Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
J Pharm Biomed Anal ; 252: 116493, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39368137

ABSTRACT

Unsymmetrical bisacridines (UAs) represent a novel class of anticancer agents. Their high cytotoxicity towards multiple human cancer cell lines and inhibition of human tumor xenograft growth in nude mice signal their potential for cancer treatment. Therefore, the mechanism of their strong biological activity is broadly investigated. Here, we explore the efflux and metabolism of UAs, as both strongly contribute to the development of drug resistance in cancer cells. We tested two highly cytotoxic UAs, C-2028 and C-2045, as well as their glucuronic acid and glutathione conjugates in human cancer cell lines (HepG2 and LS174T). As a point of reference for cell-based systems, we examined the rate of UA metabolic conversion in cell-free systems. A multiple reaction monitoring (MRM)-mass spectrometry (MS) method was developed in the present study for analysis of UAs and their metabolic conversion in complex biological matrices. Individual analytes were identified by several features: their retention time, mass-to-charge ratio and unique fragmentation pattern. The rate of UA uptake and metabolic transformation was monitored for 24 h in cell extracts and cell culture medium. Both UAs were rapidly internalized by cells. However, C-2028 was gradually accumulated, while C-2045 was eventually released from cells during treatment. UAs demonstrated limited metabolic conversion in cells. The glucuronic acid conjugate was excreted, whereas the glutathione conjugate was deposited in cancer cells. Our results obtained from cell-free and cell-based systems, using a uniform MRM-MS method, will provide valuable insight into the mechanism of UA biological activity in diverse biological models.

2.
Mol Pharm ; 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39392428

ABSTRACT

An integrated strategy by combining cocrystallization with nanotechnology is developed to optimize in vitro/vivo performances of marine antitumor drug cytarabine (ARA) and further obtain innovative insights into the exploitation of cocrystal alloy nanoformulation. Therein, the optimization of properties and synergistic effects of ARA mainly depends on assembling with uracil (U) and antitumor drug 5-fluorouracil (FU) into the same crystal by cocrystallization technology, while the long-term efficacy is primarily maintained by playing the superiority of nanotechnology. Along this line, the first cocrystal alloy of ARA, viz., ARA-FU-U (0.6:0.4), is successfully obtained and then transformed into a nanocrystal. Single-crystal X-ray diffraction analysis demonstrates that this cocrystal alloy consists of two isomorphic cocrystals of ARA, namely, ARA-FU and ARA-U, in 0.6:0.4 ratio. An R22(8) hydrogen-bonding cyclic system formed by a cytosine fragment of ARA with U or FU can protect and stabilize the amine group on ARA, laying the foundation for regulating its properties. The in vitro/in vivo properties of the cocrystal alloy and its nanocrystals are investigated by theoretical and experimental means. It reveals that both the alloy and nanocrystal can improve physicochemical properties and promote drug absorption, thus bringing to optimized pharmacokinetic behaviors. The nanocrystal produces superior effects than the alloy that helps to extend therapeutic time and action. Particularly, relative to the corresponding binary cocrystal, the synergistic antitumor activity of ARA and FU in the cocrystal alloy is heightened obviously. It may be that U contributes to reducing the degradation of FU, specifically increasing its concentration in tumors to enhance the synergistic effects of FU and ARA. These findings provide new thoughts for the application of cocrystal alloys in the marine drug field and break fresh ground for cocrystal alloy formulations to optimize drug properties.

