 µM on NO production level.

11.
Biomed Pharmacother ; 179: 117263, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39243431

ABSTRACT

Post-stroke depression (POSD) is a common difficulty and most predominant emotional syndrome after stroke often consequences in poor outcomes. In the present investigation, we have designed and studied the neurologically active celastrol/minocycline encapsulated with macrophages-derived exosomes functionalized PLGA nanoformulations (CMC-EXPL) to achieve enhanced anti-inflammatory behaviour and anti-depressant like activity in a Rat model of POSD. The animal model of POSD was established through stimulating process with chronic unpredictable mild stress (CUM) stimulations after procedure of middle cerebral artery occlusion (MCAO). Neuronal functions and Anti-inflammation behaviours were observed by histopathological (H&E) examination and Elisa analyses, respectively. The anti-depressive activity of the nanoformulations treated Rat models were evaluated by open-field and sucrose preference test methods. Microglial polarization was evaluated via flow-cytometry and qRT-PCR observations. The observed results exhibited that prepared nanoformulations reduced the POSD-stimulated depressive-like activities in rat models as well alleviated the neuronal damages and inflammatory responses in the cerebral hippocampus. Importantly, prepared CMC-EXPL nanoformulation effectively prevented the M1 pro-inflammatory polarization and indorsed M2 anti-inflammatory polarization, which indicates iNOS and CD86 levels significantly decreased and upsurged Arg-1 and CD206 levels. CMC-EXPL nanoformulation suggestively augmented anti-depressive activities and functional capability and also alleviated brain inflammation in POSD rats, demonstrating its therapeutic potential for POSD therapy.

12.
Phytomedicine ; 134: 156020, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39243749

ABSTRACT

BACKGROUND: The intestinal and skin epithelium play a strong role against bacterial stimuli which leads to inflammation and oxidative stress when overwhelmed. Polyphenols from fruit-rich diets and by-products show promise against bacterial deleterious effects; however, their antibacterial and health-promoting effects remain understudied. PURPOSE: This study aimed to assess the impact of polyphenolic extracts of grape (GrPE), persimmon (PePE) and pomegranate (PoPE) by-products on bacterial pathogen-host interactions, focusing beyond growth inhibition to explore their effects on bacterial adhesion, invasion, and modulation of host responses. METHODS: The microdilution method, as well as the tetrazolium based MTT cell proliferation and cytotoxicity assay with crystal violet staining were used to identify extracts sub-inhibitory concentrations that interfere with bacterial adhesion, invasion or lipopolysaccharides (LPS) effect on cell hosts without compromising host viability. The cytoprotective effects of extracts were assessed in a knock-down model of nuclear factor erythroid 2-related factor 2 (Nrf2). RESULTS: All extracts demonstrated significant reductions in pathogen adhesion to Caco-2 and HaCaT cells while preserving cellular integrity. Notably, PePE exhibited specific efficacy against Salmonella enterica adhesion, attributed mostly to its gallic acid content, whereas PoPE reduced S. enterica invasion in Caco-2 cells. The extracts supported the prevalence of non-pathogenic and commensal strains of intestinal and skin surfaces, selectively reducing pathogenic adhesion. The extracts mitigated the oxidative stress, enhanced the barrier function, and modulated the pro-inflammatory cytokines in LPS-challenged cells. GrPE, rich in anthocyanins, and PePE were found to mediate their protective effects through Nrf2 activation, while PoPE exerted multifaceted actions independent of Nrf2. CONCLUSION: Our results highlight the therapeutic potential of GrPE, PePE, and PoPE in shaping bacterial-host interactions, endorsing their utility as novel nutraceuticals for both oral and topical applications to prevent potential bacterial infections through innovative mechanisms.

13.
Front Physiol ; 15: 1399396, 2024.
Article in English | MEDLINE | ID: mdl-39234304

ABSTRACT

Lithium (Li+) therapy is a valuable tool in psychiatric practice that remains underutilized due to safety concerns. Excessive plasma Li+ levels are nephrotoxic and can trigger a local immune response. Our understanding of the immunomodulatory effects of Li+ in the kidney is fragmentary. Here, we studied how immune mechanisms contribute to the development of Li+-induced adverse effects in the kidneys of C57BL/6NJ mice placed on a 0.3% lithium carbonate diet for 28 days. We combined histochemical techniques, immunoblotting, flow cytometry, qPCR and proteome profiler arrays to characterize renal tissue damage, infiltrating immune cells and cytokine markers, activation of pyroptotic and apoptotic cascades in the kidneys of mice receiving Li+-containing and regular diets. We found that biomarkers of tubular damage, kidney injury marker, KIM-1, and neutrophil gelatinase-associated lipocalin, NGAL, were elevated in the renal tissue of Li+-treated mice when compared to controls. This correlated with increased interstitial fibrosis in Li+-treated mice. Administration of Li+ did not activate the pro-inflammatory NLRP3 inflammasome cascade but promoted apoptosis in the renal tissue. The TUNEL-positive signal and levels of pro-apoptotic proteins, Bax, cleaved caspase-3, and caspase-8, were elevated in the kidneys of Li+-treated mice. We observed a significantly higher abundance of CD93, CCL21, and fractalkine, accumulation of F4.80+ macrophages with reduced M1/M2 polarization ratio and decreased CD4+ levels in the renal tissue of Li+-treated mice when compared to controls. Therefore, after 28 days of treatment, Li+-induced insult to the kidney manifests in facilitated apoptotic cell death without an evident pro-inflammatory response.

14.
J Am Vet Med Assoc ; : 1-7, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39236742

ABSTRACT

The 2 most known cannabinoids are Δ9-tetrahydrocannabidiol (THC) and cannabidiol (CBD). Both chemicals are extracted from the cannabis plant but can also be synthetically produced. Δ9-Tetrahydrocannabidiol is extracted from the subspecies of the cannabis plant known as the marijuana plant, which contains a high concentration of THC (0.3% to 30%). Δ9-Tetrahydrocannabidiol is a major psychoactive and intoxicating component of the cannabis plant and is not recommended for use in dogs due to its toxic effect. Cannabidiol is extracted from the subspecies of the cannabis plant known as the hemp plant and must contain less than 0.3% THC. Cannabidiol is a major nonpsychoactive component of the cannabis plant, and its effect has been investigated for epilepsy, neoplasia, and osteoarthritis in dogs. Public interest in the medical use of cannabinoids for various diseases and disorders has grown in the last couple of years. The attention has extended to veterinary medicine, where veterinarians and pet owners are curious about what diseases the nontoxic CBD can be used for to treat companion animals. The use of CBD for ophthalmic diseases has also been investigated due to its anti-inflammatory and neuroprotective effects. Intraocular pressure regulation for glaucoma, corneal diseases (eg, keratitis and corneal pain), uveal diseases (eg, endotoxin-induced uveitis), and retinal/optic nerve head diseases (eg, diabetic retinopathy) are areas where CBD's effect has been investigated in humans and animals. The aim of this review is to give an update on what is known regarding the use of cannabinoids, especially CBD, for ophthalmic diseases in dogs.

15.
Aging (Albany NY) ; 162024 Sep 04.
Article in English | MEDLINE | ID: mdl-39237304

ABSTRACT

Anti-inflammatory and antioxidant effects play crucial roles in the recovery of benign prostatic hyperplasia (BPH). Wenshenqianlie (WSQL) capsule, a typical traditional Chinese medicine formulation combining 14 Chinese herbs, has been reported to exert tonic effects on the kidneys and improve clinical symptoms of BPH. However, its potential antioxidative and anti-inflammatory properties and effects on the improvement of hormone levels have not been reported in depth. In this study, mice were subcutaneously injected with TP (5 mg/kg·d-1) to induce BPH. Forty-eight adult BALB/c male mice were randomly allocated to six groups based on the type of drug administered by gavage: control, BPH, BPH+WSQL (40 and 80 mg/kg·d-1), BPH+finasteride (1 mg/kg·d-1), and WSQL-only treated (80 mg/kg·d-1). We investigated the anti-inflammatory and antioxidant effect and mechanism of WSQL on BPH via histopathological examination, immunohistochemistry, enzyme-linked immunosorbent assay, and western blotting combined with in vivo serum metabolomics, gut microbiomics analysis. WSQL alleviated prostate hyperplasia and reduced prostate-specific antigen, dihydrotestosterone, testosterone, and inflammation levels. Gut microbiomics and serum non-targeted metabolomics determined that the protective effect of WSQL against BPH may be related to the improvement of inflammation and testosterone-related gut microbiota and serum metabolites. Further studies showed that WSQL ameliorated nuclear factor-kappa B, its downstream inflammatory factors, and nuclear factor E2-related factor 2 pathway.