3.
Bioorg Chem ; 153: 107802, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39244972

ABSTRACT

The treatment of bladder cancer is limited by low drug efficacy and drug resistance. Hence, this study aimed to screen and identify potential drug precursors and investigate their mechanism of action. A set of camptothecin derivatives showing high anti-tumor potential was selected from early-stage research or literature and synthesized to construct a compound library. A total of 135 compounds were screened in T24 and J82 cells, revealing that FL118 significantly inhibited the proliferation of GC (gemcitabine + cisplatin)-sensitive/insensitive cells. FL118 exhibited excellent penetration and killing ability in organoids and three GC-insensitive patient-derived xenografts. Chemical proteomic and docking calculations were employed to identify binding proteins, indicating that FL118 can bind into H2A.X and its entwined DNA. The results of Cellular thermal shift assay and surface plasmon resonance (Kd = 3.77E-6) support the above findings. Fluorescence localization revealed widespread binding of FL118 within the cell nucleus. Furthermore, WB showed that FL118 increased cellular DNA damage, resulting in significant cell cycle inhibition. The binding of FL118 to H2A.X hindered the damage repair process, leading to apoptosis. Controllable adverse reactions were observed in mice treated with FL118. In conclusion, FL118 may be a superior anti-bladder cancer compound that acts as a molecular glue binding to both H2A.X and DNA. The resistance mediated by the DNA damage repair to DNA damage caused by GC regimen can be reversed by FL118. This distinct mechanism of FL118 has the potential to complement existing mainstream treatment approaches for bladder cancer.

4.
Hum Cell ; 37(6): 1742-1750, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39214957

ABSTRACT

Myxofibrosarcoma (MFS), an aggressive soft tissue sarcoma, presents a significant challenge because of its high recurrence rate, distal metastasis, and complex genetic background. Although surgical resection is the standard treatment for MFS, the outcomes are unsatisfactory and effective non-surgical treatment strategies, including drug therapy, are urgently warranted. MFS is a rare tumor that requires comprehensive preclinical research to develop promising drug therapies; however, only two MFS cell lines are publicly available worldwide. The present study reports two novel patient-derived MFS cell lines, NCC-MFS7-C1 and NCC-MFS8-C1. These cell lines have been extensively characterized for their genetic profile, proliferation, spheroid-forming capacity, and invasive behavior, confirming that they retain MFS hallmarks. Furthermore, we conducted comprehensive drug screening against these cell lines and six others previously established in our laboratory to identify potential therapeutic candidates for MFS. Among the screened agents, actinomycin D, bortezomib, and romidepsin demonstrated considerable antiproliferative effects that were superior to those of doxorubicin, a standard drug, highlighting their potential as novel drugs. In conclusion, NCC-MFS7-C1 and NCC-MFS8-C1 are valuable research resources that contribute to the understanding of the pathogenesis and development of novel therapies for MFS.


Subject(s)
Bortezomib , Cell Proliferation , Dactinomycin , Depsipeptides , Fibrosarcoma , Humans , Fibrosarcoma/pathology , Fibrosarcoma/genetics , Dactinomycin/pharmacology , Cell Line, Tumor , Bortezomib/pharmacology , Depsipeptides/pharmacology , Doxorubicin/pharmacology , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor , Neoplasm Invasiveness , Male , Middle Aged
5.
Biomedicines ; 12(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39062164

ABSTRACT

While drug therapy plays a crucial role in cancer treatment, many anticancer drugs, particularly cytotoxic and molecular-targeted drugs, cause severe side effects, which often limit the dosage of these drugs. Efforts have been made to alleviate these side effects by developing derivatives, analogues, and liposome formulations of existing anticancer drugs and by combining anticancer drugs with substances that reduce side effects. However, these approaches have not been sufficiently effective in reducing side effects. Molecular hydrogen (H2) has shown promise in this regard. It directly reduces reactive oxygen species, which have very strong oxidative capacity, and indirectly exerts antioxidant, anti-inflammatory, and anti-apoptotic effects by regulating gene expression. Its clinical application in various diseases has been expanded worldwide. Although H2 has been reported to reduce the side effects of anticancer drugs in animal studies and clinical trials, the underlying molecular mechanisms remain unclear. Our comprehensive literature review revealed that H2 protects against tissue injuries induced by cisplatin, oxaliplatin, doxorubicin, bleomycin, and gefitinib. The underlying mechanisms involve reductions in oxidative stress and inflammation. H2 itself exhibits anticancer activity. Therefore, the combination of H2 and anticancer drugs has the potential to reduce the side effects of anticancer drugs and enhance their anticancer activities. This is an exciting prospect for future cancer treatments.