16.
Plant Foods Hum Nutr ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254770

ABSTRACT

Acute pneumonia is a respiratory disease characterized by inflammation within the lung tissue, exhibiting higher morbidity rates and mortality rates among immunocompromised children and older adults. Symplocos species have been traditionally used as herbal remedies for conditions like dysentery, skin ulcers, diarrhea, and dyspepsia. Contemporary research has employed various Symplocos species in the study of diverse diseases. However, the exact efficacy and mechanisms of action of Symplocos Prunifolia remain unknown. Therefore, this study investigated the anti-inflammatory mechanism of S. prunifolia extract (SPE) in A549 and RAW264.7 cells stimulated by lipopolysaccharide (LPS). SPE significantly reduced nitric oxide (NO) production and the protein expression levels of like inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 cells. Furthermore, it reduced the protein expression levels of iNOS, COX-2 and the levels of pro-inflammatory cytokines in LPS-stimulated A549 cells. The mechanism underlying the anti-inflammatory effect of SPE was associated with the inhibition of LPS stimulated the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) and Mitogen-activated protein kinase (MAPK) phosphorylation. Moreover, we confirmed that SPE decreased the nuclear translocation of nuclear factor-κB (NF-κB)/p65 stimulated by LPS. In conclusion, these results demonstrate that SPE alleviates inflammatory responses by deactivating the PI3K/Akt, MAPK, and NF-κB signaling pathways. Our findings suggest that SPE is a potential candidate for acute pneumonia prevention.

17.
Plant Foods Hum Nutr ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254771

ABSTRACT

Cyanra cardunclus L. var. ferocissima is widely used in Morocco as a food and in traditional medicine. Therefore, this study aimed to determine, for the first time, the phytochemical content and antioxidant and anti-inflammatory activities of this variety. Qualitative tests were used to screen for the phytochemical compounds present in the extract, and spectrophotometric methods were used for quantification. The sugar profiles were determined using HPLC. Antioxidant activity was determined in vitro using DPPH, FRAP, and total antioxidant activity assays, and anti-inflammatory activity was assessed using serum albumin denaturation and membrane stabilization assays. The extract contained a high amount of total polyphenols, hydrocinnamic acids, anthocyanins, chlorophyll, ortho-diphenols, terpenoids, and triterpenoids. In addition, five sugars were identified with high amounts of raffinose and sucrose. The extract exerted considerable antioxidant activity by scavenging radicals and reducing power. It exerts anti-inflammatory effects by inhibiting protein denaturation and heat-inducing hemolysis. From the correlation results, anthocyanin, polyphenol, and triterpenoid contents were strongly correlated with DPPH free radical scavenging activity. Orthodiphenols, flavonols, and chlorophyll α were strongly correlated with FRAP, whereas orthodiphenols, hydrocinnamic acids, and triterpenoids were strongly correlated with total antioxidant activity. In terms of anti-inflammatory activity, orthodiphenols, hydrocinnamic acids, and triterpenoids correlated strongly with inhibition of bovine serum albumin denaturation activity, whereas terpenoids, flavonols, and chlorophyll correlated strongly with red cell membrane-stabilizing activity. In conclusion, the Moroccan Cynara cardunclus var. ferocissima leaf methanolic extract constitutes a promising source of phytochemicals with considerable antioxidant and anti-inflammatory activity.

18.
Int J Biol Macromol ; 279(Pt 2): 135290, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233178

ABSTRACT

Fungal keratitis (FK) is recognized as a stubborn ocular condition, caused by intense fungal invasiveness and heightened immune reaction. The glycosaminoglycan chondroitin sulfate exhibits properties of immunomodulation and tissue regeneration. In prior investigations, oxidized chondroitin sulfate (OCS) ameliorated the prognosis of FK in murine models. To further improve the curative efficacy, we used the antifungal drug natamycin to functionalize OCS and prepared oxidized chondroitin sulfate-natamycin (ON) eye drops. The structure of ON was characterized by FTIR, UV-vis, and XPS, revealing that the amino group of natamycin combined with the aldehyde group in OCS through Schiff base reaction. Antifungal experiments revealed that ON inhibited fungal growth and disrupted the mycelium structure. ON exhibited exceptional biocompatibility and promoted the proliferation of corneal epithelial cells. Pharmacokinetic analysis indicated that ON enhanced drug utilization by extending the mean residence time in tears. In murine FK, ON treatment reduced the clinical score and corneal fungal load, restored corneal stroma conformation, and facilitated epithelial repair. ON effectively inhibited neutrophil infiltration and decreased the expression of TLR-4, LOX-1, IL-1ß, and TNF-α. Our research demonstrated that ON eye drops achieved multifunctional treatment for FK, including inhibiting fungal growth, promoting corneal repair, enhancing drug bioavailability, and controlling inflammatory reactions.