6.
Acta Biomater ; 185: 173-189, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39025391

ABSTRACT

Tumor behavior, including its response to treatments, is influenced by interactions between mesenchymal and malignant cells, as well as their spatial arrangement. To study tumor biology and evaluate anticancer drugs, accurate 3D tumor models are essential. Here, we developed an in vitro biomimetic hepatoma microenvironment model by combining an extracellular matrix (3DM-7721). Initially, the internal grid structure, composed of 10/6 % GelMA/gelatin loaded with SMMC-7721 cells, was printed using 3D bioprinting. The external component consisted of fibroblasts and human umbilical vein endothelial cells loaded with 10/3 % GelMA/gelatin. A control model (3DP-7721) lacked external cell loading. GelMA/gelatin hydrogels provided robust structural support and biocompatibility. The SMMC-7721 cells in the 3DM-7721 model exhibit superior tumor-associated gene expression and proliferation characteristics when compared to the 3DP-7721 model. Furthermore, the 3DM-7721 type exhibited increased resistance to anticancer agents. SMMC-7721 cells in the 3DM-7721 model exhibit significant tumorigenicity in nude mice. The 3DM-7721 model group showed pathological characteristics of malignant tumors, with a high degree of deterioration, and a significant positive correlation between malignant tumor-related gene pathways. This high-fidelity 3DM-7721 tumor microenvironment model is invaluable for studying tumor progression, devising effective treatment strategies, and discovering drugs. STATEMENT OF SIGNIFICANCE.


Subject(s)
Antineoplastic Agents , Bioprinting , Carcinoma, Hepatocellular , Liver Neoplasms , Mice, Nude , Printing, Three-Dimensional , Tumor Microenvironment , Humans , Tumor Microenvironment/drug effects , Animals , Bioprinting/methods , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Drug Screening Assays, Antitumor , Mice , Gelatin/chemistry , Mice, Inbred BALB C , Cell Proliferation/drug effects
7.
Bioorg Med Chem Lett ; 109: 129838, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38838918

ABSTRACT

Aberrant activation of the JAK-STAT pathway is evident in various human diseases including cancers. Proteolysis targeting chimeras (PROTACs) provide an attractive strategy for developing novel JAK-targeting drugs. Herein, a series of CRBN-directed JAK-targeting PROTACs were designed and synthesized utilizing a JAK1/JAK2 dual inhibitor-momelotinib as the warhead. The most promising compound 10c exhibited both good enzymatic potency and cellular antiproliferative effects. Western blot analysis revealed that compound 10c effectively and selectively degraded JAK1 in a proteasome-dependent manner (DC50 = 214 nM). Moreover, PROTAC 10c significantly suppressed JAK1 and its key downstream signaling. Together, compound 10c may serve as a novel lead compound for antitumor drug discovery.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Janus Kinase 1 , Proteolysis , Humans , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Proteolysis/drug effects , Cell Proliferation/drug effects , Structure-Activity Relationship , Cell Line, Tumor , Drug Screening Assays, Antitumor , Drug Discovery , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , Proteasome Endopeptidase Complex/metabolism
8.
J Drug Target ; 32(6): 672-706, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38682299

ABSTRACT

Recent advances in the field of drug delivery have opened new avenues for the development of novel nanodrug delivery systems (NDDS) in cancer therapy. Self-assembled nanoparticles (SANPs) based on tumour microenvironment have great advantages in improving antitumor effect, and pH-responsive SANPs prepared by the combination of pH-responsive nanomaterials and self-assembly technology can effectively improve the efficacy and reduce the systemic toxicity of antitumor drugs. In this review, we describe the characteristics of self-assembly and its driving force, the mechanism of pH-responsive NDDS, and the nanomaterials for pH-responsive SANPs type. A series of pH-responsive SANPs for tumour-targeted drug delivery are discussed, with an emphasis on the relation between structural features and theranostic performance.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems , Nanoparticles , Neoplasms , Hydrogen-Ion Concentration , Humans , Nanoparticles/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Tumor Microenvironment/drug effects , Animals , Drug Carriers/chemistry
9.
Int J Pharm ; 657: 124144, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38653342

ABSTRACT

New drugs and technologies are continuously developed to improve the efficacy and minimize the critical side effects of cancer treatments. The present investigation focuses on the development of a liposomal formulation for Idelalisib, a small-molecule kinase inhibitor approved for the treatment of lymphoid malignancies. Idelalisib is a potent and selective antitumor agent, but it is not indicated nor recommended for first-line treatment due to fatal and serious toxicities. Herein, liposomes are proposed as a delivery tool to improve the therapeutic profile of Idelalisib. Specifically, PEGylated liposomes were prepared, and their physicochemical and technological features were investigated. Light-scattering spectroscopy and cryo-transmission electron microscopy revealed nanosized unilamellar vesicles, which were proved to be stable in storage and in simulated biological fluids. The cytotoxicity of the liposome formulation was investigated in a human non-Hodgkin's lymphoma B cell line. Idelalisib was able to induce death of tumor cells if delivered by the nanocarrier system at increased efficacy. These findings suggest that combining Idelalisib and nanotechnologies may be a powerful strategy to increase the antitumor efficacy of the drug.


Subject(s)
Antineoplastic Agents , Liposomes , Polyethylene Glycols , Purines , Quinazolinones , Humans , Purines/chemistry , Purines/administration & dosage , Purines/pharmacology , Quinazolinones/chemistry , Quinazolinones/administration & dosage , Quinazolinones/pharmacology , Polyethylene Glycols/chemistry , Cell Line, Tumor , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Lymphoma, B-Cell/drug therapy
10.
Hum Cell ; 37(3): 874-885, 2024 May.
Article in English | MEDLINE | ID: mdl-38466561

ABSTRACT

Giant cell tumor of bone (GCTB) is a rare osteolytic bone tumor consisting of mononuclear stromal cells, macrophages, and osteoclast-like giant cells. Although GCTB predominantly exhibits benign behavior, the tumor carries a significant risk of high local recurrence. Furthermore, GCTB can occasionally undergo malignant transformation and distal metastasis, making it potentially fatal. The standard treatment is complete surgical resection; nonetheless, an optimal treatment strategy for advanced GCTB remains unestablished, necessitating expanded preclinical research to identify appropriate therapeutic options. However, only one GCTB cell line is publicly available from a cell bank for research use worldwide. The present study reports the establishment of two novel cell lines, NCC-GCTB8-C1 and NCC-GCTB9-C1, derived from the primary tumor tissues of two patients with GCTB. Both cell lines maintained the hallmark mutation in the H3-3A gene, which is associated with tumor formation and development in GCTB. Characterization of these cell lines revealed their steady growth, spheroid-formation capability, and invasive traits. Potential therapeutic agents were identified via extensive drug screening of the two cell lines and seven previously established GCTB cell lines. Among the 214 antitumor agents tested, romidepsin, a histone deacetylase inhibitor, and mitoxantrone, a topoisomerase inhibitor, were identified as potential therapeutic agents against GCTB. Conclusively, the establishment of NCC-GCTB8-C1 and NCC-GCTB9-C1 provides novel and crucial resources that are expected to advance GCTB research and potentially revolutionize treatment strategies.