19.
BMC Complement Med Ther ; 24(1): 333, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261916

ABSTRACT

BACKGROUND: In early 2020, COVID-19 pandemic has mobilized researchers in finding new remedies including repurposing of medicinal plant products focusing on direct-acting antiviral and host-directed therapies. In this study, we performed an in vitro investigation on the standardized Marantodes pumilum extract (SKF7®) focusing on anti-SARS-CoV-2 and anti-inflammatory activities. METHODS: Anti-SARS-CoV-2 potential of the SKF7® was evaluated in SARS-CoV-2-infected Vero E6 cells and SARS-CoV-2-infected A549 cells by cytopathic effect-based assay and RT-qPCR, respectively. Target based assays were performed on the SKF7® against the S1-ACE2 interaction and 3CL protease activities. Anti-inflammatory activity of the SKF7® was evaluated by nitric oxide inhibitory and TLR2/TLR4 receptor blocker assays. RESULTS: The SKF7® inhibited wild-type Wuhan (EC50 of 21.99 µg/mL) and omicron (EC50 of 16.29 µg/mL) SARS-CoV-2 infections in Vero-E6 cells. The SKF7® also inhibited the wild-type SARS-CoV-2 infection in A549 cells (EC50 value of 6.31 µg/mL). The SKF7® prominently inhibited 3CL protease activity. The SKF7® inhibited the LPS induced-TLR4 response with the EC50 of 16.19 µg/mL. CONCLUSIONS: In conclusion, our in vitro study highlighted anti-SARS-CoV-2 and anti-inflammatory potentials of the SKF7®. Future pre-clinical in vivo studies focusing on antiviral and immunomodulatory potentials of the SKF7® in affecting the COVID-19 pathogenesis are warranted.


Subject(s)
Antiviral Agents , Plant Extracts , SARS-CoV-2 , Animals , Humans , Antiviral Agents/pharmacology , SARS-CoV-2/drug effects , Vero Cells , Chlorocebus aethiops , Plant Extracts/pharmacology , A549 Cells , Plants, Medicinal/chemistry , COVID-19 Drug Treatment , Anti-Inflammatory Agents/pharmacology , Malaysia , COVID-19 , Coronavirus 3C Proteases
20.
Cureus ; 16(8): e66674, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39262564

ABSTRACT

BACKGROUND: Tribulus terrestris, a plant known for its pharmacological properties, was investigated in this study for its potential anticancer effects against oral cancer cells. The study aimed to explore the phytochemical composition of T. terrestris seed extract and evaluate its cytotoxic, pro-apoptotic, antioxidant, anti-inflammatory, and antimicrobial activities. MATERIALS AND METHODS: Methanolic seed extracts of T. terrestris were obtained and subjected to phytochemical analysis to identify bioactive compounds. The cytotoxic effect of the extract on oral cancer cells was evaluated using the MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay, while pro-apoptotic effects were assessed through dual fluorescent staining. Antioxidant activity was measured using hydrogen peroxide and erythrocyte aggregation assays, while anti-inflammatory activity was evaluated through inhibition of albumin denaturation. RESULTS: Phytochemical analysis revealed the presence of alkaloids, tannins, saponins, flavonoids, and phenols in T. terrestris seed extract. The extract demonstrated concentration-dependent cytotoxicity against oral cancer cells, with 100 µg/mL showing significant growth inhibition. Pro-apoptotic effects were observed, with characteristic morphological changes in cancer cells treated with the extract. Antioxidant activity was demonstrated by the extract, with methanol fraction of a flower (MFF) exhibiting the highest capacity, followed by total trichome fraction (TTF), and a positive correlation between phenolic content and free radical scavenging effectiveness was noted. Antimicrobial activity against various pathogens, including bacteria and fungi, was also observed, with higher concentrations showing increased efficacy. CONCLUSION: The study concludes that methanolic extracts of T. terrestris possess significant anticancer, antioxidant, anti-inflammatory, and antimicrobial activities. These findings highlight the potential of T. terrestris as a candidate for further research and clinical applications, either alone or in combination with other agents, for the treatment of oral cancer and associated conditions.

SELECTION OF CITATIONS
SEARCH DETAIL