Subject(s)
Antineoplastic Agents , Bone Neoplasms , Giant Cell Tumor of Bone , Humans , Giant Cell Tumor of Bone/genetics , Giant Cell Tumor of Bone/pathology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Bone Neoplasms/genetics , Bone Neoplasms/pathology
11.
Molecules ; 29(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474543

ABSTRACT

Copper-organic compounds have gained momentum as potent antitumor drug candidates largely due to their ability to generate an oxidative burst upon the transition of Cu2+ to Cu1+ triggered by the exogenous-reducing agents. We have reported the differential potencies of a series of Cu(II)-organic complexes that produce reactive oxygen species (ROS) and cell death after incubation with N-acetylcysteine (NAC). To get insight into the structural prerequisites for optimization of the organic ligands, we herein investigated the electrochemical properties and the cytotoxicity of Cu(II) complexes with pyridylmethylenethiohydantoins, pyridylbenzothiazole, pyridylbenzimidazole, thiosemicarbazones and porphyrins. We demonstrate that the ability of the complexes to kill cells in combination with NAC is determined by the potential of the Cu+2 → Cu+1 redox transition rather than by the spatial structure of the organic ligand. For cell sensitization to the copper-organic complex, the electrochemical potential of the metal reduction should be lower than the oxidation potential of the reducing agent. Generally, the structural optimization of copper-organic complexes for combinations with the reducing agents should include uncharged organic ligands that carry hard electronegative inorganic moieties.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Copper/chemistry , Reducing Agents , Antineoplastic Agents/chemistry , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Coordination Complexes/chemistry , Ligands
12.
Molecules ; 29(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38338471

ABSTRACT

Cell cycle-dependent kinase 2 (CDK2) is located downstream of CDK4/6 in the cell cycle and regulates cell entry into S-phase by binding to Cyclin E and hyper-phosphorylating Rb. Proto-oncogene murine double minute 2 (MDM2) is a key negative regulator of p53, which is highly expressed in tumors and plays an important role in tumorigenesis and progression. In this study, we identified a dual inhibitor of CDK2 and MDM2, III-13, which had good selectivity for inhibiting CDK2 activity and significantly reduced MDM2 expression. In vitro results showed that III-13 inhibited proliferation of a wide range of tumor cells, regardless of whether Cyclin E1 (CCNE1) was overexpressed or not. The results of in vivo experiments showed that III-13 significantly inhibited proliferation of tumor cells and did not affect body weight of mice. The results of the druggability evaluation showed that III-13 was characterized by low bioavailability and poor membrane permeability when orally administered, suggesting the necessity of further structural modifications. Therefore, this study provided a lead compound for antitumor drugs, especially those against CCNE1-amplified tumor proliferation.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Mice , Tumor Suppressor Protein p53/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cell Cycle , Antineoplastic Agents/pharmacology , Cell Division
13.
Cancers (Basel) ; 16(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38398225

ABSTRACT

Serine-threonine protein kinases of the DYRK and CLK families regulate a variety of vital cellular functions. In particular, these enzymes phosphorylate proteins involved in pre-mRNA splicing. Targeting splicing with pharmacological DYRK/CLK inhibitors emerged as a promising anticancer strategy. Investigation of the pyrido[3,4-g]quinazoline scaffold led to the discovery of DYRK/CLK binders with differential potency against individual enzyme isoforms. Exploring the structure-activity relationship within this chemotype, we demonstrated that two structurally close compounds, pyrido[3,4-g]quinazoline-2,10-diamine 1 and 10-nitro pyrido[3,4-g]quinazoline-2-amine 2, differentially inhibited DYRK1-4 and CLK1-3 protein kinases in vitro. Unlike compound 1, compound 2 efficiently inhibited DYRK3 and CLK4 isoenzymes at nanomolar concentrations. Quantum chemical calculations, docking and molecular dynamic simulations of complexes of 1 and 2 with DYRK3 and CLK4 identified a dramatic difference in electron donor-acceptor properties critical for preferential interaction of 2 with these targets. Subsequent transcriptome and proteome analyses of patient-derived glioblastoma (GBM) neurospheres treated with 2 revealed that this compound impaired CLK4 interactions with spliceosomal proteins, thereby altering RNA splicing. Importantly, 2 affected the genes that perform critical functions for cancer cells including DNA damage response, p53 signaling and transcription. Altogether, these results provide a mechanistic basis for the therapeutic efficacy of 2 previously demonstrated in in vivo GBM models.

14.
Molecules ; 29(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38398589

ABSTRACT

In this study, 14 structurally novel gefitinib-1,2,3-triazole derivatives were synthesized using a click chemistry approach and characterized by 1H NMR, 13C NMR and high-resolution mass spectrometry (HRMS). Preliminary cell counting kit-8 results showed that most of the compounds exhibit excellent antitumor activity against epidermal growth factor receptor wild-type lung cancer cells NCI-H1299, A549 and NCI-H1437. Among them, 4b and 4c showed the most prominent inhibitory effects. The half maximal inhibitory concentration (IC50) values of 4b were 4.42 ± 0.24 µM (NCI-H1299), 3.94 ± 0.01 µM (A549) and 1.56 ± 0.06 µM (NCI-1437). The IC50 values of 4c were 4.60 ± 0.18 µM (NCI-H1299), 4.00 ± 0.08 µM (A549) and 3.51 ± 0.05 µM (NCI-H1437). Furthermore, our results showed that 4b and 4c could effectively inhibit proliferation, colony formation and cell migration in a concentration-dependent manner, as well as induce apoptosis in H1299 cells. In addition, 4b and 4c exerted its anti-tumor effects by inducing cell apoptosis, upregulating the expression of cleaved-caspase 3 and cleaved-PARP and downregulating the protein levels of Bcl-2. Based on these results, it is suggested that 4b and 4c be developed as potential new drugs for lung cancer treatment.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Humans , Gefitinib/pharmacology , Cell Proliferation , Cell Line, Tumor , Lung Neoplasms/drug therapy , Apoptosis , Triazoles/pharmacology , Triazoles/therapeutic use , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Structure-Activity Relationship
15.
Biol Trace Elem Res ; 202(4): 1428-1445, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37528285

ABSTRACT

Cuproptosis, a newly discovered form of programmed cell death, relies on mitochondrial respiration, the chain of which has been found to be altered in ovarian cancer (OC). The current work probed into the effects of Cuproptosis on the prognosis, immune microenvironment and therapeutic response of OC based on Cuproptosis-related lncRNAs. Data on OC gene expression and clinical characteristics were collected from TCGA, ICGC and GEO databases, and mRNA and lncRNA were distinguished. Cuproptosis-related lncRNAs were screened for consensus clustering analysis. Differentially expressed lncRNAs (DElncRNAs) were identified between clusters, and least absolute shrinkage and selection operator (LASSO) and Cox regression analysis were performed to establish a prognostic signature. Its potential value in OC was evaluated by Gene Set Enrichment Analysis (GSEA), tumor cell mutation and immune microenvironment analysis, and response to immunotherapy and antineoplastic drugs. According to the classification scheme of Cuproptosis-related lncRNAs, OC was divided into four molecular subtypes, which were different in survival time, immune characteristics and somatic mutation. The prognostic signature between subtypes included 10 lncRNAs, which were significantly correlated with the prognosis, immune microenvironment related indexes, the expression of immune checkpoint molecules and the sensitivity of antineoplastic drug Paclitaxel and Gefitinib of OC. We examined the expression of ten LncRNAs in OC cell lines and found that LINC00189, ZFHX4-AS1, RPS6KA2-IT1 and C9orf106 were expressed elevated in OC cell lines, and LINC00861, LINC00582, DEPDC1-AS1, LINC01556, LEMD1-AS1, TYMSOS expression was decreased in OC cell lines. The results of CCK8 showed that the cell viability of OC cells decreased after inhibition of C9orf106, whereas the cell viability of OC cells increased after inhibition of LEMD1-AS1. This work revealed new Cuproptosis-related lncRNA molecular subtypes exhibiting tumor microenvironment (TME) heterogeneity for OC and proposed a prognostic signature that may have benefits in understanding the prognosis, pathological features and immune microenvironment of OC patients.


Subject(s)
Ovarian Neoplasms , RNA, Long Noncoding , Humans , Female , RNA, Long Noncoding/genetics , Prognosis , Ovarian Neoplasms/genetics , Paclitaxel , Apoptosis , Tumor Microenvironment/genetics , Neoplasm Proteins , GTPase-Activating Proteins
16.
Molecules ; 28(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38067534

ABSTRACT

Cabozantinib malate (CBZM), a new anticancer medication, has been studied for its solubility and thermodynamic properties in a variety of {dimethyl sulfoxide (DMSO) + water (H2O)} mixtures at 298.2-318.2 K and 101.1 kPa. Using the shake flask technique, the solubility of CBZM was assessed and the results were correlated to the van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models. There was a significant correlation between the experimental CBZM solubility data and all computational models, as evidenced by the error values for all computational models being less than 5.0%. Temperature and DMSO mass percentage improved the CBZM mole fraction solubility in the cosolvent solutions of {DMSO + H2O}. At 318.2 K, pure DMSO had the highest mole fraction solubility of CBZM (4.38 × 10-2), whereas pure H2O had the lowest mole fraction solubility (2.24 × 10-7 at 298.2 K). The positive values of computed thermodynamic parameters indicated that the dissolution of CBZM was endothermic and entropy-driven in all of the {DMSO + H2O} solutions investigated. It was found that the CBZM solvation in {DMSO + H2O} solutions is governed by enthalpy. When compared to CBZM-H2O, CBZM-DMSO showed the highest molecular interactions. The findings of this investigation demonstrated that DMSO has a great deal of potential for CBZM solubilization in H2O.

17.
Acta Pharm Sin B ; 13(12): 4918-4933, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38045061

ABSTRACT

As a novel and promising antitumor target, AXL plays an important role in tumor growth, metastasis, immunosuppression and drug resistance of various malignancies, which has attracted extensive research interest in recent years. In this study, by employing the structure-based drug design and bioisosterism strategies, we designed and synthesized in total 54 novel AXL inhibitors featuring a fused-pyrazolone carboxamide scaffold, of which up to 20 compounds exhibited excellent AXL kinase and BaF3/TEL-AXL cell viability inhibitions. Notably, compound 59 showed a desirable AXL kinase inhibitory activity (IC50: 3.5 nmol/L) as well as good kinase selectivity, and it effectively blocked the cellular AXL signaling. In turn, compound 59 could potently inhibit BaF3/TEL-AXL cell viability (IC50: 1.5 nmol/L) and significantly suppress GAS6/AXL-mediated cancer cell invasion, migration and wound healing at the nanomolar level. More importantly, compound 59 oral administration showed good pharmacokinetic profile and in vivo antitumor efficiency, in which we observed significant AXL phosphorylation suppression, and its antitumor efficacy at 20 mg/kg (qd) was comparable to that of BGB324 at 50 mg/kg (bid), the most advanced AXL inhibitor. Taken together, this work provided a valuable lead compound as a potential AXL inhibitor for the further antitumor drug development.

18.
Int J Mol Sci ; 24(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38069036

ABSTRACT

The DNA origami method has revolutionized the field of DNA nanotechnology since its introduction. These nanostructures, with their customizable shape and size, addressability, nontoxicity, and capacity to carry bioactive molecules, are promising vehicles for therapeutic delivery. Different approaches have been developed for manipulating and folding DNA origami, resulting in compact lattice-based and wireframe designs. Platinum-based complexes, such as cisplatin and phenanthriplatin, have gained attention for their potential in cancer and antiviral treatments. Phenanthriplatin, in particular, has shown significant antitumor properties by binding to DNA at a single site and inhibiting transcription. The present work aims to study wireframe DNA origami nanostructures as possible carriers for platinum compounds in cancer therapy, employing both cisplatin and phenanthriplatin as model compounds. This research explores the assembly, platinum loading capacity, stability, and modulation of cytotoxicity in cancer cell lines. The findings indicate that nanomolar quantities of the ball-like origami nanostructure, obtained in the presence of phenanthriplatin and therefore loaded with that specific drug, reduced cell viability in MCF-7 (cisplatin-resistant breast adenocarcinoma cell line) to 33%, while being ineffective on the other tested cancer cell lines. The overall results provide valuable insights into using wireframe DNA origami as a highly stable possible carrier of Pt species for very long time-release purposes.


Subject(s)
Breast Neoplasms , Nanostructures , Humans , Female , Cisplatin/pharmacology , Platinum/pharmacology , Pharmaceutical Preparations , DNA/chemistry , Nanostructures/chemistry , Nucleic Acid Conformation
19.
Front Pharmacol ; 14: 1285799, 2023.
Article in English | MEDLINE | ID: mdl-38027010

ABSTRACT

Background: Ferroptosis is an emerging type of regulated cell death and associated with antitumoral therapy, while some microRNAs have been shown to regulate the tumorigenesis and cancer progression. Meanwhile, polyphyllin I (PPI) has exhibited antitumoral effects by promoting cancer cell apoptosis and ferroptosis. However, it is unclear whether PPI induces cancer cell ferroptosis by regulating microRNAs. Methods: We used two gastric cancer cell lines (AGS and MKN-45) to set up a tumor model of the nude mice, which were then treated daily with PPI to measure the cancer growth in vitro and in vivo. Ferroptosis was measured using immunofluorescence staining and flow cytometric analysis according to levels of intracellular ROS, lipid ROS and ferrous ions. Moreover, NRF2 expression was measured by Western blotting. In some experiments, the mimics or inhibitors of miR-124-3p were used to further confirm its involvement in PPI-induced cancer cell ferroptosis. Results: Here we found that miR-124-3p mediated cancer ferroptosis and tumor repression induced by PPI since PPI increased miR-124-3p expression in gastric cancer cells and promoted their ferroptosis, whereas inhibition of miR-124-3p mostly abolished the effects of PPI on tumor growth, ferroptosis and NRF2 expression. Moreover, miR-124-3p mimics promoted cancer cell ferroptosis by downregulating NRF2 through directly targeting 3'-UTR region of NRF2, confirming a role for miR-124-3p in regulating PPI-induced ferroptosis. Conclusion: PPI exerts its antitumoral effects on the gastric cancer by promoting cell ferroptosis via regulating miR-124-3p. Our findings have clinical implications for cancer chemotherapy.

20.
Exp Ther Med ; 26(5): 506, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37822589

ABSTRACT

Traditional chemotherapy drugs have definite antitumor mechanisms and good therapeutic efficacy; however, their poor water solubility, serious side effects and drug resistance limit their clinical application. To the best of our knowledge, the present study reported for the first time the in vivo and in vitro anticancer effects of procyanidin B1 (PCB1), a compound that is isolated from natural sources such as grape seeds, apples, peanut skin and cranberries. Cell Counting Kit-8 assay showed that PCB1 effectively decreased the number of viable HCT-116 cells compared with cells treated with the small molecule cytotoxic drug doxorubicin. Quantitative PCR and apoptosis analysis, Cell cycle analysis, and WB analysis) of the molecular mechanism showed that PCB1 induced cell apoptosis and cell cycle arrest in S phase by increasing expression of pro-apoptosis protein caspase-3 and BAX and decreasing expression of anti-apoptosis protein Bcl-2. The efficient antitumor activity of PCB1 was demonstrated through in vivo experiments on a xenograft mouse model, demonstrating that PCB1 significantly suppressed tumor growth. The present study suggested that PCB1 represents a novel class of plant-based compounds isolated from natural sources that can be applied as an anticancer drug.

SELECTION OF CITATIONS
SEARCH DETAIL